JPS62101021A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS62101021A
JPS62101021A JP23953885A JP23953885A JPS62101021A JP S62101021 A JPS62101021 A JP S62101021A JP 23953885 A JP23953885 A JP 23953885A JP 23953885 A JP23953885 A JP 23953885A JP S62101021 A JPS62101021 A JP S62101021A
Authority
JP
Japan
Prior art keywords
layer
high thermal
susceptor
substrate
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23953885A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Yoshimi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23953885A priority Critical patent/JPS62101021A/en
Publication of JPS62101021A publication Critical patent/JPS62101021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heat and control a substrate quickly, and to form a thin-film, which is heated uniformly and has equal film quality, by forming a susceptor, on which the substrate is placed, in a reaction chamber in two layer structure of layer having high thermal conductivity and a layer having high thermal emissivity or three layer structure in which both sides of the layer having high thermal conductivity are held by the layers having high thermal emissivity. CONSTITUTION:A susceptor 8 consists of two layers of a layer 8a having high thermal conductivity and a layer 8b having high thermal emissivity to infrared beams from an infrared-ray lamp 3. The susceptor 8 absorbs infrared beams projected through an infrared-beam entrance window 7 from the infrared-ray lamp 3 by the layer 8b having high thermal emissivity and is heated efficiently, and is composed so that heat is transmitted over a substrate 5 rapidly equally by the layer 8a having high thermal conductivity, thus uniformly heating the substrate 5 efficiency. An air gap 12 is formed between the substrate 5 and the susceptor 8 while the susceptor 8 may be shaped in a so-called three layer structure in which both sides of the layer 8a having high thermal conductivity are held by layers 8b, 8c having thermal emissivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は反応ガスに光を投射して光化学反応を生じさ
せ、そして反応ガス中に置かれた基板に薄膜を形成させ
る光励起CVD法による半導体製造装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a semiconductor manufacturing method using a photo-excited CVD method, in which light is projected onto a reaction gas to cause a photochemical reaction, and a thin film is formed on a substrate placed in the reaction gas. This relates to manufacturing equipment.

〔従来の技術〕[Conventional technology]

CVD法(化学蒸着法)は集積回路装置における薄膜形
成等において重要な技術であるが、従来のCVD法は主
として反応ガスを加熱して化学反応を起こさせるように
している。このため反応温度が高温となるので、これに
より形成される薄膜はダメージを受は易くなる。そこで
最近は、低温CVD技術として光励起CVD法が注目さ
nている。この光CVD法はCVD法のエネルギー源と
して光を用いるものであり、これによれば、従来の熱励
起CVD法あるいはプラズマCVD法等に比較して反応
温度を低温にでき、かつ薄膜表面へのイオン等によるダ
メージも少なくすることができる。
The CVD method (chemical vapor deposition method) is an important technique for forming thin films in integrated circuit devices, and the conventional CVD method mainly heats a reaction gas to cause a chemical reaction. As a result, the reaction temperature becomes high, and the thin film thus formed is easily damaged. Therefore, recently, the photoexcitation CVD method has been attracting attention as a low-temperature CVD technique. This photo-CVD method uses light as an energy source for the CVD method. According to this method, the reaction temperature can be lowered compared to conventional thermally excited CVD methods or plasma CVD methods, and it is possible to reduce the amount of damage to the thin film surface. Damage caused by ions and the like can also be reduced.

一般に光励起CVD法では、光の強度が薄膜の形成速度
に大きな影’Il’に与えることが知られている。また
、基板温度9反応ガスの組成比、圧力を一定に保った条
件下では、薄膜の形成速度が光の照度に比例し1速くな
る。さらには、反応ガスの組成比や圧力を一定に保った
条件下で、基板温度の上昇により膜のエツチング速度が
遅くなる。すなわち、基板温度の変化により薄膜の特性
が変化する。
Generally, in the photo-excited CVD method, it is known that the intensity of light has a large influence on the thin film formation rate 'Il'. Further, under conditions where the substrate temperature, the composition ratio of the reaction gas, and the pressure are kept constant, the thin film formation rate increases by 1 in proportion to the illuminance of light. Furthermore, under conditions where the composition ratio and pressure of the reaction gas are kept constant, the etching rate of the film slows down as the substrate temperature increases. That is, the characteristics of the thin film change due to changes in substrate temperature.

