JPS6159164B2 - - Google Patents

Info

Publication number
JPS6159164B2
JPS6159164B2 JP57144756A JP14475682A JPS6159164B2 JP S6159164 B2 JPS6159164 B2 JP S6159164B2 JP 57144756 A JP57144756 A JP 57144756A JP 14475682 A JP14475682 A JP 14475682A JP S6159164 B2 JPS6159164 B2 JP S6159164B2
Authority
JP
Japan
Prior art keywords
sludge
belt
dewatering
electroosmotic
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57144756A
Other languages
Japanese (ja)
Other versions
JPS5936507A (en
Inventor
Hiroshi Yoshida
Tadashi Shinkawa
Hiroshi Yukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYAMA KOGYO KOTO SENMON GATSUKOCHO
Original Assignee
OYAMA KOGYO KOTO SENMON GATSUKOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYAMA KOGYO KOTO SENMON GATSUKOCHO filed Critical OYAMA KOGYO KOTO SENMON GATSUKOCHO
Priority to JP57144756A priority Critical patent/JPS5936507A/en
Publication of JPS5936507A publication Critical patent/JPS5936507A/en
Publication of JPS6159164B2 publication Critical patent/JPS6159164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明はスラツジの連続式電気浸透脱水装置、
特にベルトコンベヤを用いて電気浸透を応用して
スラツジを連続的に脱水する装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a continuous electroosmotic dewatering device for sludge,
In particular, it relates to a device that continuously dewaters sludge using a belt conveyor and applying electroosmosis.

従来、スラツジの脱水は、重力の他、遠心力、
真空若しくは加圧による通気、振動又は圧搾など
の機械的脱水操作が大部分であり、これらの機械
的操作による脱水装置は実際に工業的規模で実用
化され運転されている。然しながら、ゲル状又は
微細なコロイド状粒子のスラツジなどに対して
は、これらの機械的操作による脱水は極めて困難
である。
Traditionally, sludge dehydration was performed using gravity, centrifugal force,
Most of the dehydration operations are mechanical dehydration operations such as aeration by vacuum or pressure, vibration, or squeezing, and dehydration devices using these mechanical operations have actually been put into practical use and operated on an industrial scale. However, it is extremely difficult to dehydrate gel-like or fine colloidal particle sludge through these mechanical operations.

電気浸透脱水法は、固液界面に生ずる電気浸透
現象をスラツジの脱水に応用するものであり、従
来の一般的な機械的脱水方法とは作用機構が異な
り、ゲル状スラツジ等のいわゆる難脱水性スラツ
ジに対して特に有効であることが知られている。
また、従来の機械的脱水操作と併用することによ
り、スラツジの含水率をさらに減少できることか
ら、乾燥工程の前処理操作としても応用の可能性
が大きいものである。
The electroosmotic dehydration method applies the electroosmotic phenomenon that occurs at the solid-liquid interface to the dehydration of sludge, and its mechanism of action is different from conventional general mechanical dehydration methods. It is known to be particularly effective against sludge.
In addition, since the moisture content of sludge can be further reduced by using it in combination with conventional mechanical dewatering operations, it has great potential for application as a pretreatment operation for the drying process.

電気浸透脱水法を応用して大量のスラツジを工
業的規模で連続的に脱水処理する装置はほとんど
実用化されていない。
Almost no equipment has been put into practical use for continuously dewatering large amounts of sludge on an industrial scale by applying electroosmotic dehydration.

その理由は、従来の電気浸透脱水装置は、電気
浸透脱水の有用性と電気浸透脱水機構が明確にさ
れないまま、装置構造や方法を考案したものであ
るためと考えられる。
The reason for this is thought to be that the structure and method of conventional electroosmotic dehydration devices were devised without clarifying the usefulness of electroosmotic dehydration and the mechanism of electroosmotic dehydration.

本発明は電気浸透作用を応用して、高含水率の
スラツジをベルトコンベヤを用いて連続的に且つ
工業的規模で脱水し、低含水率のスラツジとして
連続的に回収する効果的な電気浸透脱水装置を提
供することを目的とする。
The present invention utilizes electroosmotic action to dehydrate high moisture content sludge continuously on an industrial scale using a belt conveyor, and continuously recovers low moisture content sludge. The purpose is to provide equipment.

