JPS618914A - Glow discharge type film formation equipment - Google Patents
Glow discharge type film formation equipmentInfo
- Publication number
- JPS618914A JPS618914A JP59129519A JP12951984A JPS618914A JP S618914 A JPS618914 A JP S618914A JP 59129519 A JP59129519 A JP 59129519A JP 12951984 A JP12951984 A JP 12951984A JP S618914 A JPS618914 A JP S618914A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- forming apparatus
- film forming
- electrode
- film formation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/02—Extraction using liquids, e.g. washing, leaching, flotation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Photovoltaic Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、半導体膜を成膜するためのグロー放電型成膜
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a glow discharge type film forming apparatus for forming a semiconductor film.
[従来の技術]
従来、太陽電池などの製造に用いるグロー放電型成膜装
置としては、第4図に示すように、グランド電極(3)
上に載置された基板(4)上に、RFj 電
極(1)・グランド電極(3)・e−9−(5]なと1
より半導体層が堆積せしめられる、いわゆる平行平板法
による装置が多く用いられている。平行平板法は大きな
面積の成膜には適しているが、電極対を形成するRF電
極(1)の裏側でも放電がおこるため、この放電を抑制
するためのシールド(7)が必要となる。しかし、この
シールドを設けるど放電が不安定になるというような欠
点が生ずる。[Prior Art] Conventionally, a glow discharge type film forming apparatus used for manufacturing solar cells, etc. has a ground electrode (3) as shown in FIG.
On the substrate (4) placed above, RFj electrode (1), ground electrode (3), e-9-(5)
An apparatus based on the so-called parallel plate method, which allows more semiconductor layers to be deposited, is often used. Although the parallel plate method is suitable for forming a film over a large area, since discharge also occurs on the back side of the RF electrode (1) forming the electrode pair, a shield (7) is required to suppress this discharge. However, the provision of this shield has the disadvantage that the discharge becomes unstable.
シールドをなくした装置として第5図に示す装置が考案
されている。このばあいには、RF電極(1)の両側の
グランド電極(3a)、(3b)上に基板(4a)、(
4b)を置き、必要によりヒーター(5a)、(5b)
で基板(4a)、(4b)を加熱しながら半導体膜を形
成できるため、シールドを設ける必要がなくなり、シー
ルドを設けることによる放電の不安定化がなくなるとい
うメリットがある。しかし、左右の半導体層形成速度が
異なるばあいに、その速度を調節することができないと
いう欠点がある。A device shown in FIG. 5 has been devised as a device without a shield. In this case, the substrate (4a), (
4b), and heaters (5a) and (5b) if necessary.
Since the semiconductor film can be formed while heating the substrates (4a) and (4b), there is no need to provide a shield, and there is an advantage that the instability of discharge due to the provision of a shield is eliminated. However, if the formation speed of the left and right semiconductor layers is different, there is a drawback that the speed cannot be adjusted.
[発明の解決しようとする問題点コ
。[Problems that the invention attempts to solve]
.
本発明は上記のごとき実情、すなわち、RF電
ず極の両側でグロー放電分解し、半導体膜を成膜する
ばあいに生ずる、左右の半導体膜の成膜速度が異なると
いう問題を解消するためになされたものである。The present invention addresses the above-mentioned situation, namely, RF electric power.
This was done in order to solve the problem that the film formation speeds of the left and right semiconductor films are different, which occurs when a semiconductor film is formed by glow discharge decomposition on both sides of a single pole.
[問題点を解決するための手段]
本発明は、RF電極の両側に設置した基板上にグロー放
電分解法により半導体膜を成膜する装置において、電気
的に絶縁され、互に平行に配置されたRF電極の少なく
とも一方に直列に接続されたRF調節手段、RFI1節
手段が接続されているばあいにはRF調節手段を介して
、RFii節手段厚手段されていないばあいには直接、
それぞれのRF電極に接続された1つのマツチング回路
、該RF電極のそれぞれと対面するように設けられたグ
ランド電極からなることを特徴とするグロー放電型成膜
装置に関する。[Means for Solving the Problems] The present invention provides an apparatus for forming semiconductor films on substrates placed on both sides of an RF electrode by a glow discharge decomposition method. RF adjustment means connected in series to at least one of the RF electrodes, if the RFI1 node means is connected, via the RF adjustment means, or directly if the RFII node thickness means is not connected;
The present invention relates to a glow discharge type film forming apparatus characterized by comprising one matching circuit connected to each RF electrode, and a ground electrode provided to face each of the RF electrodes.
[実施例]
本発明の装置を、その一実施態様を示す第1図に基づき
説明する。[Example] The apparatus of the present invention will be explained based on FIG. 1 showing one embodiment thereof.
RF電極(1a)、(1b)は、平行に配置した2枚の
金属板を絶縁材(2)を介してはさんだもので、それぞ
れの金属板にはそれぞれ直列にRFli節手段であるコ
ンデンサー、たとえば固定コンデンサー (6b)およ
び可変コンデンサー(6a)が反応機の外で接続されて
いる。コンデンサーのかわりにRF調節手段としてコイ
ルを用いてもよい。一方、RF電源から供給されたRF
はマツチング回路をへて2分割され、コンデンサーに供
給される。The RF electrodes (1a) and (1b) are made by sandwiching two parallel metal plates with an insulating material (2) in between, and each metal plate has a capacitor, which is an RF node means, connected in series with the metal plate. For example, a fixed capacitor (6b) and a variable capacitor (6a) are connected outside the reactor. A coil may be used as the RF adjustment means instead of a capacitor. On the other hand, the RF supplied from the RF power supply
passes through a matching circuit, is divided into two parts, and is supplied to a capacitor.
RF電極(1a)、(1b)の両側にはRF電極面と平
行に対向電極となるグランド電極(3a)、(3b)が
配置されており、その上に基板(4a)、(4b)が載
置される。第1図に示すように、必要に応じてヒーター
(5a)、(5b)を配置し、基板(4a)、(4b)
を加熱するようにしてもよい。On both sides of the RF electrodes (1a), (1b), ground electrodes (3a), (3b) serving as counter electrodes are arranged parallel to the RF electrode surface, and on top of these, substrates (4a), (4b) are placed. It will be placed. As shown in FIG. 1, heaters (5a) and (5b) are arranged as necessary, and substrates (4a) and (4b) are
may be heated.
RF電極(1a)、(1b)の分離方法は、ガスを電極
内部から導入するばあいには、第1図に示すように、周
囲で絶縁材(2)をはさんむ構造が好ましいが、このよ
うな方法に限定されるものではなく、電気的に絶縁され
ていればいかなる方法でもよい。As for the method of separating the RF electrodes (1a) and (1b), when introducing gas from inside the electrodes, it is preferable to use a structure in which an insulating material (2) is sandwiched around the electrodes, as shown in FIG. The method is not limited to this, and any method may be used as long as it is electrically insulated.
このようにRF電極を電気的に2分割し、該RF電極の
少なくとも一方にRF調節手段を直列に接続することに
より、RF電極(1a)、(1b)の両側で成膜するこ
とができ、かつ左右の成膜速度が異なるばあいでも、R
F調節手段を調節して成膜速度を任意に調節することが
できる。By electrically dividing the RF electrode into two in this way and connecting the RF adjustment means in series to at least one of the RF electrodes, it is possible to form a film on both sides of the RF electrodes (1a) and (1b). And even if the left and right film formation speeds are different, R
The film forming rate can be arbitrarily adjusted by adjusting the F adjusting means.
絶縁材(2)で分離したRF電極間の距離は任意である
が、通常は1〜200#l1lIである。RF電極と基
板との間隔は、5〜50#1程度であることが放電の安
定性や均一性の点から好ましく、10〜30m+程度で
あることがさらに好ましい。The distance between the RF electrodes separated by the insulating material (2) is arbitrary, but is usually 1 to 200 #l1lI. The distance between the RF electrode and the substrate is preferably about 5 to 50 #1 from the viewpoint of stability and uniformity of discharge, and more preferably about 10 to 30 m+.
RF電極の面積は111を以内が好ましいが、それ以上
の面積が必要なばあいには、1TIt以内に分割したR
F電極を複数枚ならべて、第2図に示すような構造にし
て使用すればよい。必要により長手方向に電極を直流的
に接続してもよい。電極対を多数直線状に配置すると、
成膜面積を大きくすることができ、理論的には無限大に
大きくすることができる。なお平行平板法では、1つの
電極面積は1ml程度が限度である。The area of the RF electrode is preferably within 111, but if a larger area is required, the area of the RF electrode is divided into 1TIt or less.
A plurality of F electrodes may be arranged in a structure as shown in FIG. 2 for use. If necessary, the electrodes may be connected in a direct current manner in the longitudinal direction. When many electrode pairs are arranged in a straight line,
The film forming area can be increased, and theoretically it can be increased to infinity. Note that in the parallel plate method, the area of one electrode is limited to about 1 ml.
RF電極の両側にはRF電極と平行して基板を移動させ
るように、基板移動手段(図示されていない)を設けて
もよい。該基板移動手段は、基板をRF電極部に運搬し
、成膜後移動させるだけの働きであってもよい。しかし
、成膜中に基板とRF電極との距離をほぼ一定に保持し
たまま、基板を一方向へ移動させたり、繰返して振幅移
動させてもよい。このように成膜中に基板を移動させる
と、形成される膜の厚さ分布を極めて小さくすることが
できる。このような基板移動手段の具体例としては、多
室インライン形の装置があげられる。Substrate moving means (not shown) may be provided on both sides of the RF electrode to move the substrate parallel to the RF electrode. The substrate moving means may function only to transport the substrate to the RF electrode section and move the substrate after film formation. However, during film formation, the distance between the substrate and the RF electrode may be held substantially constant while the substrate may be moved in one direction or may be repeatedly moved in amplitude. By moving the substrate during film formation in this way, the thickness distribution of the formed film can be made extremely small. A specific example of such a substrate moving means is a multi-chamber in-line type device.
RF電極およびその両側に搬送された基板は、互いにほ
ぼ平行であれば水平になっていてもよく、垂直になって
もよく、その他の角度をもってかたむいて存在していて
もよいが、これらが垂直に近い状態で配置されているば
あいには、成膜面上にごみが落下したりすることもない
の−r、、 mM’xWIABmtc’ja n層。
1基板として長尺連続基板を用い、
連続成膜するばあいには、基板を一方へ移動させる方法
が適しているが、通常は短尺の基板が用いられる。The RF electrode and the substrates carried on both sides thereof may be horizontal as long as they are approximately parallel to each other, may be vertical, or may be tilted at other angles; If the layers are arranged nearly vertically, there is no possibility that dust will fall onto the film-forming surface.
Using a long continuous substrate as one substrate,
In the case of continuous film formation, a method of moving the substrate to one side is suitable, but usually a short substrate is used.
基板を加熱しうるように、必要により設けらているヒー
ターにより基板を加熱してもよい。In order to heat the substrate, the substrate may be heated by a heater provided as necessary.
基板温麿は、形成される膜の種類、使用目的などによっ
ても異なるが、通常50〜400℃程度が好ましい。Although the substrate temperature varies depending on the type of film to be formed and the purpose of use, it is usually preferably about 50 to 400°C.
第3図に示すように、RF電極対を、直線状に配置した
ものをたとえば1〜100対、好ましくは1〜10対平
行に設置すると、同時に多数の基板上に半導体層を形成
する口とができ、成膜面積を大きくすることかできる。As shown in FIG. 3, if 1 to 100 pairs of RF electrodes, preferably 1 to 10 pairs of RF electrodes arranged in a straight line are installed in parallel, it is possible to simultaneously form semiconductor layers on many substrates. This makes it possible to increase the film formation area.
本発明の装置が設けられている非晶質半導体膜などの成
膜装置にはとくに限定はなく、通常使用されているタイ
プの成膜装置であればすべて使用しうる。たとえば多室
構造の装置であってもよく、このばあいには多室構造を
構成する室のうちの少なくとも一室(たとえばp層、1
層、n層を形成する部屋のうちの一室)に本発明の装置
が用いられていてもよい。前記のような多室構造の装置
を用いるはあいには、各室を基板が通過するため、隔壁
にはスリットやゲートバルブが設けられているが、ゲー
トバルブがなくてスリットが設けられており、通常の差
動排気手段を有する差動排気室が設けられていて基板連
続移動させることができるものであることが、生産性を
あげるという点から好ましい。There is no particular limitation on the film forming apparatus for forming an amorphous semiconductor film or the like in which the apparatus of the present invention is provided, and any commonly used type of film forming apparatus can be used. For example, the device may have a multi-chamber structure; in this case, at least one of the chambers constituting the multi-chamber structure (for example, the p-layer, one
The device of the present invention may be used in one of the rooms in which layers and n layers are formed. When using a device with a multi-chamber structure as described above, the partition walls are provided with slits and gate valves to allow the substrate to pass through each chamber. From the viewpoint of increasing productivity, it is preferable that a differential pumping chamber having a normal differential pumping means is provided so that the substrate can be continuously moved.
前記のごとく第1図に示されているような本発明の装置
が、非晶質半導体膜などを製造するグロー放電分解成膜
装置として設けられ、周波数1〜100MHz程度、成
膜単位面積当りのRFパワーが0.003〜0.2W/
cd、微結晶化させるときには0.1〜5w/i程度の
条件で、反応性ガス、たとえばケイ素化合物、炭素化合
物、チッ素化合物、ドーピングガス、不活性ガスなどか
らなる原料ガスの0.01〜5 Torr程度の存在下
でグロー放電を行ない、基板上にo、oos〜100如
程度の厚さに半導体層が成膜される。As mentioned above, the apparatus of the present invention as shown in FIG. 1 is installed as a glow discharge decomposition film forming apparatus for manufacturing amorphous semiconductor films, etc., and has a frequency of about 1 to 100 MHz, and a film formation rate per unit area of film formation. RF power is 0.003~0.2W/
cd, when performing microcrystallization, under the conditions of about 0.1 to 5 w/i, 0.01 to 0.01 to 0.01 to 500% of the raw material gas consisting of a reactive gas, such as a silicon compound, a carbon compound, a nitrogen compound, a doping gas, an inert gas, etc. Glow discharge is performed in the presence of about 5 Torr, and a semiconductor layer is formed on the substrate to a thickness of about 0.05 to 100 Torr.
本発明の装置のごとき装置を用いて成膜すると、均一な
品質の膜がえられ、かつ寄生放電が少ないので粉が出に
くく、ピンホールの少ない膜がえられ、大面積化が容易
であり、またグロー放電が極めて安定でRFの利用効率
も高いというような特徴を有している。その上シリコン
を含むpin 、 pn、ヘテロまたはホモ接合太陽電
池、センサ、TFT (thin film tran
sistor)、CCD(charge couple
d device)などのデバイス、とくに非晶質シリ
コンを含む太陽電池のばあいにはプラズマ安定性が効率
の再現性に大きく影響するので、本発明の装置を用いる
と、10%以上の高変換効率が大面積で再現性よくえら
れる。When a film is formed using an apparatus such as the apparatus of the present invention, a film of uniform quality can be obtained, and since there is little parasitic discharge, it is difficult to generate powder, a film with few pinholes can be obtained, and it is easy to increase the area. It also has features such as extremely stable glow discharge and high RF usage efficiency. Additionally, silicon-containing pin, pn, hetero or homojunction solar cells, sensors, thin film trans
sister), CCD (charge couple)
Since plasma stability greatly affects the reproducibility of efficiency in devices such as d devices, especially solar cells containing amorphous silicon, the device of the present invention can achieve high conversion efficiency of 10% or more. can be obtained over a large area with good reproducibility.
また電子写真用感光材料、LSIのパシベーション膜、
プリント基板用絶縁膜などの用途にも好適に用いられる
。Also, photosensitive materials for electrophotography, passivation films for LSI,
It is also suitably used for applications such as insulating films for printed circuit boards.
つぎに本発明を実施例にもとづき説明する。Next, the present invention will be explained based on examples.
実施例1
第1図と同様のグロー放電型成膜装置を用いた実施例に
ついて説明する。Example 1 An example using a glow discharge type film forming apparatus similar to that shown in FIG. 1 will be described.
j コンデンサーを接続し、4mの絶縁材
をはさんだRF電極(560x 560an)に、13
.56MHzのRF発振機とマツチング回路を通して2
分割したRFをコンデンサーを経て導入した。使用した
コンデンサーは固定の250pFとHax 500pF
の可変コンデンサーであった。基板として400角のI
TO/5002ガラス基板を用いて、基板温度200℃
でSiH4/ CHa = 50/ 50、B 2 H
s / (Sin< +CHa ) = 0.05%(
モル%、以下同様)からなるp層を100人、S i
tl 4からなるi層を6000人、PH3/ 5iH
a = 0.2%からなるn層を500人成躾した。コ
ンデンサーは2509Fと35011Fで用いた。つい
でAIを約1000人魚着しAM−1,1001W/c
dのソーラーシミュレーターを用いて太陽電池の変換効
率の分布を求めたところ、最少10.4%最大11.7
%、平均11%と極めて均一で高効率がえられることが
判った。また成膜速度を10人/SeCで成膜しても効
率はほとんど変化しなかった。j Connect the capacitor to the RF electrode (560x 560an) sandwiching 4m of insulation material,
.. 2 through a 56MHz RF oscillator and matching circuit.
The split RF was introduced via a condenser. The capacitors used are fixed 250pF and Hax 500pF.
It was a variable capacitor. 400 square I as a substrate
Using TO/5002 glass substrate, substrate temperature 200℃
with SiH4/CHa = 50/50, B2H
s/(Sin< +CHa) = 0.05%(
100 people, Si
6000 people in the i layer consisting of tl 4, PH3/5iH
We trained 500 people in the n layer consisting of a = 0.2%. The capacitors used were 2509F and 35011F. Next, I attached AI to about 1000 mermaids and AM-1,1001W/c.
When we calculated the distribution of conversion efficiency of solar cells using d's solar simulator, the minimum was 10.4% and the maximum was 11.7.
%, an average of 11%, and it was found that extremely uniform and high efficiency could be obtained. Furthermore, even when the film formation rate was 10 people/SeC, the efficiency hardly changed.
また半導体層の厚さは左右はとんど同じで均一であった
。Further, the thickness of the semiconductor layer was almost the same on the left and right sides and was uniform.
実施例2
−!
実施例1の右側のコンデンサーを250pFに固定し、
左側のコンデンサーを10〜5009Fに変えたほかは
実施例1と同様にしてi層の成膜速度を求めた。その結
果を第1表に示す。Example 2
-! The capacitor on the right side of Example 1 was fixed at 250 pF,
The deposition rate of the i-layer was determined in the same manner as in Example 1 except that the capacitor on the left side was changed to 10 to 5009 F. The results are shown in Table 1.
[以下余白]
[発明の効果コ
以上のように、分離した電極に直列に接続したコンデン
サーの容量を変えることにより、左右の半導体層の成膜
速度を大巾に変えることができるので、左右の半導体層
の成膜速度が異なるばあいには、コンデンサーの容量を
変えることで成膜速度を簡単に同一にすることができる
。[Left below] [Effects of the invention] As described above, by changing the capacitance of the capacitor connected in series to the separated electrodes, the deposition rate of the left and right semiconductor layers can be greatly changed. If the deposition rates of the semiconductor layers are different, the deposition rates can be easily made the same by changing the capacitance of the capacitor.
第1図は本発明の装置の一実施態様に関する説明図、第
2〜3図はそれぞれ本発明の装置の異なった実施態様の
電極対配置に関する説明図、第4〜5図はいずれも従来
から使用されている成膜装置に関する説明図である。
(図面の主要符号)
(1)、(1a)、(Ib) : RF電極(2):絶
縁剤
(3)、(3a)、(3b) ニゲランド電極(6a)
:可変コンデンサー
(6b):固定コンデンサー
21図
第2国
第3図FIG. 1 is an explanatory diagram of one embodiment of the device of the present invention, FIGS. 2 and 3 are explanatory diagrams of the electrode pair arrangement of different embodiments of the device of the present invention, and FIGS. 4 and 5 are conventional diagrams. FIG. 2 is an explanatory diagram regarding the film forming apparatus used. (Main symbols in the drawing) (1), (1a), (Ib): RF electrode (2): Insulator (3), (3a), (3b) Nigerland electrode (6a)
: Variable capacitor (6b): Fixed capacitor Figure 21 Country 2 Figure 3
Claims (1)
法により半導体膜を成膜する装置において、電気的に絶
縁され、互に平行に配置されたRF電極の少なくとも一
方に直列に接続されたRF調節手段、RF調節手段が接
続されているばあいにはRF調節手段を介して、RF調
節手段が接続されていないばあいには直接、それぞれの
RF電極に接続された1つのマッチング回路、該RF電
極のそれぞれと対面するように設けられたグランド電極
からなることを特徴とするグロー放電型成膜装置。 2 前記RF調節手段が固定または可変のコンデンサー
である特許請求の範囲第1項記載の成膜装置。 3 前記互に平行に配置されたRF電極およびグランド
電極からなる電極対を1〜100対平行に配置した特許
請求の範囲第1項記載の成膜装置。 4 前記基板を前記RF電極との距離を保持したまま移
動させる手段を有する特許請求の範囲第1項記載の成膜
装置。 5 前記移動手段が繰返しの振幅移動手段である特許請
求の範囲第4項記載の成膜装置。 6 前記移動手段が一方向への移動手段である特許請求
の範囲第4項記載の成膜装置。 7 前記グロー放電を行なうばあいの周波数が1〜10
0MHzとなる電極対を有する特許請求の範囲第1項、
第2項、第3項、第4項、第5項または第6項記載の成
膜装置。 8 前記基板を加熱しうるようにヒーターが設けられて
いる特許請求の範囲第1項、第2項、第3項、第4項、
第5項、第6項または第7項記載の成膜装置。 9 前記グロー放電型成膜装置が多室構造を有する特許
請求の範囲第1項、第2項、第3項、第4項、第5項、
第6項、第7項または第8項記載の成膜装置。 10 前記多室構造が、スリットを有する隔壁で仕切ら
れ、仕切られた室が差動排気される手段を有する特許請
求の範囲第1項、第2項、第3項、第4項、第5項、第
6項、第7項、第8項または第9項記載の成膜装置。[Claims] 1. In an apparatus for forming a semiconductor film by a glow discharge decomposition method on a substrate placed on both sides of RF electrodes, at least one of the RF electrodes which are electrically insulated and arranged parallel to each other. RF adjustment means connected in series, connected to each RF electrode via the RF adjustment means when the RF adjustment means are connected, and directly when the RF adjustment means are not connected. A glow discharge type film forming apparatus comprising one matching circuit and a ground electrode provided to face each of the RF electrodes. 2. The film forming apparatus according to claim 1, wherein the RF adjustment means is a fixed or variable capacitor. 3. The film forming apparatus according to claim 1, wherein 1 to 100 pairs of electrodes each consisting of an RF electrode and a ground electrode are arranged in parallel. 4. The film forming apparatus according to claim 1, further comprising means for moving the substrate while maintaining a distance from the RF electrode. 5. The film forming apparatus according to claim 4, wherein the moving means is a repetitive amplitude moving means. 6. The film forming apparatus according to claim 4, wherein the moving means is a means for moving in one direction. 7 The frequency when performing the glow discharge is 1 to 10
Claim 1, which has an electrode pair with a frequency of 0 MHz;
The film forming apparatus according to item 2, 3, 4, 5, or 6. 8 Claims 1, 2, 3, and 4, wherein a heater is provided to heat the substrate.
The film forming apparatus according to item 5, 6, or 7. 9 Claims 1, 2, 3, 4, and 5, wherein the glow discharge type film forming apparatus has a multi-chamber structure.
The film forming apparatus according to item 6, 7, or 8. 10. Claims 1, 2, 3, 4, and 5, wherein the multi-chamber structure is partitioned by partition walls having slits, and the partitioned chambers have means for differentially evacuating the partitioned chambers. 6. The film forming apparatus according to item 6, 7, 8, or 9.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59129519A JPH0719750B2 (en) | 1984-06-22 | 1984-06-22 | Glo-discharge type film forming device |
CA000484632A CA1269950A (en) | 1984-06-22 | 1985-06-20 | Glow-discharge decomposition apparatus |
US06/746,693 US4664890A (en) | 1984-06-22 | 1985-06-20 | Glow-discharge decomposition apparatus |
EP85107698A EP0165618B1 (en) | 1984-06-22 | 1985-06-21 | Glow-discharge decomposition apparatus |
KR1019850004437A KR900001234B1 (en) | 1984-06-22 | 1985-06-21 | Apparatus for depositing a film on a substrate by glow-discharge decomposition and a process thereof |
IN456/CAL/85A IN163964B (en) | 1984-06-22 | 1985-06-21 | |
DE8585107698T DE3586637T2 (en) | 1984-06-22 | 1985-06-21 | DEVICE FOR DEGRADING BY GLIMMENT DISCHARGE. |
AU43940/85A AU591063B2 (en) | 1984-06-22 | 1985-06-21 | Glow discharge decomposition apparatus |
CN 85104968 CN1014082B (en) | 1984-06-22 | 1985-06-29 | glow discharge decomposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59129519A JPH0719750B2 (en) | 1984-06-22 | 1984-06-22 | Glo-discharge type film forming device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS618914A true JPS618914A (en) | 1986-01-16 |
JPH0719750B2 JPH0719750B2 (en) | 1995-03-06 |
Family
ID=15011505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59129519A Expired - Lifetime JPH0719750B2 (en) | 1984-06-22 | 1984-06-22 | Glo-discharge type film forming device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0719750B2 (en) |
CN (1) | CN1014082B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329927U (en) * | 1986-08-09 | 1988-02-27 | ||
JP2007329071A (en) * | 2006-06-09 | 2007-12-20 | Fuji Electric Holdings Co Ltd | Plasma processing device |
WO2010055669A1 (en) * | 2008-11-12 | 2010-05-20 | 株式会社アルバック | Electrode circuit, film formation device, electrode unit, and film formation method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1235771C (en) | 2000-12-25 | 2006-01-11 | 三菱商事塑料株式会社 | Production device for DLC film-coated plastic container and production method therefor |
CN101609858B (en) * | 2008-06-20 | 2011-06-22 | 福建钧石能源有限公司 | Film deposition method |
EP2145701A1 (en) * | 2008-07-16 | 2010-01-20 | AGC Flat Glass Europe SA | Method and installation for surface preparation by dielectric barrier discharge |
CN112080728B (en) * | 2020-08-12 | 2022-05-10 | 北京航空航天大学 | HiPIMS system and method for reducing HiPIMS discharge current delay |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848416A (en) * | 1981-09-16 | 1983-03-22 | Fuji Electric Corp Res & Dev Ltd | Mass production type thin film forming device |
JPS58163436A (en) * | 1982-03-25 | 1983-09-28 | Semiconductor Energy Lab Co Ltd | Apparatus for plasma reaction |
JPS5914633A (en) * | 1982-07-16 | 1984-01-25 | Anelva Corp | Plasma cvd apparatus |
-
1984
- 1984-06-22 JP JP59129519A patent/JPH0719750B2/en not_active Expired - Lifetime
-
1985
- 1985-06-29 CN CN 85104968 patent/CN1014082B/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848416A (en) * | 1981-09-16 | 1983-03-22 | Fuji Electric Corp Res & Dev Ltd | Mass production type thin film forming device |
JPS58163436A (en) * | 1982-03-25 | 1983-09-28 | Semiconductor Energy Lab Co Ltd | Apparatus for plasma reaction |
JPS5914633A (en) * | 1982-07-16 | 1984-01-25 | Anelva Corp | Plasma cvd apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329927U (en) * | 1986-08-09 | 1988-02-27 | ||
JP2007329071A (en) * | 2006-06-09 | 2007-12-20 | Fuji Electric Holdings Co Ltd | Plasma processing device |
WO2010055669A1 (en) * | 2008-11-12 | 2010-05-20 | 株式会社アルバック | Electrode circuit, film formation device, electrode unit, and film formation method |
JPWO2010055669A1 (en) * | 2008-11-12 | 2012-04-12 | 株式会社アルバック | Electrode circuit, film forming apparatus, electrode unit, and film forming method |
Also Published As
Publication number | Publication date |
---|---|
CN85104968A (en) | 1987-01-07 |
CN1014082B (en) | 1991-09-25 |
JPH0719750B2 (en) | 1995-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4634601A (en) | Method for production of semiconductor by glow discharge decomposition of silane | |
US6245648B1 (en) | Method of forming semiconducting materials and barriers | |
US4452828A (en) | Production of amorphous silicon film | |
EP0165618B1 (en) | Glow-discharge decomposition apparatus | |
EP0002383A1 (en) | Method and apparatus for depositing semiconductor and other films | |
US6333079B1 (en) | Plasma CVD process | |
US4825806A (en) | Film forming apparatus | |
JP2616760B2 (en) | Plasma gas phase reactor | |
JPS618914A (en) | Glow discharge type film formation equipment | |
CA1188399A (en) | Reduced capacitance electrode assembly | |
JPS5914633A (en) | Plasma cvd apparatus | |
JPS6115321A (en) | Formation of film | |
JPH11340150A (en) | Plasma chemical evaporation system | |
US5945353A (en) | Plasma processing method | |
US4869976A (en) | Process for preparing semiconductor layer | |
JP2977170B2 (en) | Glow discharge film forming equipment | |
JPS60171721A (en) | Film forming method and apparatus thereof | |
JP2648684B2 (en) | Plasma gas phase reactor | |
JPS6062113A (en) | Plasma cvd equipment | |
JPS641958Y2 (en) | ||
JPH0544820B2 (en) | ||
JPH0351971Y2 (en) | ||
JP3340407B2 (en) | Insulating coating and semiconductor device | |
JPS58175824A (en) | Device for plasma vapor phase reaction | |
JP3340406B2 (en) | Method for manufacturing semiconductor device |