第4図は従来の光励起CVD法による薄膜形成の半導体
製造装置を示す断面図である。第4図中、(1)は反応
室、(2)は線状ランプからなる光源、(3)は基板(
5)を加熱する赤外線ランプ、(4)は反応ガス、(6
)は光透過材からなる光入射窓、(7)は赤外光透過材
からなる光入射窓、(8)は基板(5)全保持しかつ赤
外光を吸収してこの基板(5)を加熱するサセプタ、(
9)は断熱材からなるサセプタ(8)の保持台、αOは
反応ガス(4)の供給口、(1υは反応後のガス(4a
)’に排出するための排出口である。なお、上記の反応
室(1)内は一般的に高真空状態に減圧され、そのため
反応室(1)の壁・光透過材からなる光入射窓(6) 
、 (7)は当然この圧力に耐えうる構造、板J9VC
より構成されていること勿論である。なお、第5図は第
4図における基板(5)とサセプタ(8)との間に空隙
t13を設けたものである。
FIG. 4 is a sectional view showing a semiconductor manufacturing apparatus for forming a thin film by a conventional photo-excited CVD method. In Figure 4, (1) is a reaction chamber, (2) is a light source consisting of a linear lamp, and (3) is a substrate (
(5) is an infrared lamp that heats the reactant gas, (4) is the reactant gas, (6 is
) is a light entrance window made of a light transmitting material, (7) is a light entrance window made of an infrared light transmitting material, and (8) is a light entrance window that completely holds the substrate (5) and absorbs infrared light. The susceptor, which heats (
9) is a holding stand for the susceptor (8) made of a heat insulating material, αO is the supply port for the reaction gas (4), (1υ is the gas after the reaction (4a)
)' is the outlet for discharging the air. Note that the inside of the reaction chamber (1) is generally reduced to a high vacuum state, so the wall of the reaction chamber (1) and the light entrance window (6) made of a light-transmitting material
, (7) naturally has a structure that can withstand this pressure, plate J9VC.
Of course, it is composed of In addition, FIG. 5 shows a configuration in which a gap t13 is provided between the substrate (5) and the susceptor (8) in FIG. 4.

これらの従来装置で、反応ガス(4)がその供給口00
から反応室(1)内に導入されると、該反応ガス(4)
は光入射窓(6)から投射される光線により励起分解さ
れる。そしてこれによυ生じた反応生成物がサセプタ(
8)によって比較的低温に加熱された基板(5)上に堆
積して薄膜が形成さnる。なお、反応後のガス(4a)
は排出口(lυより排出される。
In these conventional devices, the reaction gas (4) is supplied to its supply port 00.
When the reaction gas (4) is introduced into the reaction chamber (1) from
is excited and decomposed by the light beam projected from the light entrance window (6). The resulting reaction product becomes the susceptor (
8), a thin film is formed by depositing on the substrate (5) heated to a relatively low temperature. In addition, the gas (4a) after the reaction
is discharged from the discharge port (lυ).

また、一般的に光励起CVD法では、基板温度の変化に
より薄膜の膜質に影響があることから、基板温度全均一
に保たねばならない。このため従来の装置では、サセプ
タ(8)上への赤外光線の配光分布を均一にし、かつ赤
外線ランプ(3)の配列と赤外線ランプ(3)のフィラ
メントの密度全適正eこして。
Furthermore, in the photo-excited CVD method, since the film quality of the thin film is generally affected by changes in the substrate temperature, it is necessary to keep the substrate temperature uniform throughout. For this reason, in the conventional device, the distribution of the infrared rays on the susceptor (8) is made uniform, and the arrangement of the infrared lamps (3) and the density of the filaments of the infrared lamps (3) are all properly controlled.