本発明の連続式電気浸透脱水装置は、スラツジ
移送用ポンプと、ポンプによつて送られてくるス
ラツジを間に受取る横長の上下二つのベルトから
成り、上部ベルトには導電性の板状ベルトを用
い、下部ベルトには濾布とその下側に導電性の網
若しくは多孔板とを重ねて一体にした構造のもの
又はベルトに使用し得る適当な導電性濾材を用
い、脱水が進行してもスラツジの移送をスムーズ
に行うためにベルトからの剪断力がスラツジに作
用しないように該上下部ベルトがスラツジ移送方
向と同一方向に且つスラツジ移送速度と同一走行
速度で循環走行するベルトコンベヤと、これらの
上下部ベルトを電極としてベルト状の上下両電極
間のスラツジにスラツジ移送方向において一様な
電位差を与えるように直流電場を印加することに
よつて生ずる電気浸透作用により、連続的に上下
のベルト間に送入したスラツジから脱水区間で水
分を下部ベルトから下方に脱水する直流電圧印加
装置と、ベルトコンベヤの脱水区間の出口部で脱
水スラツジをベルトコンベヤから自動的に剥離す
る剥離装置とを具える。
The continuous electroosmotic dewatering device of the present invention consists of a sludge transfer pump and two horizontally long upper and lower belts that receive the sludge sent by the pump, and the upper belt is equipped with a conductive plate belt. The lower belt should have an integrated structure of a filter cloth and a conductive mesh or perforated plate underneath it, or a suitable conductive filter material that can be used in the belt, so that even when dehydration progresses, A belt conveyor in which the upper and lower belts circulate in the same direction as the sludge transport direction and at the same traveling speed as the sludge transport speed so that the shearing force from the belt does not act on the sludge in order to transport the sludge smoothly; Using the upper and lower belts as electrodes, a DC electric field is applied to the sludge between the upper and lower belt-shaped electrodes so as to give a uniform potential difference in the sludge transport direction.The electroosmotic action produced by the electroosmotic action causes the upper and lower belts to continuously move. A DC voltage application device removes water from the sludge fed between the belts in the dewatering section downward from the lower belt, and a peeling device automatically peels the dewatered sludge from the belt conveyor at the outlet of the dewatering section of the belt conveyor. I can do it.

本発明においては、下部ベルト下側に真空室を
設置することにより、真空吸引脱水を行なうこと
ができる。さらに、上部ベルトと下部ベルトとの
間隔をスラツジ移送方向に向つて漸次に小とし、
脱水区間の切断面の高さがスラツジ送入口より出
口部方向に小さくなるように上部ベルトを緩やか
な傾斜をつけることによつて、スラツジが脱水区
間の出口部に向つて進行するにつれて漸次に大き
な加圧圧搾力がスラツジに加わるようにすれば、
脱水効果を一だんと向上させることができる。こ
のように本発明は電気浸透脱水操作に真空脱水操
作及び圧搾脱水操作を併用することによつて、真
空脱水効果および圧搾脱水効果を付加すると同時
に、離脱水性のスラツジの効果的な電気浸透脱水
を連続的に実施できる。
In the present invention, vacuum suction dehydration can be performed by installing a vacuum chamber under the lower belt. Furthermore, the distance between the upper belt and the lower belt is gradually reduced in the sludge transfer direction,
By sloping the upper belt gently so that the height of the cut surface of the dewatering section becomes smaller toward the outlet than the sludge inlet, the height of the cut surface of the dewatering section gradually increases as the sludge progresses toward the outlet of the dewatering section. If pressurized squeezing force is applied to the sludge,
The dehydration effect can be greatly improved. In this way, the present invention adds a vacuum dehydration effect and a press dehydration effect by combining electroosmotic dehydration with vacuum dehydration and compression dehydration, and at the same time provides effective electroosmosis dehydration of water-releasable sludge. Can be performed continuously.

次に図面について本発明の脱水装置を詳細に説
明する。
Next, the dewatering apparatus of the present invention will be explained in detail with reference to the drawings.

第1図において、スラツジは撹拌機1を取付け
た貯槽2で濃度を均一にされ、スラツジ移送ポン
プ3によつて流量調節弁4とスラツジの流動を調
整するスラツジ導入部5とを経てベルトコンベヤ
を設置した脱水区間6に送入される。脱水区間6
の形状は、図示するように縦断面が横長の長方形
で、スラツジ移送方向に対して直角な面上で矩形
の切断面を有し、上面には支持板7で押えられる
横長の上部ベルト8が設けられ、底面には適当数
の絶縁性ローラー9(滑りの良い支持板でもよ
い)で支持される横長の下部ベルト10が設けら
れている。この上部ベルト8には金属などの導電
性の板状ベルトを使用し、下部ベルト10は脱水
液を通過させる為に固液分離用の濾布とその下側
に接して金属などの導電性の網もしくは多孔板と
を重ねて一体にした構造のベルトである。なお、
下部ベルト10は、ベルトとして使用され得る適
当な導電性濾材例えば炭素繊維濾材を用いれば構
造上簡単化される。これらの上下部ベルト8及び
10を電極として、脱水区間6を連続的に移送さ
れるスラツジに直流電場を印加する。
In FIG. 1, the sludge is made to have a uniform concentration in a storage tank 2 equipped with an agitator 1, and is transferred to a belt conveyor via a sludge transfer pump 3 via a flow rate control valve 4 and a sludge introduction section 5 that adjusts the flow of the sludge. It is sent to the installed dewatering section 6. Dehydration section 6
As shown in the figure, the vertical cross section is a horizontally elongated rectangle, and the cross section has a rectangular cut surface on a plane perpendicular to the sludge transport direction, and a horizontally long upper belt 8 held by a support plate 7 is provided on the upper surface. A horizontally long lower belt 10 supported by an appropriate number of insulating rollers 9 (slippery support plates may be used) is provided on the bottom surface. The upper belt 8 is a plate-shaped belt made of conductive material such as metal, and the lower belt 10 is made of conductive material such as metal, which is in contact with a filter cloth for solid-liquid separation and its lower side in order to pass the dehydrated liquid. It is a belt with a structure that is made by stacking nets or perforated plates. In addition,
The lower belt 10 is simplified in construction by using a suitable conductive filter material, such as carbon fiber filter material, which can be used as a belt. Using these upper and lower belts 8 and 10 as electrodes, a DC electric field is applied to the sludge that is continuously transported through the dewatering section 6.

