JPS6213111B2 - - Google Patents

Info

Publication number
JPS6213111B2
JPS6213111B2 JP56065578A JP6557881A JPS6213111B2 JP S6213111 B2 JPS6213111 B2 JP S6213111B2 JP 56065578 A JP56065578 A JP 56065578A JP 6557881 A JP6557881 A JP 6557881A JP S6213111 B2 JPS6213111 B2 JP S6213111B2
Authority
JP
Japan
Prior art keywords
welding
titanium
welded
weld metal
metal part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56065578A
Other languages
Japanese (ja)
Other versions
JPS57181776A (en
Inventor
Tsuneo Kakimi
Megumi Nakanose
Hiroshi Sato
Takaaki Konishi
Hisanao Kita
Takamitsu Nakasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP56065578A priority Critical patent/JPS57181776A/en
Priority to DE8282103462T priority patent/DE3273284D1/en
Priority to EP85102484A priority patent/EP0163018A3/en
Priority to EP82103462A priority patent/EP0064243B1/en
Priority to US06/371,734 priority patent/US4503314A/en
Publication of JPS57181776A publication Critical patent/JPS57181776A/en
Publication of JPS6213111B2 publication Critical patent/JPS6213111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、α+β型のチタン合金の接合方法に
関する。 チタンは比重が小さいために軽量であり、六方
晶の結晶構造をもつているので強度が高く、耐熱
性ならびに耐食性等に優れており、通常のステン
レス鋼に対比できる特性を有していることから、
化学工業装置をはじめとして幅広い分野に使用さ
れるようになつてきている。そして、とくにアル
ミニウム等の合金元素を添加することによつてさ
らに高強度にした強力チタン合金は、比強度(強
度/密度)がかなり高くすぐれた特性を有してい
ることから、宇宙・航空関連分野たとえば航空機
外板やロケツトモーターケースなどにおいて幅広
く活用されるようになつてきており、これらに関
する研究も盛んに進められている。 このような強力チタン合金の構造物を製作する
に際してチタン合金の接合をおこなう場合には、
たとえば溶接されるチタン合金の溶接部を突き合
わせた状態で電子ビーム溶接(EBW)により溶
接することもおこなわれる。しかしながら、この
溶接によると、溶接金属部(溶接によつて溶融化
し再度凝固した部分をいう。)は液相から固相へ
と急激な温度勾配をもつて成長した凝固組織を有
しており、溶接金属部の靭性・延性に影響するα
粒の微細化制御が困難であるため、溶接金属部の
靭性が他の母材金属部に比べて低下しやすく、溶
接後の熱処理によつても当該溶接金属部の機械的
性質を向上させることが困難であり、チタン合金
の種類によつては熱処理を施すことによりかえつ
て溶接金属部が脆化することもあるという問題を
有していた。そのほか、非消耗電極式の不活性ガ
スシールドアーク溶接法である通常のTIG溶接法
を使用し、溶加材として純チタン棒を用いること
もおこなわれるが、この場合に溶接金属部におい
て純チタンが残留し、他の母材金属部分に比べて
強度が低下することがあるという問題を有してい
た。 本発明は、上述した従来の問題点に着目してな
されたもので、その目的とするところは、チタン
合金の溶接後における溶接金属部分の合金化が良
好におこなわれ、溶接欠陥の発生もなく、強度な
らびに靭性にすぐれ、溶接継手部分における機械
的性質の良好なα+β型のチタン合金の接合方法
を提供することにある。 すなわち、本発明は、α+β型のチタン合金に
おけるAl元素は、α相安定元素であり、本合金
中におけるAl元素の濃度と合金の強度との間に
一定の関係が成立していることに着目してなされ
たもので、α+β型のチタン合金同士を接合する
に際し、前記α+β型のチタン合金同士を純チタ
ンもしくは3.0重量%以下のアルミニウムを含有
し残部実質的にチタンよりなるインサート材を介
装して突合せ、この状態で前記突合せ部を高エネ
ルギ密度溶接により溶接したのち熱処理を施すよ
うにしたことを特徴としている。 本発明が適用されうるチタン合金としては、α
安定型元素であるAlを数%添加してチタンの固
溶強化をはかり、さらに第3元素としてV,
Cr,Mo等のβ安定型元素を加えてβ基地の固溶
強化をはかつたα+β型のチタン合金たとえば
Ti―6%Al―4%VやTi―6%Al―6%V―2
%Snなどがある。 次に、前記α+β型のチタン合金同士の突合せ
部に介装するインサート材としては、純チタンも
しくは3.0重量%以下のアルミニウムを含有し残
部実質的にチタンよりなるものが使用される。 純チタンとしては、JIS H 4650に規定する第
1種〜第3種に準じた化学成分の純チタンを使用
することができる。この場合の製造法としては、
スポンジチタンを主原料とし、消耗電極式アーク
炉またはプラズマビーム炉により真空または不活
性ガス中で溶製した鋳塊を用い、鍛造,押出し、
圧延等の加工によつて所定形状のインサート材に
成形する方法を採用できるが、さらには、純チタ
ンの原料をプラズマ溶解炉内で棒状に造塊し、こ
の棒状体を消耗電極として真空再溶解し、次いで
適宜の加工手段によつて所定形状のインサート材
を得るという二段溶解工程をとることも望まし
い。 そのほか、純チタンとして、チタンの強度や靭
性などの性質に大きな影響を及ぼす侵入型の不純
物元素を少なくし、不純物としてO<0.08%、N
<0.01〜0.015%、C<0.02〜0.03%程度におさえ
たELI(Extra Low Interstitial)チタンを使用
することもできる。 また、溶接金属部における引張り強さや耐力な
どの強度をさらに向上させるために、3.0重量%
以下のアルミニウムを含有し残部実質的にチタン
よりなるインサート材を使用することも可能であ
る。この場合、アルミニウム含有量を3.0重量%
以下としたのは、溶接後の溶接金属部におけるア
ルミニウム含有量が、チタン中におけるアルミニ
ウムの固溶限とされる約6%を超えないように
し、溶接金属部の伸びや靭性がかえつて低下する
のを防ぐためである。 前記した溶接されるα+β型のチタン合金同士
の突合せ部に上記した純チタンもしくは3.0重量
%以下のアルミニウムを含有し残部実質的にチタ
ンよりなるインサート材を介装し、この状態で上
記突合せ部を高エネルギ密度溶接によつて溶接す
るが、この場合の溶接手段としては、電子ビーム
を熱源とする電子ビーム溶接、レーザビームを熱
源とするレーザビーム溶接、プラズマアークを熱
源とするプラズマ溶接、タングステン等の非消耗
電極を使用して好ましくは作動ガスとしてHeを
加えた不活性ガスシールドの下でパルスを重畳し
てアーク溶接するTIG溶接などを適用することが
できる。 これらのうち、電子ビームやレーザビームを熱
源とするものでは、アークを熱源とするものに比
べてさらに大きなエネルギ密度を有すると共に、
熱源を制御しやすいという特徴を有することから
とくに有利であり、高精度でかつ高能率の溶接が
可能となる。そして、上記電子ビーム溶接の如き
高密度エネルギ溶接の場合には、単位長あたりの
溶接線に必要なエネルギは非常に少なく、溶融部
およびその付近の熱影響部の領域がかなり狭くな
り、残留する歪,応力は小さく、このような劣化
