JPS62109049A - Production of minute optical element - Google Patents
Production of minute optical elementInfo
- Publication number
- JPS62109049A JPS62109049A JP60249302A JP24930285A JPS62109049A JP S62109049 A JPS62109049 A JP S62109049A JP 60249302 A JP60249302 A JP 60249302A JP 24930285 A JP24930285 A JP 24930285A JP S62109049 A JPS62109049 A JP S62109049A
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- resist
- optical element
- micro
- beam resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1861—Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/3175—Lithography
- H01J2237/31761—Patterning strategy
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Automatic Focus Adjustment (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、微小光学素子の製造方法に関するものである
。。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing micro optical elements. .
従来の技術
近年、マイクロフレネルレンズやマイクログレーティン
グ等の薄膜形微小光学素子は、小形軽量で種々の機能を
有する光学素子として注目されており、電子ビームを電
子ビームレジストに照射して製造する電子ビームリソグ
ラフィが有望である。Conventional technology In recent years, thin-film micro optical elements such as micro Fresnel lenses and micro gratings have attracted attention as small, lightweight optical elements with various functions. Lithography is promising.
また、種々の光分布や高効率を実現しようとすると、フ
レネルレンズやグレーティングの断面形状を制御する必
要があり、例えば、断面形状を適当な膜厚で鋸歯状にす
ると、回折効率はほぼ160%という高効率を実現する
ことができる。In addition, in order to achieve various light distributions and high efficiency, it is necessary to control the cross-sectional shape of the Fresnel lens or grating. For example, if the cross-sectional shape is made into a sawtooth shape with an appropriate film thickness, the diffraction efficiency will be approximately 160%. This high efficiency can be achieved.
従来の電子ビームリソグラフィによる薄膜形微小光学素
子の製造方法としては、第2図に示すように、まず基板
1上に電子ビームレジスト2とAu等の帯電防止膜3を
塗布又は堆積しく第2図(a))、電子ビーム4の加M
電圧は一定のまま電子ビーム4の走査回数等を制御して
レジスト2上に直接描画しく第2図(b) ) 、帯電
防止膜3のエツチング現像処理をすることにより断面形
状が鋸歯状のフレネルレンズまたはグレーティング2′
を製造する(第2図(C))という方法がある。As shown in FIG. 2, a conventional method for manufacturing a thin film micro-optical element using electron beam lithography involves first coating or depositing an electron beam resist 2 and an antistatic film 3 such as Au on a substrate 1. (a)), addition M of electron beam 4
By controlling the number of scans of the electron beam 4 while keeping the voltage constant, etching is performed directly on the resist 2 (Fig. 2(b)), and by etching and developing the antistatic film 3, a Fresnel with a sawtooth cross-sectional shape is formed. Lens or grating 2'
There is a method of manufacturing (Fig. 2(C)).
(藤田他;″雷子ビーム描画作製によるブレーズ化マイ
クロフレネルレンズ″、電子通信学会論文誌(c) 、
J66− C,1、PP、85−91(昭58−1)
)発明が解決しようとする問題点
このような従来の方法では、加速電圧を高く、例えば3
0kv以上の一定に保って描画している。このような高
加速電圧では電子ビームは塗布したし・シストを通過し
、基板で主に散乱し、いわゆる近接効果を生じ、さらに
は、レジストの感度特性を正確に補正して露光量を調整
する必要があり、理想的な鋸歯形状の実現は難しく、良
好な光学特性をもつ微小光学素子は得られなかった。本
発明はかかる問題点を解決するもので、光学特性の優れ
た薄膜形微小光学素子を提供することを目的とする。(Fujita et al.; “Blazed micro Fresnel lens fabricated by lightning beam lithography”, Journal of the Institute of Electronics and Communication Engineers (c),
J66-C, 1, PP, 85-91 (Sho 58-1)
) Problems to be Solved by the Invention In such conventional methods, the accelerating voltage is set to a high value, e.g.
Drawing is performed while keeping the voltage constant at 0kv or higher. At such high accelerating voltages, the electron beam passes through the coating and cysts and is mainly scattered by the substrate, causing the so-called proximity effect, and furthermore, the sensitivity characteristics of the resist must be accurately corrected to adjust the exposure dose. However, it was difficult to realize an ideal sawtooth shape, and a microscopic optical element with good optical properties could not be obtained. The present invention is intended to solve these problems, and an object of the present invention is to provide a thin-film micro-optical element with excellent optical properties.