電極の極性は固体微粒子が分散媒(液体)に対
してもつ界面動電位が正であるか負であるかによ
つて定める。例えば、製紙用白色粘土スラツジの
場合についていえば、粒子の界面動電位が負であ
り、水は正に帯電するので、上部電極を正、下部
電極を負とすると、下部ベルト10の下方の受水
器11に脱水液が流出する。
The polarity of the electrode is determined depending on whether the interfacial potential that the solid particles have with respect to the dispersion medium (liquid) is positive or negative. For example, in the case of white clay sludge for papermaking, the interfacial potential of the particles is negative and water is positively charged, so if the upper electrode is positive and the lower electrode is negative, the lower belt 10 The dehydrated liquid flows out into the water container 11.

脱水区間6の入口部と出口部には、図示するよ
うに上下部ベルト8及び10の両端に回転ドラム
12,13,14及び15をそれぞれ設置し、無
段変速機16の回転をVベルト車17,18及び
Vベルト19等を用いて、脱水区間6の出口部に
設置された回転ドラム14および15に伝達し、
これらを駆動装置として上下部ベルト8および1
0を摩擦または噛み合わせによつてスリツプしな
いように走行させる。電気浸透脱水の場合は脱水
が進行するとともに上部電極近傍のスラツジの含
水率が減少し、電解生成ガスの影響もあつて不飽
和状態を呈する為、上部ベルト8の電極とスラツ
ジとの間の接触不良や上部ベルト8の近傍のスラ
ツジの流動性が悪くなり、スラツジのスムーズな
移送が困難になる。従つて、上下部ベルト8及び
10はベルトからの剪断力がスラツジに作用しな
いように、スラツジの移送方向と同一方向に且つ
スラツジ移送速度と同一速度で循環走行させる。
ベルトの走行速度はスラツジの特性及び印加され
る電場強度によつて定めるが、脱水に必要な滞留
時間を与えるものでなければならない。なお、図
中の20,21及び22は上下部ベルト8及び1
0に適度の緊張度を与えるための絶縁性ローラー
であり、23は受水器11に取付けた排水弁であ
る。
At the entrance and exit of the dewatering section 6, rotating drums 12, 13, 14 and 15 are installed at both ends of the upper and lower belts 8 and 10, respectively, as shown in the figure, and the rotation of the continuously variable transmission 16 is controlled by a V-belt wheel. 17, 18, V-belt 19, etc., to the rotating drums 14 and 15 installed at the outlet of the dewatering section 6,
These are used as driving devices for upper and lower belts 8 and 1.
0 to run without slipping due to friction or engagement. In the case of electroosmotic dehydration, as dehydration progresses, the moisture content of the sludge near the upper electrode decreases, and the sludge becomes unsaturated due to the influence of the electrolytically generated gas, so contact between the electrode of the upper belt 8 and the sludge decreases. If the sludge is defective or the fluidity of the sludge near the upper belt 8 deteriorates, it becomes difficult to transport the sludge smoothly. Therefore, the upper and lower belts 8 and 10 are circulated in the same direction as the sludge transport direction and at the same speed as the sludge transport speed so that the shearing force from the belts does not act on the sludge.
The running speed of the belt is determined by the characteristics of the sludge and the strength of the applied electric field, but must be such as to provide the residence time necessary for dewatering. In addition, 20, 21 and 22 in the figure are the upper and lower belts 8 and 1.
23 is an insulating roller for giving an appropriate degree of tension to the water receiver 11, and 23 is a drain valve attached to the water receiver 11.

前述のベルトコンベヤを設置した脱水区間6の
入口部に連続的に送入されるスラツジが、脱水区
間6の出口部に向つて進行する間に電気浸透作用
と重力作用とによつて下部ベルト10の下方に脱
水され、脱水区間6の出口部外側で脱水されたス
ラツジはかき取り器24及び25によつてベルト
コンベヤから自動連続的に剥離され、排出され
る。また、濾材としても用いる下部ベルト10
は、脱水区間6の出口部で反転した後に洗浄器2
6によつて水洗する。
While the sludge that is continuously fed into the inlet of the dewatering section 6 equipped with the belt conveyor described above advances toward the outlet of the dewatering section 6, the lower belt 10 is moved by electroosmotic action and gravity action. The sludge dewatered below and outside the outlet of the dewatering section 6 is automatically and continuously peeled off from the belt conveyor by scrapers 24 and 25 and discharged. The lower belt 10 is also used as a filter medium.
is turned over at the outlet of the dewatering section 6, and then the washer 2
Wash with water according to Step 6.

第2図はベルトコンベヤ部分の断水区間6にお
ける電気回路説明図であり、直流電源27によつ
て脱水区間6を走行する導電性の上下部ベルト8
及び10に導線28を接触させて、脱水区間6を
移送されるスラツジに直流電場を印加する。ここ
で導線28は上下部ベルト8及び10の両電極間
に与える電位差を一様とする為、図示するように
スラツジ移送方向に適当な間隔で、また、スラツ
ジ移送方向に対して直角方向即ち奥行き方向にも
適当な間隔で、それぞれのベルトに接触させる。
また、電極の極性は、例えば製紙用白色粘土スラ
ツジの場合には、図示するように、上部ベルト8
側が正、下部ベルト10側が負である。なお、図
中の29及び30は直流電圧計及び直流電流計を
示す。
FIG. 2 is an explanatory diagram of the electric circuit in the water cut-off section 6 of the belt conveyor part, and the conductive upper and lower belts 8 running in the dewatering section 6 are powered by a DC power source 27.
and 10 to apply a direct current electric field to the sludge being transferred through the dewatering section 6. Here, in order to make the potential difference applied between the electrodes of the upper and lower belts 8 and 10 uniform, the conductive wires 28 are arranged at appropriate intervals in the sludge transport direction as shown in the figure, and in a direction perpendicular to the sludge transport direction, that is, at a depth. Make contact with each belt at appropriate intervals in both directions.
In addition, the polarity of the electrode is, for example, in the case of white clay sludge for paper making, as shown in the figure, the polarity of the upper belt 8
The side is positive, and the side of the lower belt 10 is negative. Note that 29 and 30 in the figure indicate a DC voltmeter and a DC ammeter.