サセプタ(8)全均一に加熱しなければならなかった。The entire susceptor (8) had to be heated evenly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体製造装置は以上のように構成されているか
、サセプタ(8)は赤外線ランプ(3)からの赤外光線
を効率よく吸収して短時間に加熱されることが望呼しく
、また、基板(5)の温度を任意に制御するには、赤外
線ランプ(3)の出力に対しすばやく応答することが望
凍しい。このため、高真空の反応室(1)内に置かれた
サセプタ(8)は、赤外線ランプ(3)からの赤外線に
対して熱吸収率(輻射率)の高いものが必要である。他
方、基板(5)の熱は反応ガス(4)の流れVCよる対
流と、基板(5)の表面から反応室(1)の内壁への輻
射などで奪われ、また基板(5)の表面上の放熱は反応
ガス(4)のガス流の方向や、反応室(1)内の形状等
により変化するので、必ずしも均一には放熱されない。
The conventional semiconductor manufacturing apparatus is configured as described above, and it is desirable that the susceptor (8) efficiently absorbs infrared rays from the infrared lamp (3) and is heated in a short time. In order to arbitrarily control the temperature of the substrate (5), it is desirable to respond quickly to the output of the infrared lamp (3). Therefore, the susceptor (8) placed in the high vacuum reaction chamber (1) needs to have a high heat absorption rate (emissivity) for the infrared rays from the infrared lamp (3). On the other hand, heat from the substrate (5) is removed by convection caused by the flow VC of the reaction gas (4), radiation from the surface of the substrate (5) to the inner wall of the reaction chamber (1), and heat is removed from the surface of the substrate (5) by The heat dissipated above varies depending on the direction of the gas flow of the reaction gas (4), the shape of the reaction chamber (1), etc., and is not necessarily uniformly dissipated.

このため、赤外線ランプ(3)からのサセプタ(8)へ
の耐熱分布が一様であっても、サセプタ(8)内には温
度勾配が生じる。この温度勾配を小さくするには、サセ
プタ(8)に熱伝導率の高い材質を採用することが望フ
しい。
Therefore, even if the heat resistance distribution from the infrared lamp (3) to the susceptor (8) is uniform, a temperature gradient occurs within the susceptor (8). In order to reduce this temperature gradient, it is desirable to use a material with high thermal conductivity for the susceptor (8).

上記の理由からサセフータ(8)は赤外線ランプ(3)
からの赤外光線に対し熱吸収率(輻射率)が高く、しか
も熱伝導率の高いものであることが望ましい。
For the above reasons, Sassehuta (8) is an infrared lamp (3)
It is desirable that the material has a high heat absorption rate (emissivity) with respect to infrared rays from the outside, and also has a high thermal conductivity.

しかも当然のことながら加熱されることによって、基板
(5)ヲー汚染することがない材質でなければならない
Moreover, it must be made of a material that will not contaminate the substrate (5) when heated.

従来の半導体製造装置では、サセプタ(8)の材質トシ
てアルミニウムやステンレス、石英ガラスまたはカーボ
ングラファイト等を用いている。ところがアルミニウム
の場合、熱伝導率は高いが、赤外線ラング(3)からの
赤外光に対しては吸収率(輻射率)が低く、また、ステ
ンレスの場合はある程度赤外線ランプ(3)からの赤外
光に対して吸収率(輻射率)は高いが、比較的熱伝導率
は低い。また、石英ガラスの場合は、赤外線ランプ(3
)からの赤外光に対する吸収率(輻射率)と、燃伝導率
が共に低く、カーボングラファイトの場合は赤外線ラン
プ(3)からの赤外光に対して吸収率(輻射率)が高く
、シかも熱伝導率も高いけれども、高温に加熱された場
合には、内部の炭素が飛び出して基板(5)全汚染する
ことがある。このため従来の装置ではカーボングラファ
イトに炭化ケイ素(StC)全コーティングして汚染金
防ごうとしているが、かならずしも十分ではなかった。
In conventional semiconductor manufacturing equipment, the material of the susceptor (8) is aluminum, stainless steel, quartz glass, carbon graphite, or the like. However, although aluminum has high thermal conductivity, it has a low absorption rate (emissivity) for infrared light from the infrared lamp (3), and stainless steel has a low absorption rate (emissivity) for infrared light from the infrared lamp (3). It has a high absorption rate (emissivity) for external light, but a relatively low thermal conductivity. In addition, in the case of quartz glass, infrared lamps (3
) and fuel conductivity are both low for infrared light from the infrared lamp (3). Although it also has high thermal conductivity, when heated to high temperatures, the carbon inside may fly out and contaminate the entire substrate (5). For this reason, in conventional equipment, carbon graphite is completely coated with silicon carbide (StC) in an attempt to prevent gold contamination, but this is not always sufficient.