領域が局部化されるために、熱処理を施さない溶
接のままの状態においてもすぐれた機械的性質を
示し、熱処理を施すことによつて機械的性質のよ
り一層の向上をはかることができる。また、この
ような高密度エネルギ溶接をおこなつた場合に
は、ビーム(アーク)の照射部分において著しい
沸騰現象を生じ、適度の撹拌を伴う溶融池が形成
されるため、純チタン等よりなるインサート材が
そのままの組成で溶接金属部に残留することはな
く、溶接金属部において合金化が良好におこなわ
れ、機械的性質のすぐれたものとすることができ
る。 次に、溶接の際における姿勢としては、大別し
て鉛直ビーム(アーク)による下向溶接と、水平
ビーム(アーク)による水平溶接とがあり、それ
ぞれに貫通溶接と非貫通溶接(部分溶込み溶接)
とがある。上記のうち、下向溶接において貫通溶
接をおこなう場合に、合金の厚さ(溶接部の厚
さ)によつては裏ビードの表面張力だけでは溶融
池(溶接時に溶融化した部分)を支えきれなくな
ることがあり、この場合には溶融池が落下しない
ように裏当金を使用して部分溶込みの状態にする
工夫も時には必要である。これに対して水平溶接
の場合には上記下向溶接の場合に比べて溶融池の
自重による影響が少なく、ビーム孔などの安定性
にもすぐれており、貫通溶接が容易にできること
から、水平溶接の方がより適している。また、水
平溶接であつても大別して上進溶接、下進溶接、
横向溶接、円周溶接などがあり、溶接対象物や溶
接条件等によつて適宜選定して実施することが望
ましい。 なお、電子ビーム溶接の如き高エネルギ密度ビ
ーム溶接の場合に、貫通溶接,非貫通溶接のいず
れにおいてもビーム出力の増大につれて溶融池の
幅が増大するとともに溶融池内が激しく撹拌され
て、溶融池内から溶融金属が流出して溶接金属部
に凹部が発生するなどの溶接欠陥を生ずることが
あるので、溶接の際の溶融池運動と関連するビー
ム振動の振動数、振幅、振動方向などを選定し、
加えてビーム貫通率、ビーム電流などを適宜選定
することが望ましい。また、溶接線近傍のみを真
空にする局所真空溶接法を併用することも場合に
よつては好ましい。 また、TIG溶接の場合にはパルスを伴う溶接を
おこなうことによつて溶接金属部における合金化
を一層良好にすることができ、機械的性質のすぐ
れた溶接継手を得ることができる。 次に、介装するインサート材の割合について
は、溶融金属部の単位体積当り5〜85%となるよ
うにすることが望ましい。すなわち、第1図およ
び第2図に示す場合において、インサート材の厚
さt1と溶接金属部の厚さt2との比t1/t2の百分率
が、5〜85%の範囲となるようにすることが望ま
しい。これは、インサート材の割合が5%よりも
少ないと、溶接金属部の靭性が他の母材金属部分
に比べて低下するおそれがあるためであり、85%
を超えると例えば電子ビーム溶接のビーム巾より
インサート材の厚さが大きくなり、インサート材
が溶融したとしても撹拌が不十分となつて溶接金
属部にインサート材成分がそのまま偏在し、機械
的性質を低下させるためである。 次に、溶接後の熱処理としては、応力歪取り処
理(SR処理)、拡散処理(D処理)、固溶体化処
理+時効処理(STA処理)などを適宜選んでお
こなう。 これらのうち、応力歪取り処理をおこなう場合
には、およそ450〜950℃の温度で約15分〜15時間
加熱後空冷ないしは水冷する処理を施すのが良
い。 また、拡散処理をおこなう場合には、およそ
800℃以上の温度で約15分〜15時間加熱後水冷な
いしは空冷する処理を施すのが良い。 さらに、固溶体化処理+時効処理をおこなう場
合には、固溶体化処理として、およそ800〜1000
℃の温度で約15分〜6時間加熱後水冷,油冷もし
くは空冷する処理を施すのが良く、時効処理とし
ておよそ400〜680℃の温度で約15分〜15時間加熱
する処理を施すのが良い。なお、時効処理におい
ては複数回に分けてこれをおこなうこともでき、
過時効を伴う処理を施すこともできる。 なお、チタン合金において、α型合金は低温安
定相であるため熱処理性は期待できないので、上
記固溶体化処理+時効処理はα+β型合金が対象
となり、α+β型合金においてαβ変態に関連
して金属の微細組織の調節をおこない、機械的性
質の向上と安定化をはかるようにする。 このようにして、α+β型のチタン合金を溶接
するに際して、上記のインサート材を介装させた
状態で突合わせ、この突合わせ部を高エネルギ密
度溶接により溶接し、その後熱処理を施すことに
よつて、溶接金属部のα粒内におけるAl元素の
濃度を適切なものに制御し、これによつて溶接金
属部の強度は若干低下することがありうるものの
靭性,延性を向上させることができ、機械的性質
のすぐれた溶接継手を得ること可能となる。 実施例 1 第1図に示すように、溶接母材1,2として板
厚T=40mmでかつ第1表に示す化学成分のチタン
合金板を用意した。また、インサート材3とし
て、板厚t1=0.6mmおよびt1=1.2mmの二種類でか
ついずれも第2表に示す化学成分の純チタン板を
用意した。
The present invention relates to a method for joining α+β type titanium alloys. Titanium is lightweight due to its low specific gravity, has high strength due to its hexagonal crystal structure, and has excellent heat resistance and corrosion resistance, which makes it comparable to ordinary stainless steel. ,
It has come to be used in a wide range of fields including chemical industrial equipment. In particular, strong titanium alloys, which have been made even stronger by adding alloying elements such as aluminum, have a fairly high specific strength (strength/density) and have excellent properties, so they are used in aerospace and aviation applications. It has come to be widely used in fields such as aircraft outer panels and rocket motor cases, and research in these areas is also actively progressing. When joining titanium alloys to manufacture such strong titanium alloy structures,
For example, welding may be performed by electron beam welding (EBW) with the welded parts of titanium alloys being butted together. However, according to this welding, the weld metal part (referring to the part that has been melted and solidified by welding) has a solidified structure that has grown from a liquid phase to a solid phase with a sharp temperature gradient. α affects the toughness and ductility of weld metal parts