次に第3図に示した装置は第1図の装置に多少
の改良を施したもので、脱水区間6におけるベル
トコンベヤ部分の詳細説明図である。即ち、第1
図の装置では、受水器11は脱水区間6の全体に
わたつて設けられていて、排水弁23を閉じるこ
とによつてこれを真空室とし、電気浸透脱水に真
空脱水を併用することができる。電気浸透脱水で
は、下部ベルト10の電極近傍のスラツジ層にお
いて電解の影響によつてスラツジ等価電導度がし
だいに増加し、局所的電場強度が減少する。電気
浸透脱水度は電場強度に比例するので、下部ベル
ト10近傍のスラツジは脱水の進行が妨げられ、
含水率が増加するようになる。従つて、電気浸透
脱水に真空脱水を併用することによつて、下部ベ
ルト10近傍の脱水を促進し、スラツジ移送方向
に対して垂直方向の電場強度が一様となるように
することによつて効果的な電気浸透脱水を実施で
きる。なお、スラツジの平均含水率はスラツジ移
送方向すなわち脱水区間6の出口部に近づくにつ
れて減少するので、第3図に示すように脱水区間
6の横長方向に適当数に分割した真空室31を設
置し、これを受水器として各分割区域ごとに異な
る真空度即ち脱水区間6の出口部方向に行くにつ
れて大きい真空度を与えるようにするならば、よ
り効果的な真空脱水を併用でき、一層電気浸透脱
水効果を増強できる。また、同図に示されている
ように、脱水区間6を進行するスラツジにしだい
に増加する加圧圧搾力が加わるようにする為、水
平に設置された下部ベルト10に対して上部ベル
ト8をスラツジ移送方向に向つて僅かに小さくな
るように角度をもたせ、脱水区間6の切断面の高
さがスラツジ送入口より出口部方向に小さくなる
ように緩やかな傾斜をつけることによつて、電気
浸透脱水に圧搾脱水を併用できるようにし、脱水
にともなう上部ベルト8近傍の不飽和スラツジ層
の生成を抑制することによつて上部ベルト8とス
ラツジとの接触不良を防止すると同時に、印加電
圧の上部電極近傍における極端な降下を防ぎ、効
果的な電気浸透脱水を実施できるようにしたもの
である。なお、このような装置の定電圧条件の下
での操作では、スラツジ移送方向に漸次に電極間
距離が小さくなる為、加圧圧搾力と同時に漸次に
増加する電場強度を与えることができ、電気浸透
脱水速度は電場強度に比例するので、一だんと効
率の良い電気浸透脱水を行なうことができる。
Next, the apparatus shown in FIG. 3 is slightly improved from the apparatus shown in FIG. 1, and is a detailed explanatory diagram of the belt conveyor portion in the dewatering section 6. That is, the first
In the device shown in the figure, the water receiver 11 is provided over the entire dewatering section 6, and by closing the drain valve 23, this becomes a vacuum chamber, and vacuum dehydration can be used in conjunction with electroosmotic dehydration. . In electroosmotic dehydration, the sludge equivalent conductivity gradually increases in the sludge layer near the electrodes of the lower belt 10 due to the influence of electrolysis, and the local electric field strength decreases. Since the degree of electroosmotic dehydration is proportional to the electric field strength, the progress of dehydration of the sludge near the lower belt 10 is hindered,
Moisture content begins to increase. Therefore, by using vacuum dehydration in conjunction with electroosmotic dehydration, dehydration near the lower belt 10 is promoted and the electric field strength in the direction perpendicular to the sludge transport direction is made uniform. Effective electroosmotic dehydration can be performed. Note that the average moisture content of the sludge decreases as it approaches the sludge transfer direction, that is, the outlet of the dewatering section 6, so as shown in FIG. If this is used as a water receiver and the degree of vacuum is different for each divided zone, that is, the degree of vacuum increases as it goes toward the exit of the dehydration section 6, more effective vacuum dehydration can be performed in combination, and even more electroosmosis can be achieved. It can enhance the dehydration effect. In addition, as shown in the figure, in order to apply a gradually increasing pressurizing force to the sludge moving through the dewatering section 6, the upper belt 8 is connected to the lower belt 10 installed horizontally. By making the angle slightly smaller in the direction of sludge transfer and by making the cut surface of the dewatering section 6 have a gentle slope so that it becomes smaller in the direction of the outlet than in the sludge inlet, electroosmosis can be achieved. By making it possible to use compression dehydration in combination with dewatering and suppressing the formation of an unsaturated sludge layer near the upper belt 8 due to dehydration, poor contact between the upper belt 8 and the sludge is prevented, and at the same time, the upper electrode of the applied voltage is This prevents extreme drops in the vicinity and enables effective electroosmotic dehydration. In addition, when such a device is operated under constant voltage conditions, the distance between the electrodes gradually decreases in the sludge transport direction, so it is possible to apply a gradually increasing electric field strength at the same time as pressurization and squeezing force. Since the osmotic dehydration rate is proportional to the electric field strength, electroosmotic dehydration can be performed with higher efficiency.

第3図のように改良された装置を用いることに
よつて、真空脱水及び圧搾脱水を電気浸透脱水に
併用でき、さらに脱水効果が高められる。
By using the improved apparatus as shown in FIG. 3, vacuum dehydration and compression dehydration can be used in combination with electroosmotic dehydration, further increasing the dehydration effect.

本発明による脱水装置の特色は、電気浸透によ
つてスラツジの脱水をベルトコンベヤ方式で連続
的に行ない得ること、また装置に多少の改良を加
えることによつて電気浸透脱水操作と真空脱水及
び圧搾脱水の機械的脱水操作をそれぞれ別個にあ
るいは両方を同一装置で併用でき、それぞれの機
械的脱水効果を付加すると同時に電気浸透脱水効
果をさらに高められる点にある。
The dewatering equipment according to the present invention is characterized by being able to continuously dewater sludge by electroosmosis using a belt conveyor system, and by making some improvements to the equipment, it is possible to perform electroosmotic dewatering operation, vacuum dewatering, and pressing. The mechanical dehydration operations can be performed separately or both can be used together in the same device, and the electroosmotic dehydration effect can be further enhanced while adding the mechanical dehydration effects of each.

本発明による装置を用いた操業例を次に示す。 An example of operation using the apparatus according to the present invention is shown below.

操業例 密度2.35g/cm3平均粒径9.7μm、界面動電位が
負の製紙用白色粘土の微粒子を水に混合撹拌して
得たスラツジを、第1図および第2図に示した脱
水装置を用いて脱水した。脱水区間は長さ1350
mm、高さ30mm、幅(奥行き)100mmであつた。ス
ラツジの固体濃度は重力(自然)沈降で槽底に堆
積して得られる濃度を目安として、これより若干
高濃度で均一にできる程度のものとした。
Operation example A sludge obtained by mixing and stirring fine particles of papermaking white clay with a density of 2.35 g/cm 3 and an average particle size of 9.7 μm and a negative interfacial potential in water is dewatered using the dewatering equipment shown in Figures 1 and 2. Dehydrated using. The length of the dehydration section is 1350
mm, height 30mm, width (depth) 100mm. The solid concentration of the sludge was determined to be a concentration slightly higher than that obtained when it is deposited on the bottom of the tank by gravity (natural) sedimentation, to the extent that it could be made uniform.