問題点を解決するための手段
木光明は上記問題点を解決するため、電子ビームの加速
電圧を上記微小光学素子の形状に対応するように低加速
電圧範囲で変化させて、上記ポジ形電子ビームレジスト
に直接描画、現@処即を行い、上記電子ビームレジスト
の膜厚を変化させるようにしものである。Means for Solving the Problems In order to solve the above problems, Komei Koku changed the acceleration voltage of the electron beam in a low acceleration voltage range so as to correspond to the shape of the micro optical element, and created the positive electron beam. The film thickness of the electron beam resist is changed by directly writing on the resist and performing a current process.
作用
本発明は上記した方法により、電子ビームが基板で散乱
して悪影響を及ぼす近接効果がなくなり、また、レジス
トの感度特性の補正もほとんど必要がなくなり、容易に
理想的な断面形状をもつ光学特性のよい微小光学素子を
製造することができる実施例
以下本発明の一実施例を図面にもとづいて説明する。第
1図は本発明の一実施例のグレーティングの製造工程図
である。第1図において、11は基板、12はポジ形電
子ビームレジスト、13は帯電防止膜である。本実施例
では、基板11としてガラス、ポジ形電子ビームレジス
ト12としてPMMA1帯電防止膜13としてへ〇膜を
用いた。基板11としてはグレーティングの使用波長に
おいて透過率の優れているものなら何でもよい。またA
u膜は電子ビーム14の帯電を防止するためだけに用い
るものであり、電子ビーム14の帯電の心配のない場合
、つまり基板11あるいはレジスト12が導電性のある
場合には必要がないし、またAI等の他の金属薄膜でも
よい。Effect of the Invention The present invention uses the method described above to eliminate the harmful proximity effect caused by scattering of electron beams on the substrate, eliminates the need to correct the sensitivity characteristics of the resist, and easily provides optical characteristics with an ideal cross-sectional shape. EMBODIMENT OF THE INVENTION An embodiment of the present invention in which a micro optical element with good quality can be manufactured will now be described with reference to the drawings. FIG. 1 is a manufacturing process diagram of a grating according to an embodiment of the present invention. In FIG. 1, 11 is a substrate, 12 is a positive electron beam resist, and 13 is an antistatic film. In this embodiment, the substrate 11 was made of glass, the positive electron beam resist 12 was made of PMMA, and the antistatic film 13 was made of Hem. Any material may be used as the substrate 11 as long as it has excellent transmittance at the wavelength used by the grating. Also A
The U film is used only to prevent the electron beam 14 from being charged, and is not necessary if there is no concern about the electron beam 14 being charged, that is, if the substrate 11 or the resist 12 is conductive. Other metal thin films such as .
次に、製造工程について説明する。まず、基板11の上
にポジ形電子ビームレジスト12を例えば1.3μl’
dl布し、その上に帯電防止膜13を例えば100人真
空蒸着した(第1図(a))。次に製造ザるグレーティ
ング12′の形状に対応するように低加速電圧範囲で電
子ビーム14の加M電圧を変化させて、ポジ形電子ビー
ムレジスト12に直接描画した(第1図(b))。本発
明者らは、低加速電圧範囲では、電子ビーム14の電子
ビームレジスト12層内への侵入深さは加速電圧に依存
して小さく聴り、多少露光量がオーバーしても、現像後
の膜厚はほとんど一定であることを見出した。例えば、
加速電圧の大きさが10KV、、5KV、2KV、I
KVで適正露光以上のとき、現像により剥離したrtA
厚は1.2μm 、 0.45 μtg 、 0.22
μrg 、 0.11 μ■でほとんど一定であった
。また、電子ビーム14は基板11側には透過しないの
で、レジスト12の感度がよくなり、描画時間も短くな
った。Next, the manufacturing process will be explained. First, for example, 1.3 μl' of positive electron beam resist 12 is applied onto the substrate 11.
dl cloth, and the antistatic film 13 was vacuum-deposited thereon by, for example, 100 people (FIG. 1(a)). Next, the applied voltage of the electron beam 14 was varied in a low acceleration voltage range so as to correspond to the shape of the grating 12' to be manufactured, and writing was performed directly on the positive electron beam resist 12 (Fig. 1(b)). . The present inventors found that in a low accelerating voltage range, the penetration depth of the electron beam 14 into the 12 layers of the electron beam resist is small depending on the accelerating voltage, and even if the exposure dose exceeds the It was found that the film thickness was almost constant. for example,
The magnitude of acceleration voltage is 10KV, 5KV, 2KV, I
rtA peeled off by development when the exposure was above the proper level with KV.
