JPS62109937A - Corrosion resistant titanium alloy containing nb and mo - Google Patents

Corrosion resistant titanium alloy containing nb and mo

Info

Publication number
JPS62109937A
JPS62109937A JP25041185A JP25041185A JPS62109937A JP S62109937 A JPS62109937 A JP S62109937A JP 25041185 A JP25041185 A JP 25041185A JP 25041185 A JP25041185 A JP 25041185A JP S62109937 A JPS62109937 A JP S62109937A
Authority
JP
Japan
Prior art keywords
corrosion resistance
acid
environment
alloy
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25041185A
Other languages
Japanese (ja)
Inventor
Shiro Kitayama
北山 司郎
Yoshiaki Shida
志田 善明
Hideaki Yuki
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25041185A priority Critical patent/JPS62109937A/en
Publication of JPS62109937A publication Critical patent/JPS62109937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To obtain a Ti alloy showing superior corrosion resistance in any environment including an environment contg. a nonoxidative acid at a relatively low cost by specifying a composition consisting of Mo, Nb and Ti. CONSTITUTION:This Ti alloy having superior corrosion resistance consists of 15.5-50.0wt% Mo, 1.0 - <20.0wt% Nb and the balance essentially Ti. The alloy maintains a stable passive film and shows superior corrosion resistance in an environment contg. a nonoxidative acid such as hydrochloric acid or sulfuric acid as well as in an environment contg. an oxidative acid such as nitric acid and an environment contg. a neutral chloride such as seawater without using an expensive alloying element such as Pd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、中性塩化物環境ではもちろんのこと、特に
非酸化性酸環境中において優れた耐食性を発揮するチタ
ン合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a titanium alloy that exhibits excellent corrosion resistance not only in a neutral chloride environment but also particularly in a non-oxidizing acid environment.

〈従来技術並びにその問題点〉 工業規模での生産がなされはじめた当初は軽くて強い特
性が生かされ、航空産業等が活躍の中心舞台であったチ
タンは、一方で優れた耐食性を有していることから、最
近では、化学工業設備用材料、火力・原子力発電設備用
材料、或いは海水淡水化設備用材料等としても広範囲に
使用されるようになってきた。しかし、一般的にチタン
が優れた耐食性を有するとは言っても、その高耐食性を
発揮する場は硝酸等の酸化性酸環境や海水等の中性塩化
物環境においてであり、化学工業で比較的多く認められ
る非酸化性酸環境における耐食性は極めて不満足なもの
でしかなかった。即ち、塩酸や硫酸のような非酸化性酸
環境中では、チタンの耐食性を維持するための不働態皮
膜(薄い酸化物層である)が不安定となって活性溶解を
生じてしまうからである。
<Prior art and its problems> When titanium first began to be produced on an industrial scale, its light and strong characteristics were utilized, and titanium was mainly used in the aerospace industry. Recently, it has come to be widely used as a material for chemical industrial equipment, thermal/nuclear power generation equipment, seawater desalination equipment, etc. However, although titanium generally has excellent corrosion resistance, it only demonstrates its high corrosion resistance in an oxidizing acid environment such as nitric acid or in a neutral chloride environment such as seawater. Corrosion resistance in non-oxidizing acid environments, which are commonly found in many countries, was extremely unsatisfactory. In other words, in a non-oxidizing acid environment such as hydrochloric acid or sulfuric acid, the passive film (a thin oxide layer) that maintains titanium's corrosion resistance becomes unstable and active dissolution occurs. .

そこで、このような非酸化性酸環境での使用を目的にT
i−Pd合金が開発され、特に塩酸が含まれる環境にて
多用されるようになってきた。これは、チタンに少量(
約02重量%程度)のPdを添加するとその水素過電圧
が著しく低下し、自然電位が純チタンの不働態域にまで
シフトしてしまうとの現象を利用したものである。
Therefore, for the purpose of use in such a non-oxidizing acid environment, T
i-Pd alloys have been developed and have come into widespread use, especially in environments containing hydrochloric acid. This is a small amount (
This method takes advantage of the phenomenon that when Pd (approximately 0.2% by weight) is added, the hydrogen overvoltage is significantly lowered, and the natural potential is shifted to the passive state region of pure titanium.