スラツジ初濃度を70重量%とし、このスラツジ
を9.06cm3/秒の流量で、連続的にベルトコンベヤ
部の脱水区間に供給した。この場合スラツジの脱
水区間滞留時間は10.3分であつた。
The initial concentration of the sludge was 70% by weight, and the sludge was continuously supplied to the dewatering section of the belt conveyor section at a flow rate of 9.06 cm 3 /sec. In this case, the residence time of the sludge in the dewatering section was 10.3 minutes.

ベルトコンベヤの走行速度をスラツジ移送速度
と同じ0.302/秒として、ベルト状の上部電極と
下部電極間に定電圧条件の下で、直流電圧10及び
20Vを印加して(電場強度はそれぞれ3.33、6.67
V/cmとなる)、電気浸透脱水を行なつた。
The running speed of the belt conveyor was set to 0.302/sec, which is the same as the sludge transfer speed, and a DC voltage of 10 and
Applying 20V (field strength is 3.33 and 6.67, respectively)
V/cm) and electroosmotic dehydration was performed.

第4図に示すように、脱水区間全体の脱水流量
は印加電圧が0の場合即ち重力(自然)脱水だけ
の場合に比べて、印加電圧が10Vの場合は約5
倍、20Vの場合は約20倍となり、印加電圧の増加
とともに著しく増大した。また、スラツジ移送方
向における脱水流量は、脱水区間入口部において
大きく、出口部に近づくにつれて漸次に減少し
た。
As shown in Figure 4, when the applied voltage is 10V, the dehydration flow rate in the entire dehydration section is about 5% compared to when the applied voltage is 0, that is, when only gravity (natural) dehydration
In the case of 20V, it was approximately 20 times, and increased significantly as the applied voltage increased. Furthermore, the dewatering flow rate in the sludge transfer direction was large at the entrance of the dewatering section and gradually decreased as it approached the exit.

第5図は上記と同じ条件で操業した場合の排出
スラツジ濃度と印加電圧との関係を示したもので
あるが、電気浸透脱水を実施した場合、上部ベル
ト近傍の排出スラツジは下部ベルト近傍のスラツ
ジに比べて著しく脱水されていて、スラツジ濃度
が大きくなつていることが観察されたが、本図に
おいてはその平均値をとつてグラフにした。図に
示されるように、排出スラツジ濃度は印加電圧が
増加するとともに大きくなり、(本図ではほぼ直
線関係で示されている)印加電圧20Vの場合では
82.5重量%にまで脱水され、脱水率(注.脱水率
とはスラツジの初期含水量に対する排出スラツジ
の含水量の百分率をいう)は約58%であつた。因
みに、この場合の上部ベルト近傍のスラツジ濃度
は約85重量%となつた。
Figure 5 shows the relationship between the concentration of discharged sludge and the applied voltage when operating under the same conditions as above. When electroosmotic dehydration is performed, the discharged sludge near the upper belt is the same as the sludge near the lower belt. It was observed that the sludge was significantly dehydrated and the sludge concentration increased compared to the sludge, but in this figure, the average value was taken and graphed. As shown in the figure, the discharged sludge concentration increases as the applied voltage increases, and in the case of an applied voltage of 20 V (shown as an almost linear relationship in this figure)
The water was dehydrated to 82.5% by weight, and the dewatering rate (note: dewatering rate refers to the percentage of the water content of the discharged sludge relative to the initial water content of the sludge) was approximately 58%. Incidentally, the sludge concentration near the upper belt in this case was approximately 85% by weight.

以上、本発明を特定の例及び数値につき説明し
たが、本発明の広汎な精神と視野を逸脱すること
なく種々な変更と修正が可能なこと勿論である。
Although the invention has been described with reference to specific examples and numerical values, it will be understood that various changes and modifications may be made without departing from the broader spirit and scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例を示す線図的縦断面
図、第2図はその電気回路説明図、第3図は本発
明装置の他の例を示す線図的縦断面図、第4図お
よび第5図は本発明装置を用いて得た操業成績の
一例をそれぞれ示す特性線図である。 1…撹拌機、2…貯槽、3…スラツジ移送ポン
プ、4…流量調節弁、5…スラツジ導入部、6…
脱水区間、7…支持板、8…上部ベルト、9…絶
縁性支持ローラー、10…下部ベルト、11…受
水器、12,13,14,15…回転ドラム、1
6…無段変速機、17,18…Vベルト車、19
…Vベルト、20,21,22…絶縁性緊張用ロ
ーラー、23…排水弁、24,25…かき取り
器、26…洗浄器、27…直流電源、28…導
線、29…直流電圧計、30…直流電流計、31
…真空室。
FIG. 1 is a diagrammatic vertical sectional view showing an example of the device of the present invention, FIG. 2 is an explanatory diagram of its electric circuit, FIG. 3 is a diagrammatic vertical sectional view showing another example of the device of the present invention, 5 and 5 are characteristic diagrams each showing an example of operational results obtained using the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Stirrer, 2... Storage tank, 3... Sludge transfer pump, 4... Flow rate control valve, 5... Sludge introduction part, 6...
Dewatering section, 7... Support plate, 8... Upper belt, 9... Insulating support roller, 10... Lower belt, 11... Water receiver, 12, 13, 14, 15... Rotating drum, 1
6...Continuously variable transmission, 17, 18...V belt vehicle, 19
... V-belt, 20, 21, 22 ... Insulating tension roller, 23 ... Drain valve, 24, 25 ... Scraping device, 26 ... Cleaner, 27 ... DC power supply, 28 ... Conductor, 29 ... DC voltmeter, 30 ... DC ammeter, 31
...vacuum chamber.

Claims (1)