Thickness is 1.2 μm, 0.45 μtg, 0.22
μrg was almost constant at 0.11 μ■. Further, since the electron beam 14 does not pass through the substrate 11 side, the sensitivity of the resist 12 is improved and the drawing time is shortened.
本実施例では、電子ビーム14の加速電圧を10に■か
ら0.1KVまでなめらかに変化させた。最後に、帯電
防止膜13をエツチングして除去し、現像処理をしてレ
ジスト12の膜厚を変化させて、グレーティング12′
を得た(第1図(C))。グレーティング12′ は、
電子ビーム14の基板11からの散乱の影響を受ける、
いわゆる近接効果の影響もなく、設計通りの良好な断面
形状が実現できた。さらに、電子ビームの浸透深さは低
加Jili電圧範囲では露光量によらず加速電圧で決ま
るので、従来例のようにレジスト12の感度特性を正確
に補正して露光量を調整する必要もなくなり、再現性よ
く良好な断面形状が容易に実現することができた。結果
として、光学特性のよいグレーティング12′が得られ
た。In this example, the acceleration voltage of the electron beam 14 was smoothly changed from 10 to 0.1 KV. Finally, the antistatic film 13 is etched and removed, and developed to change the film thickness of the resist 12, and the grating 12'
was obtained (Fig. 1(C)). The grating 12' is
Affected by scattering of the electron beam 14 from the substrate 11,
A good cross-sectional shape as designed was achieved without the influence of the so-called proximity effect. Furthermore, since the penetration depth of the electron beam is determined by the accelerating voltage and not by the exposure amount in the low applied Jili voltage range, there is no need to accurately correct the sensitivity characteristics of the resist 12 and adjust the exposure amount as in the conventional example. , it was possible to easily realize a good cross-sectional shape with good reproducibility. As a result, a grating 12' with good optical properties was obtained.
レジスト12の膜厚は本実施例ではd=1.3μlとし
たが、これは、グレーティング12′の使用波長をHe
−Noレーザのλ= 0.6328 μrgとし、レジ
スト12のPMMAの屈折率がn=1.5であるため、
1次回折効率はd−λ/ (n−1) = 1.3μt
のとき最大となるためである。ポジ形電子ビームレジス
ト12の屈折率は1.5〜1.7程度であるため、高効
率を得ようとした場合、レジスト12の膜厚はd=2λ
以下でよいことがわかった。The film thickness of the resist 12 was set to d = 1.3 μl in this example, but this is because the wavelength used by the grating 12' is He
- Since λ of the No laser is 0.6328 μrg and the refractive index of PMMA of the resist 12 is n = 1.5,
The first-order diffraction efficiency is d-λ/(n-1) = 1.3μt
This is because it is maximum when . Since the refractive index of the positive electron beam resist 12 is about 1.5 to 1.7, if high efficiency is to be obtained, the film thickness of the resist 12 is d=2λ
I found that the following is fine.
以上、本実施例では断面形状が鋸歯状のグレーティング
について説明を行ってきたが、種々の断面形状をもつグ
レーティングやフレネルレンズ等の他の薄膜微小光学素
子の製造方法についても同様の効果が得られるのは言う
までもない。Although this embodiment has described a grating with a sawtooth cross-sectional shape, similar effects can be obtained with methods of manufacturing other thin-film micro-optical elements such as gratings and Fresnel lenses with various cross-sectional shapes. Needless to say.
ブて明の効果
以上本発明によれば、電子ビームの近接効果を減少させ
、またレジストの感度特性の補正もほとんど不必要とな
り、良好な断面形状実現ができて、光学特性のよい薄膜
微小光学素子が青られるという効果を有する。According to the present invention, the proximity effect of the electron beam is reduced, correction of the sensitivity characteristics of the resist is almost unnecessary, a good cross-sectional shape can be realized, and a thin film microoptical device with good optical properties can be used. This has the effect of turning the element blue.