Because it is difficult to control grain refinement, the toughness of the weld metal part tends to decrease compared to other base metal parts, and post-weld heat treatment also improves the mechanical properties of the weld metal part. However, depending on the type of titanium alloy, heat treatment may actually cause the weld metal to become brittle. In addition, regular TIG welding, which is an inert gas-shielded arc welding method using non-consumable electrodes, is also used and a pure titanium rod is used as the filler metal. This has caused a problem in that the strength may be lower than that of other base metal parts. The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to ensure that the weld metal part is well alloyed after welding titanium alloys and that no welding defects occur. The object of the present invention is to provide a method for joining α+β type titanium alloys having excellent strength and toughness and good mechanical properties in a welded joint. That is, the present invention focuses on the fact that the Al element in the α+β type titanium alloy is an α-phase stable element, and that a certain relationship is established between the concentration of the Al element in the alloy and the strength of the alloy. When joining α + β type titanium alloys, the α + β type titanium alloys are interposed with pure titanium or an insert material containing 3.0% by weight or less of aluminum, with the remainder being substantially titanium. In this state, the abutted portions are welded by high energy density welding and then heat treated. Titanium alloys to which the present invention can be applied include α
A few percent of Al, which is a stable element, is added to strengthen the titanium as a solid solution, and V, V, and V as third elements are added.
For example, an α+β type titanium alloy with solid solution strengthening of the β base by adding β-stable elements such as Cr or Mo.
Ti-6%Al-4%V and Ti-6%Al-6%V-2
%Sn etc. Next, as the insert material interposed in the abutting portion of the α+β type titanium alloys, pure titanium or a material containing 3.0% by weight or less of aluminum with the remainder substantially made of titanium is used. As the pure titanium, pure titanium having a chemical composition conforming to the first to third types specified in JIS H 4650 can be used. In this case, the manufacturing method is
Sponge titanium is the main raw material, and ingots produced in a vacuum or inert gas using a consumable electrode arc furnace or plasma beam furnace are used for forging, extrusion,
Although it is possible to use methods such as rolling to form insert materials into predetermined shapes, it is also possible to form pure titanium raw materials into rod-shaped ingots in a plasma melting furnace, and then use the rod-shaped bodies as consumable electrodes to re-melt in vacuum. However, it is also desirable to carry out a two-stage melting process in which an insert material of a predetermined shape is then obtained by appropriate processing means. In addition, as pure titanium, we have reduced the amount of interstitial impurity elements that greatly affect properties such as titanium's strength and toughness.
ELI (Extra Low Interstitial) titanium with C<0.01 to 0.015% and C<0.02 to 0.03% can also be used. In addition, in order to further improve the strength such as tensile strength and yield strength in the weld metal part, we added 3.0% by weight.
It is also possible to use the following insert materials containing aluminum, with the balance essentially consisting of titanium. In this case, the aluminum content is 3.0% by weight