この発明は上記のような問題点を解消するためになされ
たもので、赤外線ランプ(3)の出力光に対しては、す
ばやく応答してサセプタ(8)の加熱を制御1L、Lか
も基板(5)全均一に加熱できる半導体製造装置を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it quickly responds to the output light of the infrared lamp (3) and controls the heating of the susceptor (8). 5) The purpose is to obtain a semiconductor manufacturing device that can heat the entire area uniformly.

〔問題点全解決するための手段〕[Means to solve all problems]

この発明に係る半導体製造装置は、反応室内で基板が載
置されるサセプタを、熱伝導率の高い層と熱輻射率の高
い層の2層、または熱伝導率の高い層の両側を熱輻射率
の高い層ではさみ込んだ6N!構造にしたものである。
In the semiconductor manufacturing apparatus according to the present invention, a susceptor on which a substrate is placed in a reaction chamber has two layers, a layer with high thermal conductivity and a layer with high thermal emissivity, or a layer with high thermal conductivity and a layer with high thermal emissivity. 6N inserted in the high rate layer! It is structured.

〔作用〕[Effect]

この発明においては、サセプタに熱輻射率の高い層と設
けたから、基板をすばやく加熱制御することができる。
In this invention, since the susceptor is provided with a layer having a high thermal emissivity, heating of the substrate can be quickly controlled.

また、熱伝導率の高い層を設けたから、基板は均一に加
熱されることによって、膜質の均一な薄膜を形成するこ
とができる。
Furthermore, since the layer with high thermal conductivity is provided, the substrate is heated uniformly, thereby making it possible to form a thin film with uniform film quality.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、サセプタ(8)は熱伝導率の高い層(
8a)と、赤外線ランプ(3)からの赤外光に対し熱輻
射率の高い層(8b)との2層よりなる。なお、その他
の部分は第4図に示した従来装置の部分と同一であるか
ら、その説明は省略する。
In Figure 1, the susceptor (8) is a layer with high thermal conductivity (
It consists of two layers: 8a) and a layer (8b) having a high thermal emissivity with respect to infrared light from the infrared lamp (3). Note that other parts are the same as those of the conventional device shown in FIG. 4, so their explanation will be omitted.

次に上記実施例の作用効果について説明する。Next, the effects of the above embodiment will be explained.

本装置において、サセプタ(8)は赤外線ランプ(3)
から赤外光入射窓(7)ヲ通して投射された赤外光を熱
輻射率の高い層(8b)で吸収して効率よく加熱され、
しかも熱伝導率の高い/1t(8a)によりすばやく均
一に基板(5)に熱を伝えるように構成されているので
、基板(5)は均一に効率よく加熱される。そして反応
ガス(4)が供給口α4から反応室(1)内に導入され
ると、この反応ガス(4)は光入射窓(6)から投射さ
几た光線により励起分解され、これにより生じた反応生
成物がサセプタ(8)により比較的低温でかつ均一に加
熱さtした基板(5)上に堆積して、均一な膜質の薄膜
が形成される。なお、反応後のガス(4a)は排出口0
υより排出される。
In this device, the susceptor (8) is an infrared lamp (3)
The infrared light projected from the infrared light through the infrared light incident window (7) is absorbed by the layer (8b) with high thermal emissivity and is efficiently heated.
Moreover, since the structure is such that heat is quickly and uniformly transferred to the substrate (5) by /1t (8a) having high thermal conductivity, the substrate (5) is heated uniformly and efficiently. When the reactant gas (4) is introduced into the reaction chamber (1) from the supply port α4, this reactant gas (4) is excited and decomposed by the light beam projected from the light incidence window (6). The reaction product is deposited on the substrate (5) which is uniformly heated at a relatively low temperature by the susceptor (8), thereby forming a thin film of uniform quality. In addition, the gas (4a) after the reaction is discharged from the exhaust port 0.
It is discharged from υ.