第1図は本発明の一実施例のグレーティングの製造工程
図、第2図は従来例のグレーティングの製造工程図であ
る。
11・・・基板、12・・・ポジ形電子ビームレジスト
、12′・・・グレーティング、14・・・電子ビーム
代理人 森 本 義 弘
棺1図
第2図FIG. 1 is a manufacturing process diagram of a grating according to an embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of a conventional grating. 11...Substrate, 12...Positive electron beam resist, 12'...Grating, 14...Electron beam agent Yoshihiro Morimoto Figure 1 Figure 2
Claims (1)
ビームの加速電圧を上記微小光学素子の形状に対応する
ように低加速電圧範囲で変化させて、上記ポジ形電子ビ
ームレジストに直接描画、現像処理を行い、上記電子ビ
ームレジストの膜厚を変化させることを特徴とする微小
光学素子の製造方法。 2、電子ビームの加速電圧は10kv以下であることを
特徴とする特許請求の範囲第1項記載の微小光学素子の
製造方法。 3、微小光学素子はフレネルレンズであることを特徴と
する特許請求の範囲第1項記載の微小光学素子の製造方
法。 4、微小光学索子はグレーティングであることを特徴と
する特許請求の範囲第1項記載の微小光学素子の製造方
法。 5、ポジ形電子ビームレジストの膜厚を微小光学素子の
使用波長の2倍以下にしたことを特徴とする特許請求の
範囲第1項記載の微小光学素子の製造方法。[Claims] 1. Applying a positive electron beam resist on the substrate, changing the acceleration voltage of the electron beam in a low acceleration voltage range so as to correspond to the shape of the micro optical element, and applying the positive electron beam resist to the substrate. A method for manufacturing a micro-optical element, characterized in that the film thickness of the electron beam resist is changed by performing direct drawing and development treatment on a beam resist. 2. The method of manufacturing a micro-optical element according to claim 1, wherein the acceleration voltage of the electron beam is 10 kV or less. 3. The method for manufacturing a micro optical element according to claim 1, wherein the micro optical element is a Fresnel lens. 4. The method for manufacturing a micro optical element according to claim 1, wherein the micro optical cable is a grating. 5. The method for manufacturing a micro-optical element according to claim 1, wherein the film thickness of the positive electron beam resist is set to be less than twice the wavelength used by the micro-optical element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60249302A JPH0740111B2 (en) | 1985-11-07 | 1985-11-07 | Manufacturing method of micro optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60249302A JPH0740111B2 (en) | 1985-11-07 | 1985-11-07 | Manufacturing method of micro optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62109049A true JPS62109049A (en) | 1987-05-20 |
JPH0740111B2 JPH0740111B2 (en) | 1995-05-01 |
Family
ID=17190956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60249302A Expired - Fee Related JPH0740111B2 (en) | 1985-11-07 | 1985-11-07 | Manufacturing method of micro optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0740111B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261601A (en) * | 1988-04-13 | 1989-10-18 | Omron Tateisi Electron Co | Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens |
JPH03204604A (en) * | 1990-01-05 | 1991-09-06 | Matsushita Electric Ind Co Ltd | Spectroscope and optical demultiplexer |
JPH0713337A (en) * | 1993-06-21 | 1995-01-17 | Nec Corp | Exposure device for thick film wiring pattern |
WO2004027843A1 (en) * | 2002-09-18 | 2004-04-01 | Tokyo University Of Science | Surface processing method |
WO2006088209A1 (en) * | 2005-02-21 | 2006-08-24 | Tokyo University Of Science Educational Foundation Administrative Organization | Production method for 3-d mold, production method for finely machined product, production method for fine-pattern molded product, 3-d mold, finely machined product, fine-pattern molded product and optical component |
WO2007029810A1 (en) * | 2005-09-09 | 2007-03-15 | Tokyo University Of Science Educational Foundation Administrative Organization | Process for producing 3-dimensional mold, process for producing microfabrication product, process for producing micropattern molding, 3-dimensional mold, microfabrication product, micropattern molding and optical device |
JP2007102156A (en) * | 2005-09-12 | 2007-04-19 | Tokyo Univ Of Science | Method for manufacturing three-dimensional structure, three-dimensional structure, optical element, and stencil mask |
JP2007156384A (en) * | 2005-02-21 | 2007-06-21 | Tokyo Univ Of Science | Production method for three-dimensional mold, production method for finely machined product, production method for fine-pattern molded product, three-dimensional mold, production method of finely machined product, fine-pattern molded product and optical component |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608844A (en) * | 1983-06-29 | 1985-01-17 | Pioneer Electronic Corp | Photoetching method with electron beams |