The reason for the following is to ensure that the aluminum content in the weld metal after welding does not exceed approximately 6%, which is the solid solubility limit of aluminum in titanium, which may reduce the elongation and toughness of the weld metal. This is to prevent An insert material containing pure titanium or 3.0% by weight or less of aluminum with the remainder substantially made of titanium is inserted into the abutting portion of the α+β type titanium alloys to be welded, and the abutting portion is in this state. Welding is performed by high energy density welding, and welding methods in this case include electron beam welding using an electron beam as a heat source, laser beam welding using a laser beam as a heat source, plasma welding using a plasma arc as a heat source, tungsten, etc. It is possible to apply TIG welding, which is arc welding by superimposing pulses, using a non-consumable electrode, preferably under an inert gas shield with He added as a working gas. Among these, those that use an electron beam or laser beam as a heat source have a higher energy density than those that use an arc as a heat source, and
It is particularly advantageous because it has the characteristic that the heat source can be easily controlled, and it enables highly accurate and highly efficient welding. In the case of high-density energy welding such as the above-mentioned electron beam welding, the energy required per unit length of the weld line is very small, and the area of the fusion zone and the heat-affected zone near it becomes considerably narrower and remains. Since the strain and stress are small and such deterioration areas are localized, it shows excellent mechanical properties even in the as-welded state without heat treatment, and the mechanical properties can be improved by heat treatment. Further improvements can be made. In addition, when such high-density energy welding is performed, a significant boiling phenomenon occurs in the irradiated area of the beam (arc), and a molten pool with moderate stirring is formed, so inserts made of pure titanium etc. The material does not remain in the welded metal part with its original composition, and alloying is performed well in the welded metal part, resulting in excellent mechanical properties. Next, the posture during welding can be roughly divided into downward welding using a vertical beam (arc) and horizontal welding using a horizontal beam (arc).
There is. Among the above, when performing penetration welding in downward welding, depending on the thickness of the alloy (thickness of the welded part), the surface tension of the back bead alone cannot support the molten pool (the part that melts during welding). In this case, it is sometimes necessary to use a backing metal to prevent the molten pool from falling to a state where it is partially penetrated. On the other hand, in the case of horizontal welding, the influence of the weight of the molten pool is smaller than in the case of downward welding, the stability of the beam hole etc. is excellent, and penetration welding can be easily performed, so horizontal welding is more suitable. In addition, horizontal welding can be roughly divided into upward welding, downward welding,
There are horizontal welding, circumferential welding, etc., and it is desirable to select and carry out the method appropriately depending on the object to be welded, welding conditions, etc. In addition, in the case of high-energy density beam welding such as electron beam welding, in both penetrating and non-penetrating welding, as the beam output increases, the width of the molten pool increases and the inside of the molten pool is violently agitated. Since molten metal may flow out and cause welding defects such as recesses in the welded metal part, the frequency, amplitude, vibration direction, etc. of the beam vibration related to the molten pool movement during welding should be selected.
In addition, it is desirable to appropriately select beam penetration rate, beam current, etc. In some cases, it may also be preferable to use a local vacuum welding method in which only the vicinity of the weld line is evacuated. In addition, in the case of TIG welding, by performing welding with pulses, alloying in the weld metal part can be further improved, and a welded joint with excellent mechanical properties can be obtained. Next, the ratio of the insert material to be interposed is preferably 5 to 85% per unit volume of the molten metal part. That is, in the cases shown in FIGS. 1 and 2, the ratio t 1 /t 2 of the thickness t 1 of the insert material to the thickness t 2 of the weld metal part is in the range of 5 to 85%. It is desirable to do so. This is because if the percentage of insert material is less than 5%, the toughness of the weld metal part may be lower than that of other base metal parts, and 85%
For example, if the thickness of the insert material exceeds the beam width of electron beam welding, and even if the insert material is melted, stirring will not be sufficient, and the components of the insert material will remain unevenly distributed in the weld metal, which will deteriorate the mechanical properties. This is to reduce the Next, as the heat treatment after welding, stress strain relief treatment (SR treatment), diffusion treatment (D treatment), solid solution treatment + aging treatment (STA treatment), etc. are appropriately selected and performed. Among these, when stress and strain relief treatment is performed, it is preferable to perform a treatment of heating at a temperature of approximately 450 to 950° C. for approximately 15 minutes to 15 hours, followed by air cooling or water cooling. Also, when performing diffusion processing, approximately
It is best to heat the product at a temperature of 800°C or higher for about 15 minutes to 15 hours and then cool it with water or air. Furthermore, when performing solid solution treatment + aging treatment, approximately 800 to 1000
It is best to heat the material at a temperature of approximately 400 to 680 degrees Celsius for approximately 15 minutes to 6 hours, followed by water cooling, oil cooling, or air cooling. good. In addition, in the prescription processing, it is also possible to do this in multiple times.
It is also possible to perform a treatment that involves overaging. In addition, in titanium alloys, α-type alloys are stable at low temperatures, so heat treatability cannot be expected. Therefore, the solid solution treatment + aging treatment described above is targeted at α+β-type alloys, and in α+β-type alloys, the metal is affected by αβ transformation. Adjust the microstructure to improve and stabilize mechanical properties. In this way, when welding α+β type titanium alloys, we butt them together with the above-mentioned insert material interposed, weld this butt part by high energy density welding, and then heat treat it. By controlling the concentration of Al element in the alpha grains of the weld metal to an appropriate value, it is possible to improve the toughness and ductility of the weld metal, although the strength of the weld metal may decrease slightly. This makes it possible to obtain welded joints with excellent physical properties. Example 1 As shown in FIG. 1, titanium alloy plates having a thickness T=40 mm and chemical compositions shown in Table 1 were prepared as welding base materials 1 and 2. Further, as the insert material 3, two types of pure titanium plates having thicknesses t 1 =0.6 mm and t 1 =1.2 mm and chemical components shown in Table 2 were prepared.

【表】【table】

【表】 次に、前記溶接母材1,2の間に上記二種類の
インサート材3を各々別個に介装して突合せ、こ
の状態でそれぞれの突合せ部を電子ビーム溶接し
た。このとき、電子ビームを矢印A方向に略水平
に向け矢印B方向に横向進行させる水平貫通溶接
をおこなつた。このときの溶接条件を第3表に示
す。
[Table] Next, the two types of insert materials 3 were individually interposed between the welding base materials 1 and 2 and butted, and in this state, the abutted portions were electron beam welded. At this time, horizontal penetration welding was performed in which the electron beam was directed substantially horizontally in the direction of arrow A and moved laterally in the direction of arrow B. Table 3 shows the welding conditions at this time.

【表】 なお、溶接に際しては、そのほかビーム振動の
振動数、振幅、振動方向などを適宜調節して溶接
欠陥の発生をなくすようにすると共に、第2図に
示す溶接後における溶接金属部4の厚さt2が4.5
mmとなるようにした。 次に、上記溶接後の溶接母材1,2を当該溶接
金属部4を中心にして板厚5mm,板幅12.5mm,長
さ300mmの試料を切り出し、次いで各試料につい
て熱処理を施し、その後上記試料から溶接線の方
向に第3図に示す試験片5を切り出して上記溶接
線の方向に引張試験をおこなつた。なお、上記熱
処理は、固溶体化処理として933℃で30分間加熱
したのち水冷し、次いで時効処理として545℃で
6時間加熱したのち空冷して施した。また、試験
片5の寸法は、全長LT=100mm、平行部の長さP
=45mm、標点距離L=35mm、直径D=4±0.05
mm、肩部の半径R=10mm、ねじ部S=M10×1.5
である。この引張試験の結果を同じく第4表に示
す。
[Table] In addition, when welding, the frequency, amplitude, vibration direction, etc. of the beam vibration should be appropriately adjusted to eliminate the occurrence of welding defects, and the weld metal part 4 after welding shown in Fig. 2 should be adjusted as appropriate. Thickness t 2 is 4.5
It was set to mm. Next, samples with a thickness of 5 mm, a width of 12.5 mm, and a length of 300 mm are cut out from the welded base metals 1 and 2 after the welding described above, centering on the weld metal part 4. Next, each sample is subjected to heat treatment, and then the above-mentioned A test piece 5 shown in FIG. 3 was cut out from the sample in the direction of the weld line, and a tensile test was conducted in the direction of the weld line. The above heat treatment was performed by heating at 933° C. for 30 minutes as a solid solution treatment, followed by water cooling, and then heating at 545° C. for 6 hours as an aging treatment, followed by air cooling. In addition, the dimensions of the test piece 5 are: total length L T = 100 mm, parallel part length P
=45mm, gauge length L=35mm, diameter D=4±0.05
mm, shoulder radius R = 10mm, thread S = M10 x 1.5
It is. The results of this tensile test are also shown in Table 4.

【表】【table】

【表】 第4表において明らかなように、インサート材
3を介装して溶接したものでは、インサート材を
介装しないで共金溶接したものに比べて靭性がか
なり向上していることが確認された。これは、イ
ンサート材3を介装して溶接したものでは、溶接
金属部のα粒内におけるAl元素の濃度を適切な
ものに制御することにより、溶接金属部の靭性,
延性を向上させることができたことによるもので
あり、溶接後に熱処理を施した場合にはいずれも
強度がさらに向上していることが確認された。 実施例 2 溶接母材1,2として板厚T=40mmでかつ前記
第1表に示す化学成分のα+β型のチタン合金板
を用意した。また、インサート材3として、板厚
t1=0.6mmおよびt1=1.2mmの二種類でかついずれ
も第5表に示す化学成分のTi―1.5重量%Al板を
用意した。
[Table] As is clear from Table 4, it was confirmed that the toughness of the welded specimens with insert material 3 was significantly improved compared to the welded specimens welded with no insert material. It was done. This is achieved by controlling the concentration of Al element in the α grains of the weld metal to an appropriate level when welding with the insert material 3 interposed.
This was due to the ability to improve ductility, and it was confirmed that the strength was further improved in all cases where heat treatment was performed after welding. Example 2 As welding base materials 1 and 2, α+β type titanium alloy plates having a plate thickness T=40 mm and chemical compositions shown in Table 1 above were prepared. In addition, as insert material 3, plate thickness
Two types of Ti-1.5% by weight Al plates with t 1 =0.6 mm and t 1 =1.2 mm, both of which had chemical components shown in Table 5, were prepared.

【表】 次に、前記溶接母材1,2の間に上記二種類の
インサート材3を各々別個に介装して突合せ、こ
の状態で電子ビームを矢印A方向に略水平に向け
て前記第3表に示す条件で溶接をおこなつた。 次いで、上記溶接後の母材1,2を当該溶接金
属部4を中心にして前記実施例1の場合と同じ寸
法の試料を切り出し、次いで各試料について実施
例1の場合と同じ条件で固溶体化処理+時効処理
を施し、その後上記試料から溶接線の方向に同じ
く第3図に示す試験片5を切り出して引張試験を
おこなつた。この結果を第6表に示す。
[Table] Next, the two types of insert materials 3 are interposed separately between the welding base materials 1 and 2 and butted, and in this state, the electron beam is directed approximately horizontally in the direction of arrow A. Welding was carried out under the conditions shown in Table 3. Next, samples having the same dimensions as in Example 1 were cut out from the base metals 1 and 2 after welding, centering around the weld metal part 4, and then each sample was solid solutionized under the same conditions as in Example 1. After treatment and aging treatment, a test piece 5 shown in FIG. 3 was cut out from the sample in the direction of the weld line and subjected to a tensile test. The results are shown in Table 6.

【表】【table】

【表】 第6表において明らかなように、インサート材
3を介装して溶接した後熱処理を施したもので
は、インサート材を介装しないで共金溶接した後
熱処理を施したものに比べて靭性が著しく向上し
ていることが認められた。 実施例 3 実施例1と同じ第1表に示す化学成分でかつ板
厚T=40mmの溶接母材1,2(第1図参照)と、
第2表に示す化学成分でかつ板厚t1=0.6mmのイ
ンサート材3(第1図参照)をそれぞれ用意し、
次いで上記溶接母材1,2の間に上記インサート
材3を介装して突合せ、この状態で第3表に示す
条件で電子ビーム溶接をおこなつた。次に、上記
溶接後の母材1,2を当該溶接金属部4を中心に
して板厚5mm、板幅12.5mm、長さ300mmの試料を
切り出し、次いで948℃の温度で10時間加熱した
のち水冷して拡散処理をおこない、その後溶接金
属部4の厚さ方向に等間隔でX線マイクロアナラ
イザーにより化学成分の分布を調べた。その結果
を第7表に示す。
[Table] As is clear from Table 6, welding with insert material 3 interposed and then heat-treated results in a lower welding rate than those in which welded with no insert material and heat-treated after welding. It was observed that the toughness was significantly improved. Example 3 Welding base materials 1 and 2 (see Fig. 1) having the same chemical composition as shown in Table 1 as in Example 1 and having a plate thickness T = 40 mm,
Prepare insert materials 3 (see Fig. 1) having the chemical composition shown in Table 2 and having a plate thickness t 1 = 0.6 mm,
Next, the insert material 3 was interposed between the welding base materials 1 and 2 and they were butted together, and in this state, electron beam welding was performed under the conditions shown in Table 3. Next, a sample of 5 mm in thickness, 12.5 mm in width, and 300 mm in length was cut out from the base metals 1 and 2 after welding, centering on the weld metal part 4, and then heated at a temperature of 948°C for 10 hours. After water cooling and diffusion treatment, the distribution of chemical components was examined using an X-ray microanalyzer at equal intervals in the thickness direction of the weld metal part 4. The results are shown in Table 7.

【表】 第7表に示すように、溶接の際における溶融金
属部の撹拌が良好であるため、溶接金属部4の部
分において合金化が十分におこなわれており、純
チタンの残留は認められず、非常に良好な結果が
得られたことを確認できた。 実施例 4 実施例1と同じ第1表に示す化学成分でかつ板
厚T=2.5mmの溶接母材1,2(第1図参照)
と、第2表に示す化学成分でかつ板厚t1=0.5mm
の純チタンインサート材3(第1図参照)をそれ
ぞれ用意し、次いで上記溶接母材1,2の間に上
記インサート材3を介装して突合せ、この状態で
第8表に示す条件でパルス重畳TIG溶接をおこな
つた。
[Table] As shown in Table 7, since the molten metal part is well stirred during welding, alloying is sufficiently carried out in the weld metal part 4, and no pure titanium remains. It was confirmed that very good results were obtained. Example 4 Weld base materials 1 and 2 with the same chemical composition shown in Table 1 as Example 1 and plate thickness T = 2.5 mm (see Figure 1)
and the chemical composition shown in Table 2 and the plate thickness t 1 = 0.5 mm
Pure titanium insert material 3 (see Figure 1) of Superimposed TIG welding was performed.

【表】 次いで、溶接後に固溶体化処理として真空炉中
において933℃で20分間加熱したのち油冷し、引
続いて時効処理として545℃で5時間加熱したの
ち空冷する熱処理を施し、溶接線の方向に溶接金
属部4より試験片を切り出して機械的性質の試験
をおこなつたところ、強度および靭性とも良好な
結果を得た。また、溶接金属部4の厚さ方向にX
線マイクロアナライザーによつて一定間隔で成分
分析をおこなつたところ、十分に分散合金化され
た組織となつていることが確認された。 以上詳述したように、本発明によれば、チタン
合金の溶接接合をきわめて良好におこなうことが
でき、溶接金属部において溶接欠陥がみられない
と共に溶接金属部における分散合金化をかなり良
好になすことができ、熱処理を施すことによつて
強度の向上をはかることが可能であり、機械的性
質のすぐれた溶接継手を介してチタン合金を接合
することができるという著しい効果を有する。
[Table] Next, after welding, heat treatment was performed in a vacuum furnace at 933°C for 20 minutes as a solid solution treatment, followed by oil cooling, and then as an aging treatment, heat treatment was performed at 545°C for 5 hours and then air cooled. When a test piece was cut out from the welded metal part 4 in the direction of the weld metal part 4 and tested for mechanical properties, good results were obtained for both strength and toughness. Also, in the thickness direction of the weld metal part 4,
When component analysis was carried out at regular intervals using a line microanalyzer, it was confirmed that the structure was sufficiently dispersed and alloyed. As detailed above, according to the present invention, titanium alloys can be welded together very well, no weld defects are observed in the weld metal part, and dispersion alloying in the weld metal part is achieved quite well. It is possible to improve the strength by applying heat treatment, and it has the remarkable effect of being able to join titanium alloys through welded joints with excellent mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例による
溶接状況のそれぞれ溶接前および溶接後の斜面説
明図、第3図は機械的性質の試験に使用した引張
試験片の説明図である。 1,2…溶接母材、3…インサート材、4…溶
接金属部。
FIGS. 1 and 2 are explanatory diagrams of slopes before and after welding, respectively, in the welding situation according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram of a tensile test piece used for testing mechanical properties. 1, 2... Welding base material, 3... Insert material, 4... Welding metal part.

Claims (1)

【特許請求の範囲】[Claims] 1 α+β型のチタン合金同士を接合するに際
し、前記α+β型のチタン合金同士を純チタンも
しくは3.0重量%以下のアルミニウムを含有し残
部実質的にチタンよりなるインサート材を介装し
て突合せ、この状態で前記突合せ部を高エネルギ
密度溶接により溶接したのち熱処理を施すことを
特徴とするチタン合金の接合方法。
1 When joining α + β type titanium alloys, the α + β type titanium alloys are butted together with an insert material containing pure titanium or 3.0% by weight or less of aluminum, with the remainder being substantially titanium, and in this state. A method for joining titanium alloys, characterized in that the abutted portions are welded by high energy density welding and then heat treated.
JP56065578A 1981-04-30 1981-04-30 Joining method for titanium alloy Granted JPS57181776A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56065578A JPS57181776A (en) 1981-04-30 1981-04-30 Joining method for titanium alloy
DE8282103462T DE3273284D1 (en) 1981-04-30 1982-04-23 Method of welding titanium alloy parts with titanium insert
EP85102484A EP0163018A3 (en) 1981-04-30 1982-04-23 Method of welding titanium alloy parts with an insert member consisting essentially of 0 to 3% by weight of aluminium and the balance of titanium
EP82103462A EP0064243B1 (en) 1981-04-30 1982-04-23 Method of welding titanium alloy parts with titanium insert
US06/371,734 US4503314A (en) 1981-04-30 1982-04-26 Method of welding titanium alloy parts with titanium insert

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56065578A JPS57181776A (en) 1981-04-30 1981-04-30 Joining method for titanium alloy

Publications (2)

Publication Number Publication Date
JPS57181776A JPS57181776A (en) 1982-11-09
JPS6213111B2 true JPS6213111B2 (en) 1987-03-24

Family

ID=13291022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56065578A Granted JPS57181776A (en) 1981-04-30 1981-04-30 Joining method for titanium alloy

Country Status (1)

Country Link
JP (1) JPS57181776A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489583B1 (en) * 2000-08-11 2002-12-03 General Electric Company Shimmed electron beam welding process
CN113481448B (en) * 2021-05-20 2022-03-08 北京航空航天大学 Titanium alloy member and heat treatment method for titanium alloy member

Also Published As

Publication number Publication date
JPS57181776A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
Barreda et al. Electron beam welded high thickness Ti6Al4V plates using filler metal of similar and different composition to the base plate
Cao et al. Effect of pre-and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd: YAG laser
US4503314A (en) Method of welding titanium alloy parts with titanium insert
EP2911825B1 (en) A composite welding wire and method of manufacturing
US7490752B2 (en) Manufacturing method for friction welded aluminum alloy parts
Ramana et al. Study on weldability and effect of post heat treatment on mechanical and metallurgical properties of dissimilar AA 2025, AA 5083 and AA7075 GTAW weld joints
Mustafa et al. Influence of filler wire diameter on mechanical and corrosion properties of AA5083-H111 Al–Mg alloy sheets welded using an AC square wave GTAW process
Mousavizade et al. Effect of severe plastic deformation on grain boundary liquation of a nickel–base superalloy
EP3137253B1 (en) A ductile boron bearing nickel based welding material
Baeslack III et al. Selection and weldability of conventional titanium alloys
Scott et al. The welding and brazing of the refractory metals niobium, tantalum, molybdenum and tungsten—a review
Hu et al. Hybrid laser/GMA welding aluminium alloy 7075
Akhonin et al. Effect of pre-heating and post-weld local heat treatment on the microstructure and mechanical properties of low-cost β-titanium alloy welding joints, obtained by EBW
JPS6213111B2 (en)
JPS63242489A (en) Beta-type titanium alloy welding rod
JPS6213110B2 (en)
Shinoda et al. Laser welding of titanium alloy
Kumar et al. An enhancement of properties on Al7075 and Al6061 dissimilar materials welded by TIG process
Xu et al. Effect of different filler wires on weld formation for fiber laser welding 6A02 Aluminum alloy
Patil et al. Characterizations of TIG welded joints of unalloyed commercially pure titanium Gr-2 for weld process parameters
Muneer et al. Comparative study of microstructure and mechanical properties using a novel filler rod ER 4943 and autogenously butt welded joint during laser welding of AA 6061-T6 in 1G position
JPH02127981A (en) Method for welding titanium alloy
Baskoro et al. Optimization of PC-GTAW Orbital Welding Parameters of AISI 304L Stainless Steel Pipe Using ANOVA and Taguchi Method
RU2828444C1 (en) Method of automatic single-pass welding with consumable electrode in pulse mode of heterogeneous nickel alloys
RU2794085C1 (en) Method for automatic fusion welding of heterogeneous nickel alloys