しかしながら、このTi −Pd合金は比較的高価なも
のであり、従ってどうしてもその使用が制限されざるを
得ないと言う問題点があった。また、 Pdは出産地が
偏っていることから、安定供給の点でも不安要因が多い
と言う問題を有している。
However, this Ti--Pd alloy is relatively expensive, and therefore its use is inevitably limited. In addition, Pd has a problem in that there are many uncertainties in terms of stable supply because the birthplace of Pd is unevenly distributed.

〈問題点を解決するだめの手段〉 本発明者等は、上述のような観点から、特に非酸化性酸
環境中においても十分に満足できる耐食性を備えた’l
j、−Pd合金に代る新たなコストの安いチタン合金を
提供すべく、特に「チタンの耐食性はその表面に生成す
るところの酸化物から成る不働態皮膜によっているが、
非酸化性酸溶液中ではこのチタン酸化物皮膜が破壊され
て安定に存在し得す、従って全面活性溶解が起こって腐
食速度が大となる」との事実を踏まえた上で、 「酸化皮膜が安定に存在するならば耐食性の劣化はない
」 との認識の下に、チタン材料における酸化物不働態皮膜
のより安定化を目指して研究を行ったところ、 「チタンに特定量のMoを含有させると、チタン表面に
形成させる不働態皮膜が強化されて非酸化性酸溶液中で
の耐食性が向上するが、この場合、Moと共に特定量の
Nt)を複合添加すると上記不働態皮膜がより一層安定
化し、中性塩化物環境は言うに及ばず、非酸化性酸溶液
中における耐食性が飛躍的に向上して高価なTi−Pd
合金のそれを凌駕するようになる」 との知見が得られたのである。
<Means to Solve the Problems> From the above-mentioned viewpoint, the present inventors have devised a method that has sufficiently satisfactory corrosion resistance even in a non-oxidizing acid environment.
J, In order to provide a new low-cost titanium alloy to replace the -Pd alloy, we have developed a new technology that specifically states that ``the corrosion resistance of titanium is due to the passive film formed on its surface, which consists of oxides.
In a non-oxidizing acid solution, this titanium oxide film is destroyed and can exist stably.Therefore, active dissolution occurs across the entire surface, increasing the corrosion rate. Recognizing that "if it exists stably, there will be no deterioration in corrosion resistance," we conducted research aimed at further stabilizing the oxide passive film in titanium materials. In this case, the passive film formed on the titanium surface is strengthened and the corrosion resistance in non-oxidizing acid solutions is improved, but in this case, if a specific amount of Nt is added together with Mo, the passive film becomes even more stable. corrosion resistance in non-oxidizing acid solutions as well as in neutral chloride environments has dramatically improved, making it possible to improve the corrosion resistance of expensive Ti-Pd.
The results showed that the oxidation of the alloys exceeded that of the alloys.

この発明は、上記知見に基づいてなされたものであり、 チタン合金を、 Mo: 15.5〜50.0%(以下、成分割合を示す
チは重量基準とする)、 Nb:1.0%以上20.0%未満 を含むとともに、残部が実質的にTiである化学成分組
成に構成することで、環境に左右されることのない優れ
た耐食性を付与せしめた点、に特徴を有するものである
This invention was made based on the above knowledge, and a titanium alloy is made of: Mo: 15.5 to 50.0% (hereinafter, the component ratio is based on weight), Nb: 1.0% By containing less than 20.0% of the above and having a chemical composition in which the remainder is substantially Ti, it is characterized by providing excellent corrosion resistance that is unaffected by the environment. be.

ここで、この発明のチタン合金において、その成分組成
を上記の如くに数値限定した理由を説明する。
Here, the reason why the composition of the titanium alloy of the present invention is numerically limited as described above will be explained.

(a)  M。(a) M.

Mo戎分には、チタン合金表面の不働態皮膜を強化して
耐食性を向上する作用があるほか、環境液中に溶解しモ
リフデン酸イオンとなってインヒビター作用を呈する元
素でもある。その上、特定量のNbと共存させることに
よって上記不働態皮膜をより一層安定化し、チタン合金
の耐食性、それも非酸化性酸環境中における耐食性をも
飛躍的に向上させる作用も有している。しかしながら、
その含有量が15.5%未満では上記作用に所望の効果
を得ることができず、特に、特定量のNbと共存させた
としても期待される相乗効果は現われない。
Mo has the effect of strengthening the passive film on the surface of the titanium alloy and improving corrosion resistance, and is also an element that dissolves in environmental fluids and becomes molyfdate ions, which exhibits an inhibitory effect. Moreover, by making it coexist with a specific amount of Nb, it further stabilizes the above passive film and has the effect of dramatically improving the corrosion resistance of titanium alloys, especially in non-oxidizing acid environments. . however,
If the content is less than 15.5%, the desired effect cannot be obtained in the above action, and in particular, the expected synergistic effect will not appear even if Nb coexists with a specific amount of Nb.

一方、500%を越えてMoを含有させてもその添加効
果が飽和してしまう上、酸化剤(例えび塩化第二鉄等)
が共存する環境下での:耐食性は逆に劣化してしまうこ
ととなる。従って、Mo含有量は15.5〜500%と
定めた。
On the other hand, even if Mo is contained in an amount exceeding 500%, the effect of adding it will be saturated, and oxidizing agents (e.g. ferric chloride etc.)
Corrosion resistance will deteriorate in an environment where these coexist. Therefore, the Mo content was determined to be 15.5 to 500%.

(bl   Nb Nb成分には、特に15.5係以上のMoと共存させる
ことによシチタン合金表面の不働態皮膜を著し。
(bl Nb The Nb component is particularly coexisting with Mo having a modulus of 15.5 or higher to significantly form a passive film on the surface of the titanium alloy.

く安定化させ、該合金の耐食性を飛躍的に向上させる作
用があるが、その含有量が1.○チ未満では上記作用に
所望の効果が得られず、一方、200チ以上を含有させ
ても特定量のMOと共存させることによって醸し出され
る相乗効果が期待通りに発揮されないばかりか、高価な
Nb量の均加によってこの発明のチタン合金が有する低
価格特性を損なうことにもなることから、Nb含有量は
10%以上200%未満と定めた。
It has the effect of stabilizing the alloy and dramatically improving the corrosion resistance of the alloy, but the content is 1. If the content is less than ○, the desired effect cannot be obtained from the above action, and on the other hand, even if the content is 200 or more, the synergistic effect created by coexistence with a specific amount of MO will not be exhibited as expected, and the expensive Nb The Nb content was determined to be 10% or more and less than 200% because the uniformity of the amount would impair the low cost characteristics of the titanium alloy of the present invention.

次に、この発明を、実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 まず、市販の工業用純チタン板(JI32種)及びTi
−0,2%Pd合金板(ASTM  Grade 7 
)を用意し、更に第1表で示されるような成5+組成の
チタン合金の板材を準備した。なお、該チタン合金板材
は、純チタンスポンジに所定量のNb粉末とMO粉末と
を配合し、純度9999%のArガス雰囲気中でW電極
を用いた三重アーク溶解を行って20朋厚x 8 ou
@X 100myn長の角形インゴットを溶製した後、
これに鍛造、熱間圧延及び冷間圧延を施して4wn厚(
幅:50mx)となし、続いて焼鈍を施して製造された
ものである。
<Example> First, commercially available industrial pure titanium plates (JI type 32) and Ti
-0.2% Pd alloy plate (ASTM Grade 7
) was prepared, and a plate material of a titanium alloy having a composition of 5+ as shown in Table 1 was also prepared. The titanium alloy plate material was prepared by blending a predetermined amount of Nb powder and MO powder into a pure titanium sponge, and performing triple arc melting using a W electrode in an Ar gas atmosphere with a purity of 9999% to a thickness of 20mm x 8mm. ou
@X After melting a 100myn long square ingot,
This was forged, hot rolled and cold rolled to a thickness of 4wn (
Width: 50 mx) and then annealed.

次いで、これらの各材料から圧延方向に平行に2、5 
M厚×10訓幅×40間長の短冊状試験片を採取し、≠
320エメリーハーバーによる研磨及びアセトンによる
脱脂・洗滌を行ってから非酸化性酸環境での腐食試験を
実施した。
Next, from each of these materials, 2 to 5 pieces are rolled in parallel to the rolling direction.
A strip-shaped test piece of M thickness x 10 width x 40 length was taken, and ≠
After polishing with 320 Emery Harbor and degreasing and cleaning with acetone, a corrosion test was conducted in a non-oxidizing acid environment.

腐食試験には、水冷式コンデンサーを取り付けた三角フ
ラスコに、比重計で調整した〔5チ硫酸溶液〕及び〔5
%塩酸−1チ塩化第2鉄水溶液〕の試験溶液を入れて沸
騰させた後、それぞれのフラスコに2枚ずつの試験片を
浸漬し、これを18時間経過後に取り出して水洗してか
ら試験前後の重量変化を求め、腐食速度Cji/m2・
h)を算出する方法を採用した。
For the corrosion test, [5 sulfuric acid solution] and [5
% hydrochloric acid - 1% ferric chloride aqueous solution] and bring it to a boil. Two test pieces were immersed in each flask, and after 18 hours, they were taken out and washed with water before and after the test. Find the weight change and calculate the corrosion rate Cji/m2・
h) was adopted.

このように実施された腐食試験の結果を第1表に併せて
示す。
The results of the corrosion tests conducted in this manner are also shown in Table 1.

第1表に示される結果からも明らかなように、本発明合
金は、非酸化性酸の環境中で優れた耐食性を示し、かつ
酸化剤を含む耐酸化性酸の環境においても実用上問題の
ない耐食性を示す。成分組成が本発明で規定する条件か
ら外れている比較合金はいずれも、非酸化性酸環境下及
び酸化剤を含む非酸化性酸環境下のいずれか、又は双方
での耐食性に劣ることがわかる。
As is clear from the results shown in Table 1, the alloy of the present invention exhibits excellent corrosion resistance in a non-oxidizing acid environment, and even in an oxidizing-resistant acid environment containing an oxidizing agent, there are no practical problems. Shows no corrosion resistance. It can be seen that all comparative alloys whose component compositions deviate from the conditions specified in the present invention have inferior corrosion resistance in either or both of a non-oxidizing acid environment and a non-oxidizing acid environment containing an oxidizing agent. .

これらの結果からも、塩酸或いは硫酸が露点以下の温度
で凝縮するような環境下で使用される部材用として、本
発明に係るチタン合金は極めて優れた性能を発揮するで
あろうことが明白である。
From these results, it is clear that the titanium alloy according to the present invention will exhibit extremely excellent performance for parts used in environments where hydrochloric acid or sulfuric acid condenses at temperatures below the dew point. be.

そして、この場合、酸化剤の混入環境下でも著しい耐食
性の劣化がないので安心して使用できる利点もある。
In this case, there is also the advantage that it can be used with peace of mind because there is no significant deterioration in corrosion resistance even in an environment containing an oxidizing agent.

なお、この発明のチタン合金は、Sl、v%M1Zr、
 Sn等を単独で5%以下添加されてもその耐食性に悪
影響が及ぼされないことも確認された。また、この発明
のチタン合金はMoを含有しているので、固溶強化やそ
の他の熱処理による強化が可能であることは言うまでも
ない。
Note that the titanium alloy of the present invention contains Sl, v%M1Zr,
It was also confirmed that the corrosion resistance is not adversely affected even if Sn or the like is added alone in an amount of 5% or less. Furthermore, since the titanium alloy of the present invention contains Mo, it goes without saying that it can be strengthened by solid solution strengthening or other heat treatments.

〈総括的な効果〉 以上に説明した如く、この発明によれば、非酸化性酸環
境を含むいずれの環境においても優れた耐食性を発揮す
る比較的コストの安いチタン合金を提供することができ
、腐食性環境で使用される設備・機器類の性能や信頼性
をよシ一層高めることが可能となるなど、産業上極めて
有用な効果がもたらされるのである。
<Overall Effects> As explained above, according to the present invention, it is possible to provide a relatively inexpensive titanium alloy that exhibits excellent corrosion resistance in any environment including a non-oxidizing acid environment, This brings about extremely useful effects industrially, such as making it possible to further improve the performance and reliability of equipment and equipment used in corrosive environments.

Claims (1)

【特許請求の範囲】 重量割合にて、 Mo:15.5〜50.0%、 Nb:1.0%以上20.0%未満 を含むとともに、残部が実質的にTiより成ることを特
徴とする耐食性の優れたチタン合金。
[Claims] It is characterized by containing Mo: 15.5 to 50.0%, Nb: 1.0% to less than 20.0%, and the remainder substantially consisting of Ti. Titanium alloy with excellent corrosion resistance.
JP25041185A 1985-11-08 1985-11-08 Corrosion resistant titanium alloy containing nb and mo Pending JPS62109937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25041185A JPS62109937A (en) 1985-11-08 1985-11-08 Corrosion resistant titanium alloy containing nb and mo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25041185A JPS62109937A (en) 1985-11-08 1985-11-08 Corrosion resistant titanium alloy containing nb and mo

Publications (1)

Publication Number Publication Date
JPS62109937A true JPS62109937A (en) 1987-05-21

Family

ID=17207491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25041185A Pending JPS62109937A (en) 1985-11-08 1985-11-08 Corrosion resistant titanium alloy containing nb and mo

Country Status (1)

Country Link
JP (1) JPS62109937A (en)

Similar Documents

Publication Publication Date Title
US3063835A (en) Corrosion-resistant alloys
JP2000512345A (en) Nickel-chromium-molybdenum-alloy
JP3133388B2 (en) Methods for improving corrosion resistance of stainless steel
JPH0689423B2 (en) Titanium alloy with excellent corrosion resistance
JPS62109937A (en) Corrosion resistant titanium alloy containing nb and mo
Mansfeld et al. Organic corrosion inhibitors for titanium
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JPS62107040A (en) Titanium alloy excellent in crevice corrosion resistance
US5238647A (en) Titanium alloys with excellent corrosion resistance
JPS6214622B2 (en)
JPS61127844A (en) Titanium alloy having superior corrosion resistance
JPH0535212B2 (en)
JPS60224737A (en) Composite aluminum alloy material having superior pitting corrosion resistance
JPS61221348A (en) Titanium alloy excelling in crevice corrosion resistance
JPS6256223B2 (en)
JPS634891B2 (en)
JPH0577733B2 (en)
JPS59583B2 (en) Pitting corrosion resistant aluminum alloy
JPS63103045A (en) Ti-ta alloy excellent in resistance to nitric-acid corrosion
JPS62205239A (en) Corrosion-resisting ti alloy
JPS62280341A (en) Highly corrosion resistant cobalt-based stainless alloy
JPH01252746A (en) High corrosion-resistant titanium-based alloy
JPS61227140A (en) Titanium alloy excelling in corrosion resistance
JPH04224647A (en) Titanium alloy excellent in corrosion resistance
JPH03197636A (en) Titanium alloy having excellent corrosion resistance