ここで、前記の熱輻射率の高い層(8b)は赤外線を効
率よく吸収すればよいのであって比較的厚さの薄い層で
よく、また、熱伝導率の高い層(8a)はこれにメッキ
またはコーティング等を施したものでもよい。
Here, the layer (8b) with a high thermal emissivity needs to be a relatively thin layer as long as it absorbs infrared rays efficiently, and the layer (8a) with a high thermal conductivity is a layer with a relatively thin thickness. It may be plated or coated.

第2図および第6図は本発明の他の実施例による装置の
断面図を示す。すなわち、上記第1図の実施例では、基
板(5)をサセプタ(8)に密着させて熱7f・伝えて
いるが、第2図の実施例では基板(5)とサセプタ(8
)の間に空隙Q′2を設けるとともに、サセプタ(8)
は熱伝導率の高い層(8a)の両側を熱輻射率の高い層
(8b ) 、 (8c )ではさみ込んだ、いわゆる
3層構造VCしたものである。
2 and 6 show cross-sectional views of devices according to other embodiments of the invention. That is, in the embodiment shown in FIG. 1, the substrate (5) is brought into close contact with the susceptor (8) to transmit 7f of heat, but in the embodiment shown in FIG.
) and provide a gap Q'2 between the susceptor (8).
This is a so-called three-layer VC structure in which a layer (8a) with high thermal conductivity is sandwiched between layers (8b) and (8c) with high thermal emissivity.

塘だ、上記サセプタ(8)は赤外線ランプ(3)によっ
て加熱しているが、このサセプタ(8)は第3図の実施
例に示すように、抵抗ヒータを内蔵した熱伝導率の高い
層(8d)と熱輻射率の高い層(8c)の2層構造にし
てもよい。
The susceptor (8) is heated by an infrared lamp (3), and as shown in the embodiment of FIG. A two-layer structure including a layer (8d) and a layer (8c) having a high thermal emissivity may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、均一に加鴨された基板上に膜質の均一な薄膜を形成す
ることができる。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, a thin film of uniform quality can be formed on a uniformly ducked substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
図、第2図および第3図はそれぞれ本発明の他の実施例
による半導体製造装置の断面図、第4図および哨5図は
ぞnぞれ従来装置の断面図である。 図中、(1)は反応室、(2)は線状ランプの光源、(
3)は赤外線ランプ、(4)は反応ガス、(5)は基板
、(6)は光透過材からなる光入射窓、(7)は赤外光
透過材からなる赤外光入射窓、(8)はサセプタ、(8
a)は熱伝導率の高い層、(8b)は熱輻射率の高い層
、(8d)は抵抗ヒータを含んだ熱伝導率の高い層、(
9)は断熱材からなるサセプタ保持台、00は反応ガス
供給口、αυは反応ガス排出口、uzは空隙である。 なお、各図中同一符号は同一または相当部分金示す。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are sectional views of semiconductor manufacturing apparatuses according to other embodiments of the invention, and FIGS. FIG. 3 is a cross-sectional view of each conventional device. In the figure, (1) is a reaction chamber, (2) is a linear lamp light source, (
3) is an infrared lamp, (4) is a reactive gas, (5) is a substrate, (6) is a light entrance window made of a light transmitting material, (7) is an infrared light entrance window made of an infrared light transmitting material, ( 8) is a susceptor, (8
a) is a layer with high thermal conductivity, (8b) is a layer with high thermal emissivity, (8d) is a layer with high thermal conductivity containing a resistance heater, (
9) is a susceptor holding stand made of a heat insulating material, 00 is a reaction gas supply port, αυ is a reaction gas discharge port, and uz is a void. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ、この反応ガス中に置かれた基板に
薄膜を形成させる半導体製造装置において、前記基板が
載置されるサセプタは熱伝導率の高い層と、熱輻射率の
高い層の2層構造からなることを特徴とする半導体製造
装置。
(1) In a semiconductor manufacturing device that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, a susceptor on which the substrate is placed. is a semiconductor manufacturing device characterized by having a two-layer structure including a layer with high thermal conductivity and a layer with high thermal emissivity.
(2)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ、該反応ガス中に置かれた基板に薄
膜を形成させる半導体製造装置において、前記基板が載
置されるサセプタは熱輻射率の高い層で熱伝導率の高い
層をはさみ込んだ3層構造からなることを特徴とする半
導体製造装置。
(2) A susceptor on which the substrate is placed in a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas. is a semiconductor manufacturing device characterized by having a three-layer structure in which a layer with high thermal conductivity is sandwiched between a layer with high thermal emissivity.
(3)前記サセプタとして抵抗ヒータを内蔵した熱伝導
率の高い層と熱輻射率の高い層の2層構造からなること
を特徴とする特許請求の範囲第1項記載の半導体製造装
置。
(3) The semiconductor manufacturing apparatus according to claim 1, wherein the susceptor has a two-layer structure including a layer with high thermal conductivity and a layer with high thermal emissivity that includes a built-in resistance heater.
JP23953885A 1985-10-28 1985-10-28 Semiconductor manufacturing equipment Pending JPS62101021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23953885A JPS62101021A (en) 1985-10-28 1985-10-28 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23953885A JPS62101021A (en) 1985-10-28 1985-10-28 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS62101021A true JPS62101021A (en) 1987-05-11

Family

ID=17046298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23953885A Pending JPS62101021A (en) 1985-10-28 1985-10-28 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS62101021A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120813A (en) * 1987-11-04 1989-05-12 Tokyo Electron Ltd Semiconductor wafer placing table
JPH01120814A (en) * 1987-11-04 1989-05-12 Tokyo Electron Ltd Semiconductor wafer placing table
JPH07176482A (en) * 1991-05-31 1995-07-14 At & T Corp Method and apparatus for epitaxial growth
JP2010135508A (en) * 2008-12-03 2010-06-17 Tokyo Electron Ltd Apparatus and method for heating substrate and storage medium
US8226770B2 (en) * 2007-05-04 2012-07-24 Applied Materials, Inc. Susceptor with backside area of constant emissivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120813A (en) * 1987-11-04 1989-05-12 Tokyo Electron Ltd Semiconductor wafer placing table
JPH01120814A (en) * 1987-11-04 1989-05-12 Tokyo Electron Ltd Semiconductor wafer placing table
JPH07176482A (en) * 1991-05-31 1995-07-14 At & T Corp Method and apparatus for epitaxial growth
US8226770B2 (en) * 2007-05-04 2012-07-24 Applied Materials, Inc. Susceptor with backside area of constant emissivity
US8524555B2 (en) 2007-05-04 2013-09-03 Applied Materials, Inc. Susceptor with backside area of constant emissivity
JP2010135508A (en) * 2008-12-03 2010-06-17 Tokyo Electron Ltd Apparatus and method for heating substrate and storage medium

Similar Documents

Publication Publication Date Title
US6232580B1 (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
CN105374717B (en) Transparent reflective plate for rapid thermal processing chamber
EP0848575B1 (en) Heating device, assembly and method
WO1995031582A1 (en) Chemical vapor deposition reactor and method
JPS63108712A (en) Method and apparatus for heating semiconductor substrate and for inducing reaction
US6703589B1 (en) Device and method for tempering at least one process good
US6243534B1 (en) Method and apparatus to compensate for non-uniform film growth during chemical vapor deposition
JPS62101021A (en) Semiconductor manufacturing equipment
JPS60161616A (en) Infrared heating unit for semiconductor wafer
EP0728850B1 (en) Quasi hot wall reaction chamber
JPH08274067A (en) Plasma generating device
WO2023210656A1 (en) Heating processing device and method for operating same
JP2697250B2 (en) Thermal CVD equipment
JPS60189927A (en) Vapor phase reactor
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JP4525871B2 (en) Wafer heat treatment apparatus and wafer heat treatment method using the same
JPS61289623A (en) Vapor-phase reaction device
JPH04311573A (en) Photoassisted cvd system
JPS61131419A (en) Semiconductor manufacturing equipment
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPS622614A (en) Infrared heating device
JPH01312075A (en) Photochemical reactor
JPH01154515A (en) Plasma cvd system
JPH01201482A (en) Vacuum vapor growth device
JPS6126773A (en) Formation of accumulated film