JPS60103310A (en) * | 1983-11-11 | 1985-06-07 | Pioneer Electronic Corp | Manufacture of micro fresnel lens |
-
1985
- 1985-11-07 JP JP60249302A patent/JPH0740111B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608844A (en) * | 1983-06-29 | 1985-01-17 | Pioneer Electronic Corp | Photoetching method with electron beams |
JPS60103310A (en) * | 1983-11-11 | 1985-06-07 | Pioneer Electronic Corp | Manufacture of micro fresnel lens |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261601A (en) * | 1988-04-13 | 1989-10-18 | Omron Tateisi Electron Co | Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens |
JPH03204604A (en) * | 1990-01-05 | 1991-09-06 | Matsushita Electric Ind Co Ltd | Spectroscope and optical demultiplexer |
JPH0713337A (en) * | 1993-06-21 | 1995-01-17 | Nec Corp | Exposure device for thick film wiring pattern |
WO2004027843A1 (en) * | 2002-09-18 | 2004-04-01 | Tokyo University Of Science | Surface processing method |
JP2005539393A (en) * | 2002-09-18 | 2005-12-22 | 学校法人東京理科大学 | Surface processing method |
WO2006088209A1 (en) * | 2005-02-21 | 2006-08-24 | Tokyo University Of Science Educational Foundation Administrative Organization | Production method for 3-d mold, production method for finely machined product, production method for fine-pattern molded product, 3-d mold, finely machined product, fine-pattern molded product and optical component |
JP2007156384A (en) * | 2005-02-21 | 2007-06-21 | Tokyo Univ Of Science | Production method for three-dimensional mold, production method for finely machined product, production method for fine-pattern molded product, three-dimensional mold, production method of finely machined product, fine-pattern molded product and optical component |
US7629596B2 (en) | 2005-02-21 | 2009-12-08 | Tokyo University Of Science Educational Foundation Administrative Organization | Method of producing 3-D mold, method of producing finely processed product, method of producing fine-pattern molded product, 3-D mold, finely processed product, fine-pattern molded product and optical component |
WO2007029810A1 (en) * | 2005-09-09 | 2007-03-15 | Tokyo University Of Science Educational Foundation Administrative Organization | Process for producing 3-dimensional mold, process for producing microfabrication product, process for producing micropattern molding, 3-dimensional mold, microfabrication product, micropattern molding and optical device |
JP2007102156A (en) * | 2005-09-12 | 2007-04-19 | Tokyo Univ Of Science | Method for manufacturing three-dimensional structure, three-dimensional structure, optical element, and stencil mask |
Also Published As
Publication number | Publication date |
---|---|
JPH0740111B2 (en) | 1995-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6514674B1 (en) | Method of forming an optical element | |
US6577434B2 (en) | Variable focal position spatial modulation device | |
CA1272629A (en) | Optical low pass filter utilizing a phase grating | |
US3988066A (en) | Light exposure apparatus for printing | |
US4131506A (en) | Method of producing echelette gratings | |
US5170293A (en) | Exposure mechanism | |
JPS62109049A (en) | Production of minute optical element | |
US20020149717A1 (en) | Lens array on LCD panel and method | |
US20230266519A1 (en) | Manufacturing method of optical element, optical element and apparatus for manufacturing optical element | |
US6692902B2 (en) | Manufacturing method and structure of slanting diffusive reflector | |
JPS5852820A (en) | Manufacture of semiconductor device | |
US3877791A (en) | Deformable mirror light valve and method of making the same | |
JPS6034082B2 (en) | Manufacturing method of chap grating | |
KR101760180B1 (en) | Method for forming electrode of optical modulator using backside illumination | |
DE2036904A1 (en) | Method and arrangement for producing point holograms | |
JPS63118701A (en) | Production of optical element | |
JPS6127505A (en) | Manufacture of blaze optical element | |
JPS60202402A (en) | Fresnel lens | |
US6947223B2 (en) | Multi-focal length miniature refractive element and method for making the same | |
JPS61122602A (en) | Fresnel lens | |
JPH0321901A (en) | Production of lens array | |
JPS6221102A (en) | Manufacture of fresnel lens | |
JPH05333204A (en) | Production of diffractive optical element | |
JPH03265117A (en) | Manufacture of semiconductor device | |
JPH05188218A (en) | Uneven exposure correcting plate, production of uneven exposure correcting plate and uneven exposure correcting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |