JPS6176961A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPS6176961A
JPS6176961A JP59196831A JP19683184A JPS6176961A JP S6176961 A JPS6176961 A JP S6176961A JP 59196831 A JP59196831 A JP 59196831A JP 19683184 A JP19683184 A JP 19683184A JP S6176961 A JPS6176961 A JP S6176961A
Authority
JP
Japan
Prior art keywords
cantilever
film
diffused resistor
acceleration sensor
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196831A
Other languages
Japanese (ja)
Inventor
Koichi Murakami
浩一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59196831A priority Critical patent/JPS6176961A/en
Publication of JPS6176961A publication Critical patent/JPS6176961A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To prevent a fault caused by a leak of p-n junction of a diffused resistor by providing a CVD film formed at a low temperature directly on the surface of an Si cantilever, and stabilizing the surface without exposing a ground of Si. CONSTITUTION:An Si cantilever 12 is formed on an Si substrate, and a diffused resistor 17 of p type is formed in the vicinity of a supporting part of said cantilever 12. Also, a thermal oxidation film 13 is removed from the cantilever 12, and a CVD film 14 is formed directly on the cantilever 12. Moreover, an Al wiring 16 for connecting the diffused resistor 17 and the outside is formed. Accordingly, the surface is stabilized in comparison with the case when Si is exposed, and it is scarcely feared that a fault by a leak of p-n junction is generated. Also, an influence of warping by thermal distortion can be reduced, and a temperature characteristic, etc. can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体基板上に形成した片持ばりを用いた超
小型の半導体加速度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultra-small semiconductor acceleration sensor using a cantilever formed on a semiconductor substrate.

〔従来技術〕[Prior art]

最近半導体基板上に形成された超小型の半導体加速度セ
ンサが開発されている。
Recently, ultra-small semiconductor acceleration sensors formed on semiconductor substrates have been developed.

この半導体加速度センサは、エツチング等の薄膜技術を
用いて半導体基板上に形成されるものであり、半導体の
ピエゾ抵抗効果による抵抗変化や偏位による微小な容量
変化を検出することによって加速度を検出するようにな
っている。
This semiconductor acceleration sensor is formed on a semiconductor substrate using thin film technology such as etching, and detects acceleration by detecting resistance changes due to the piezoresistive effect of the semiconductor and minute capacitance changes due to deviation. It looks like this.

これらの半導体加速度センサは上記のように薄膜技術を
用いて形成されるため、例えば振動部分の長さが110
0a程度、厚さがII!m程度、チップ全体の大きさが
1mm角程度と極めて小型に形成することが出来、又、
集積回路で他の素子と同一基板上に形成することも出来
るという優れた特徴がある。
Since these semiconductor acceleration sensors are formed using thin film technology as described above, the length of the vibrating portion is, for example, 110 mm.
Approximately 0a, thickness is II! It can be formed extremely small, with a total chip size of about 1 mm square, and
An excellent feature of the integrated circuit is that it can be formed on the same substrate as other elements.

上記のごとき半導体加速度センサとしては、例えばIE
EE Electoron Devices、 Vol
、ED−26,No、12゜p、1911. Dec、
1979“A Batch−Fabricated S
iliconAccelerometer”に記載され
ているものがある。
As the above semiconductor acceleration sensor, for example, IE
EE Electron Devices, Vol.
, ED-26, No. 12°p, 1911. Dec,
1979 “A Batch-Fabricated S
ilicon Accelerometer".

第2図は上記の半導体加速度センサを示す図であり(a
)は平面図、(b)は断面図を示す。
FIG. 2 is a diagram showing the above semiconductor acceleration sensor (a
) shows a plan view, and (b) shows a cross-sectional view.

第2図において、21はSi加速度センサチップ、22
はSL片持ばり、23はSi重り、24はp型の拡散抵
抗、25はP+型の拡散電極である。
In FIG. 2, 21 is a Si acceleration sensor chip, 22
23 is a Si weight, 24 is a p-type diffused resistor, and 25 is a P+ type diffused electrode.

第2図に示す半導体加速度センサにおいては。In the semiconductor acceleration sensor shown in FIG.

加速度が加わったときにSi重り23が偏位し、そのた
めSi片持ばり22に歪を生ずる。
When acceleration is applied, the Si weight 23 is deflected, thereby causing strain in the Si cantilever beam 22.

このSi片持ばり22の支持部付近にはP型の拡散抵抗
24が形成されており、片持ばりに歪を生ずるとピエゾ
抵抗効果によって拡散抵抗24の抵抗値が変化する。
A P-type diffused resistor 24 is formed near the support portion of this Si cantilever beam 22, and when the cantilever beam is strained, the resistance value of the diffused resistor 24 changes due to the piezoresistance effect.

この抵抗値の変化をp+型の拡散電極25を介して検出
することにより加速度を検出することが出来る。
By detecting this change in resistance value via the p+ type diffusion electrode 25, acceleration can be detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のごとき従来の半導体加速度センサにおいては、後
工程での実装を容易にするためSiの熱酸化膜は除去さ
れているものが多い。
In conventional semiconductor acceleration sensors such as those described above, the Si thermal oxide film is often removed to facilitate mounting in subsequent steps.

しかし、その結果としてSi地肌が剥き出しになってい
るため、PN接合でのリーク電流が増大し拡散抵抗24
の安定性が悪化するという問題がある。
However, as a result, the Si surface is exposed, which increases the leakage current at the PN junction and increases the diffusion resistance 24.
There is a problem that the stability of

特にこの種のセンサにおいては、歪による抵抗の微小変
化を検出するようになっているので、上記のようにリー
ク電流が増大すると精度の良い加速度検出が困難になる
という問題がある。
In particular, this type of sensor is designed to detect minute changes in resistance due to strain, so when the leakage current increases as described above, it becomes difficult to accurately detect acceleration.

一方、Si熱酸化膜を残しておく方法も考えられる。On the other hand, a method of leaving a Si thermal oxide film may also be considered.

その場合には、表面がSi熱酸化膜で蔽われているので
PN接合でのリーク電流は減少し、拡散抵抗24の安定
性は増大する。
In that case, since the surface is covered with a Si thermal oxide film, the leakage current at the PN junction is reduced and the stability of the diffused resistor 24 is increased.

しかし、Si熱酸化膜を残しておくと熱歪を生ずるとい
う別の欠点が発生する。
However, if the Si thermal oxide film is left, another drawback arises: thermal distortion occurs.

すなわちSi熱酸化膜は1100〜1200℃の高温で
で形成されるため、SLとSin、との熱膨張係数の違
いによる熱歪が発生し、製造後室温に戻したときに片持
ばりが変形してしまうという問題が生ずる。
In other words, since the Si thermal oxide film is formed at a high temperature of 1100 to 1200°C, thermal strain occurs due to the difference in thermal expansion coefficient between SL and Sin, and the cantilever beam becomes deformed when returned to room temperature after manufacturing. The problem arises that the

第3図は上記の熱歪を示す図であり、31はSi片持ば
り、32はSi片持ばりの上に形成した熱酸化膜である
。また、Δαは熱歪による撓みである。
FIG. 3 is a diagram showing the above-mentioned thermal strain, where 31 is a Si cantilever, and 32 is a thermal oxide film formed on the Si cantilever. Further, Δα is the deflection due to thermal strain.

第3図に示した片持ばりの熱歪による反りは下記(1)
式で与えられる。
The warpage due to thermal strain of the cantilever beam shown in Figure 3 is as follows (1)
It is given by Eq.

なお上式において、rは反りの曲率半径、Δtは加工温
度と室温との温度差、αは熱膨張率、Eは弾性定数、d
は膜厚であり、添字の、はSi、fは熱酸化膜(Sin
、)の値を示す。
In the above equation, r is the radius of curvature of warpage, Δt is the temperature difference between the processing temperature and room temperature, α is the coefficient of thermal expansion, E is the elastic constant, and d
is the film thickness, the subscript , is Si, and f is the thermal oxide film (Sin
, ) indicates the value.

また1片持ばりの長さを2とすれば片持ばりの先端の撓
みΔQは、 ΔQ=r(1−cos −)   ・・・・・・・・・
・・・・・・・・・・・・・・・・・・(2)となる。
Also, if the length of one cantilever beam is 2, the deflection ΔQ at the tip of the cantilever beam is ΔQ=r(1-cos −) ・・・・・・・・・
・・・・・・・・・・・・・・・・・・(2)

上記の(1)、(2)式において、dg=10声、df
” 1 am、  fl = 2 nun、  Δt=
1200℃とすると、α5=3.5 X 10−’、α
f=5X10−’、E 、 = 1.9 X 1012
dyne/ci、 Ef=0.6X10”dyne/c
nfであるから、r=■、47■、Δ12=136岬と
なる。
In the above equations (1) and (2), dg=10 voices, df
” 1 am, fl = 2 nun, Δt =
Assuming 1200℃, α5=3.5 x 10-', α
f=5X10-', E, = 1.9X1012
dyne/ci, Ef=0.6X10”dyne/c
nf, r=■, 47■, Δ12=136 capes.

このようにSi熱酸化膜をそのまま表面保護膜として用
いると、熱歪が生じ、そのためオフセット電圧が増加し
たりして温度特性が悪化する等の問題が生ずる。
If the Si thermal oxide film is used as it is as a surface protective film in this way, thermal distortion will occur, which will cause problems such as an increase in offset voltage and deterioration of temperature characteristics.

上記のように従来の半導体加速度センサにおいては、S
i熱酸化膜を除去したものにおいてはリーク電流が増大
するという問題があり、またSi熱酸化膜をそのまま表
面保護膜として用いているものにおいては熱歪による種
々の障害が発生するという問題があった。
As mentioned above, in the conventional semiconductor acceleration sensor, S
Products from which the i-thermal oxide film has been removed have the problem of increased leakage current, and products that use the Si thermal oxide film as it is as a surface protective film have the problem of various failures due to thermal strain. Ta.

本発明は上記のごとき従来技術の問題点を解決すること
を目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため本発明においては、Si片持
ばり上の表面保護膜として気相成長法(CV D ; 
Chemical Vapour Depositio
n)による保護膜を形成するように構成している。
In order to achieve the above object, the present invention uses a vapor phase growth method (CVD;
Chemical Vapor Depositio
n) to form a protective film.

なお、CVD膜としては例えばP S G (Phos
ph。
In addition, as a CVD film, for example, PSG (Phos
ph.

5ilicate Glass)膜やSL、N、膜を用
いることが出来る。
It is possible to use a film such as SL, N, or 5-ilicate glass film.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の一実施例の主要部断面図である。 FIG. 1 is a sectional view of a main part of an embodiment of the present invention.

第1図において、Si基板11 (単結晶シリコン)上
にSi片持ばり12が形成され、そのSi片持ばり12
の支持部付近にp型の拡散抵抗17が形成されている。
In FIG. 1, a Si cantilever 12 is formed on a Si substrate 11 (single crystal silicon), and the Si cantilever 12
A p-type diffused resistor 17 is formed near the support portion.

また、熱酸化膜13はSi片持ばり12上からは除去さ
れており、Si片持ばり12上には直接にCvD膜14
が形成されている。また、拡散抵抗17と外部とを接続
する晟配線16が形成されている6次に上記第1図に示
す半導体加速度センサの製造工程を第4図を用いて説明
する。
Further, the thermal oxide film 13 is removed from the top of the Si cantilever 12, and the CvD film 14 is directly placed on the Si cantilever 12.
is formed. 4, the manufacturing process of the semiconductor acceleration sensor shown in FIG. 1 will be described with reference to FIG.

第4図において、まず(a)においては、Si基板11
上に形成されたn型層の一部にp型の不純物を拡散して
p型の拡散抵抗17を形成する。
In FIG. 4, first, in (a), the Si substrate 11
A p-type impurity is diffused into a part of the n-type layer formed above to form a p-type diffused resistor 17.

その後、Si片持ばり12となる部分の熱酸化膜13を
除去する。
Thereafter, the portion of the thermal oxide film 13 that will become the Si cantilever 12 is removed.

次に(b)において、全面に中間絶縁層としてのCVD
膜14を形成する。
Next, in (b), CVD is applied as an intermediate insulating layer to the entire surface.
A film 14 is formed.

次に(c)において、拡散抵抗17に接続するための穴
をCVD膜14に開ける。
Next, in (c), a hole for connecting to the diffused resistor 17 is made in the CVD film 14.

次に(d)において、上記の穴にM配線16を形成する
Next, in (d), the M wiring 16 is formed in the above hole.

次に(e)において、全面に最終保護膜とじてのCVD
膜15を形成する。
Next, in (e), CVD is applied as a final protective film to the entire surface.
A film 15 is formed.

次に(f)において、裏面(図面下方)からSiエツチ
ングを行ない、Si片持ばり12を形成する。
Next, in (f), Si etching is performed from the back surface (lower side in the drawing) to form a Si cantilever 12.

上記のようにして形成した半導体加速度センサにおいて
は、表面がCVD膜で蔽われSiが地肌のままに露出し
ていないので、表面が安定化され、PN接合のリーク等
の問題はなくなる。
In the semiconductor acceleration sensor formed as described above, the surface is covered with a CVD film and the Si is not exposed as a bare surface, so the surface is stabilized and problems such as leakage of the PN junction are eliminated.

また、CVD膜は熱酸化膜に比べて大幅に低温で形成す
ることが可能なため、熱歪も大幅に減少させることがで
きる。
Furthermore, since a CVD film can be formed at a significantly lower temperature than a thermal oxide film, thermal distortion can also be significantly reduced.

例えば、CVD膜としてSiH,−02中にPH。For example, PH in SiH, -02 as a CVD film.

を混入して反応させたドープドオキサイドであるPSG
膜を用いた場合には、前記(1)、(2)においてΔt
が400℃になるため、r =4.4国、ΔQ=46I
!mとなり、前記の熱酸化膜の場合に比較して熱歪を約
1/3に減少させることが出来る。
PSG, which is a doped oxide mixed with and reacted with
When using a membrane, in (1) and (2) above, Δt
is 400℃, so r = 4.4 countries, ΔQ = 46I
! m, and the thermal strain can be reduced to about 1/3 compared to the case of the thermal oxide film described above.

次に第5図は、本発明の第2の実施例の主要部断面図で
ある。
Next, FIG. 5 is a sectional view of main parts of a second embodiment of the present invention.

第5図の実施例においては、Si基板51上にSi片持
ばり52が形成され、そのSi片持ばり52の支持部付
近にp型拡散抵抗56が形成されている。
In the embodiment shown in FIG. 5, a Si cantilever 52 is formed on a Si substrate 51, and a p-type diffused resistor 56 is formed near the support portion of the Si cantilever 52.

また、p型拡散抵抗56を外部に接続する電線としては
 、+型拡散配線57が設けられており、晟配線55及
び熱酸化膜53はともにSi片持ばり52の外部におい
てのみ形成されている。
Further, a + type diffusion wiring 57 is provided as an electric wire for connecting the p-type diffused resistor 56 to the outside, and both the negative wiring 55 and the thermal oxide film 53 are formed only outside the Si cantilever 52. .

そして、それらの全面を最終保護膜としてのCVD膜5
4が蔽っている構成となっている。
Then, the entire surface is covered with a CVD film 5 as a final protective film.
4 is covered.

次に上記の半導体加速度センサの製造工程を第6図を用
いて説明する。
Next, the manufacturing process of the above semiconductor acceleration sensor will be explained using FIG. 6.

まず(a)において、Si基板51上に熱酸化膜53を
形成する。
First, in (a), a thermal oxide film 53 is formed on a Si substrate 51.

次に(b)において、Si片持ばりの支持部となる部分
の付近にP型拡散抵抗56を形成する。
Next, in (b), a P-type diffused resistor 56 is formed near the portion that will become the support portion of the Si cantilever.

次に(c)において、p型拡散抵抗56と接続するよう
にp+型拡散配線57を形成する。
Next, in (c), a p+ type diffusion wiring 57 is formed so as to be connected to the p type diffusion resistor 56.

次に(d)において、S1片持ばりどなる部分及びp+
型拡散配線57に接続する部分の熱酸化膜53を除去す
る。
Next, in (d), the S1 cantilever beam part and p+
The portion of the thermal oxide film 53 connected to the type diffusion wiring 57 is removed.

次に(e)において、p型拡散配線53に接続するよう
に晟配線55を形成する。
Next, in (e), a horizontal wiring 55 is formed so as to be connected to the p-type diffusion wiring 53.

次に(f)において、全面に最終保護膜としてのCVD
膜54を形成する。
Next, in (f), CVD is applied as a final protective film to the entire surface.
A film 54 is formed.

次に(g)において、81基板51の裏面(図面下方)
からエツチングを行ないSi片持ばり52を形成する。
Next, in (g), the back side of the 81 board 51 (lower part of the drawing)
Then, etching is performed to form a Si cantilever 52.

上記のようにして構成した半導体加速度センサは、CV
D膜が最終保護膜としての1層だけで形成されているた
め、前記第1図のセンサに比較してCVD膜の膜厚を薄
くすることが出来、その結果熱歪による撓みの影響をよ
り小さくすることが出来る。
The semiconductor acceleration sensor configured as described above has a CV
Since the D film is formed of only one layer as the final protective film, the thickness of the CVD film can be made thinner than that of the sensor shown in FIG. It can be made smaller.

なお前記の例では、CVD膜としてPSG膜を用いる場
合を例示したが、その他Si3N4膜を用いても何等差
し支えはない。
In the above example, a PSG film is used as the CVD film, but other Si3N4 films may also be used.

また、PSG膜とSi3N、膜の積層構造にすることも
できる。
Further, a laminated structure of a PSG film and a Si3N film can also be used.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、81基板上に形成され支
持部付近に拡散抵抗を有するSi片持ばリの表面に、直
接低温で形成されたCVD膜を設ける構成としたため、
Siの地肌が剥き出しになっている場合に比べて表面が
安定化され、拡散抵抗のPN接合のリークによる障害が
発生する慣れがなくなる。
As described above, according to the present invention, since the CVD film formed at low temperature is directly provided on the surface of the Si cantilever formed on the 81 substrate and having a diffused resistance near the support part,
The surface is more stable than when the bare Si surface is exposed, and problems caused by leakage from the PN junction of the diffused resistor are eliminated.

また、Siの地肌を熱酸化膜で蔽っている場合に比べて
熱歪による反りの影響を小さくすることが出来、温度特
性等を向上させることが出来るという優れた効果が得ら
れる。
Furthermore, compared to the case where the Si background is covered with a thermal oxide film, the effect of warping due to thermal strain can be reduced, and excellent effects such as improved temperature characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来装置
の平面図及び断面図、第3図は2層膜構造の熱歪による
反りの説明図、第4図は第1図の装置の製造工程を示す
図、第5図は本発明の他の実施例の断面図、第6図は第
5図の実施例の製造工程を示す図である。 符号の説明
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a plan view and a sectional view of a conventional device, Fig. 3 is an explanatory diagram of warping due to thermal strain in a two-layer film structure, and Fig. 4 is a FIG. 5 is a sectional view of another embodiment of the present invention, and FIG. 6 is a diagram showing the manufacturing process of the embodiment of FIG. 5. Explanation of symbols

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成され、一端を支持された片持ばり
の支持部付近に拡散抵抗を形成し、上記片持ばりの偏位
に応じて上記拡散抵抗に生じる抵抗値の変化を検出する
ことによって加速度を検出する半導体加速度センサにお
いて、上記片持ばりの表面に直接低温で形成したCVD
膜を設けたことを特徴とする半導体加速度センサ。
By forming a diffused resistor near the support part of a cantilever beam formed on a semiconductor substrate and supported at one end, and detecting a change in the resistance value that occurs in the diffused resistor according to the deviation of the cantilever beam. In a semiconductor acceleration sensor that detects acceleration, CVD is formed directly on the surface of the cantilever at low temperature.
A semiconductor acceleration sensor characterized by being provided with a film.
JP59196831A 1984-09-21 1984-09-21 Semiconductor acceleration sensor Pending JPS6176961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196831A JPS6176961A (en) 1984-09-21 1984-09-21 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196831A JPS6176961A (en) 1984-09-21 1984-09-21 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPS6176961A true JPS6176961A (en) 1986-04-19

Family

ID=16364388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196831A Pending JPS6176961A (en) 1984-09-21 1984-09-21 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPS6176961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594749A (en) * 1991-10-02 1993-04-16 Nec Corp Semiconductor acceleration sensor
JP2008218464A (en) * 2007-02-28 2008-09-18 Murata Mfg Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594749A (en) * 1991-10-02 1993-04-16 Nec Corp Semiconductor acceleration sensor
JP2008218464A (en) * 2007-02-28 2008-09-18 Murata Mfg Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP3367113B2 (en) Acceleration sensor
US5296730A (en) Semiconductor pressure sensor for sensing pressure applied thereto
JP2940293B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH0479420B2 (en)
JPH0349267A (en) Semiconductor type acceleration sensor and its manufacture
EP0588371B1 (en) Production method of a semiconductor dynamic sensor having a thin thickness structure
JP2560140B2 (en) Semiconductor device
JPH02132866A (en) Mechanical sensor for high-temperature environment
JPS62213280A (en) Semiconductor acceleration sensor
US11643324B2 (en) MEMS sensor
JP3441961B2 (en) Semiconductor pressure sensor
JPS6176961A (en) Semiconductor acceleration sensor
JPH05281251A (en) Acceleration sensor and manufacture thereof
JP2871064B2 (en) Semiconductor pressure sensor
JPS63308390A (en) Manufacture of semiconductor pressure sensor
JP2002005763A (en) Semiconductor sensor and its manufacturing method
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JP3156681B2 (en) Semiconductor strain sensor
JP3070118B2 (en) Semiconductor acceleration sensor
JP2748077B2 (en) Pressure sensor
JPH01183165A (en) Semiconductor pressure sensor
JPH06102108A (en) Thin semiconductor dynamic sensor
JPS6398156A (en) Manufacture of semiconductor pressure sensor
JPH05304304A (en) Semiconductor pressure sensor and manufacture thereof
JPH07107938B2 (en) Method for manufacturing semiconductor pressure sensor