【特許請求の範囲】 1 スラツジ移送用ポンプと、 ポンプによつて送られてくるスラツジを間に受
取る横長の上下二つのベルトから成り、上部ベル
トには導電性の板状ベルトを用い、下部ベルトに
は濾布とその下側に導電性の網若しくは多孔板と
を重ねて一体にした構造のもの又はベルトに使用
し得る適当な導電性濾材を用い、脱水が進行して
もスラツジの移送をスムーズに行うためにベルト
からの剪断力がスラツジに作用しないように該上
下部ベルトがスラツジ移送方向と同一方向に且つ
スラツジ移送速度と同一走行速度で循環走行する
ベルトコンベヤと、 これらの上下部ベルトを電極としてベルト状の
両電極間のスラツジにスラツジ移送方向において
一様な電位差を与えるように直流電場を印加する
ことによつて生ずる電気浸透作用により、連続的
に上下のベルト間を進行するスラツジから脱水区
間で水分を下部ベルトから下方に脱水する直流電
圧印加装置と、 ベルトコンベヤの脱水区間の出口部で脱水スラ
ツジをベルトコンベヤから自動連続的に剥離する
剥離装置と を具えることを特徴とするベルトコンベヤ方式に
よるスラツジの連続式電気浸透脱水装置。 2 特許請求の範囲1記載の電気浸透脱水装置に
おいて、脱水区間を進行するスラツジに漸次に大
きな加圧圧搾力が加わるように上部ベルトと下部
ベルトとの間隔をスラツジ移送方向に向つて漸次
に小とし、脱水区間の切断面の高さがスラツジ送
入口より出口部方向に小さくなるように上部ベル
トを緩やかな傾斜をつけて設置することによつて
スラツジと上部ベルトの電極との接触を良好なら
しめ且つスラツジ含水率が減少するスラツジ移送
方向に漸次に増加する電場強度を与え、これによ
り電気浸透脱水を行なうと同時に圧搾脱水を行な
うようにした電気浸透脱水装置。 3 スラツジ移送用ポンプと、 ポンプによつて送られてくるスラツジを間に受
取る横長の上下二つのベルトから成り、上部ベル
トには導電性の板状ベルトを用い、下部ベルトに
は濾布とその下側に導電性の網若しくは多孔板と
を重ねて一体にした構造のもの又はベルトに使用
し得る適当な導電性濾材を用い、脱水が進行して
もスラツジの移送をスムーズに行うためにベルト
からの剪断力がスラツジに作用しないように該上
下部ベルトがスラツジ移送方向と同一方向に且つ
スラツジ移送速度と同一走行速度で循環走行する
ベルトコンベヤと、 これらの上下部ベルトを電極としてベルト状の
両電極間のスラツジにスラツジ移送方向において
一様な電位差を与えるように直流電場を印加する
ことによつて生ずる電気浸透作用により、連続的
に上下のベルト間に送入したスラツジから脱水区
間で水分を下部ベルトから下方に脱水する直流電
圧印加装置と、 スラツジの脱水を圧力差により促進し且つ上下
部ベルト状電極間の電場強度を一様にすることに
よつて効果的な電気浸透脱水を行うために下部ベ
ルトの下方に設けた真空室と、 ベルトコンベヤの脱水区間の出口部で脱水スラ
ツジをベルトコンベヤから自動連続的に剥離する
剥離装置と を具えることを特徴とするベルトコンベヤ方式に
よるスラツジの連続式電気浸透脱水装置。 4 特許請求の範囲3記載の電気浸透脱水装置に
おいて、下部ベルト下側に1個の又は複数個の区
域に分割した真空室を設け、複数個の区域に分割
した真空室の真空度をベルトコンベヤの出口部に
接近するにつれて大とし、これにより真空脱水の
併用効果を高め、一層効果的な電気浸透脱水と同
時に真空脱水を行なうようにした電気浸透脱水装
置。 5 特許請求の範囲4記載の電気浸透脱水装置に
おいて、脱水区間を進行するスラツジに漸次に大
きな加圧圧搾力が加わるように上部ベルトと下部
ベルトとの間隔をスラツジ移送方向に向つて漸次
に小とし、脱水区間の切断面の高さがスラツジ送
入口より出口部方向に小さくなるように上部ベル
トを緩やかな傾斜をつけて設置することによつ
て、スラツジと上部ベルトの電極との接触を良好
ならしめ且つスラツジ含水率が減少するスラツジ
移送方向に漸次に増加する電場強度を与え、これ
により効果的な電気浸透脱水を行なうと同時に圧
搾脱水をも行なうようにした電気浸透脱水装置。
[Claims] 1. Consists of a sludge transfer pump and two horizontally long upper and lower belts that receive the sludge sent by the pump, the upper belt being a conductive plate belt, and the lower belt being a conductive belt. To prevent sludge from being transferred even as dewatering progresses, use a filter fabric with an integrated structure of a filter cloth and a conductive net or perforated plate underneath it, or a suitable conductive filter material that can be used as a belt. A belt conveyor in which the upper and lower belts circulate in the same direction as the sludge transfer direction and at the same traveling speed as the sludge transfer speed so that the shearing force from the belt does not act on the sludge, and these upper and lower belts. The sludge continuously moves between the upper and lower belts due to the electroosmotic action produced by applying a DC electric field to the sludge between the two belt-shaped electrodes to give a uniform potential difference in the sludge transport direction. The present invention is characterized by comprising: a DC voltage application device that dehydrates moisture downward from the lower belt in a dewatering section; and a peeling device that automatically and continuously peels dehydrated sludge from the belt conveyor at the outlet of the dewatering section of the belt conveyor. Continuous electroosmotic dewatering equipment for sludge using a belt conveyor system. 2. In the electroosmotic dewatering apparatus according to claim 1, the distance between the upper belt and the lower belt is gradually reduced in the sludge transport direction so that a gradually larger pressurizing force is applied to the sludge moving through the dewatering section. By installing the upper belt with a gentle slope so that the height of the cut surface of the dewatering section is smaller toward the outlet than the sludge inlet, good contact between the sludge and the electrodes of the upper belt can be achieved. An electroosmotic dewatering device that applies an electric field intensity that gradually increases in the direction of sludge transport where the sludge is sludge tightened and the sludge moisture content is reduced, thereby performing electroosmotic dehydration and pressing dewatering at the same time. 3 It consists of a sludge transfer pump and two oblong belts, upper and lower, which receive the sludge sent by the pump.The upper belt uses a conductive plate belt, and the lower belt uses a filter cloth and its A belt with an integrated structure with a conductive mesh or perforated plate stacked on the bottom side, or an appropriate conductive filter material that can be used for the belt, is used to ensure smooth sludge transfer even as dewatering progresses. A belt conveyor in which the upper and lower belts circulate in the same direction as the sludge transport direction and at the same traveling speed as the sludge transport speed so that the shearing force from the sludge does not act on the sludge; By applying a DC electric field to the sludge between the two electrodes to give a uniform potential difference in the sludge transport direction, the electroosmotic action causes moisture to be removed from the sludge continuously fed between the upper and lower belts in the dewatering section. A DC voltage application device that dehydrates the sludge downward from the lower belt, and effective electroosmotic dehydration by promoting the dehydration of the sludge by a pressure difference and making the electric field strength uniform between the upper and lower belt-shaped electrodes. A belt conveyor method for producing sludge, comprising: a vacuum chamber provided below the lower belt; and a peeling device that automatically and continuously peels the dewatered sludge from the belt conveyor at the outlet of the dewatering section of the belt conveyor. Continuous electroosmotic dehydration equipment. 4. In the electroosmotic dehydration apparatus according to claim 3, a vacuum chamber divided into one or more sections is provided below the lower belt, and the degree of vacuum of the vacuum chamber divided into the plurality of sections is controlled by the belt conveyor. The electroosmotic dehydration device increases in size as it approaches the outlet of the electroosmotic dehydration device, thereby increasing the combined effect of vacuum dehydration and performing vacuum dehydration at the same time as more effective electroosmotic dehydration. 5. In the electroosmotic dewatering apparatus according to claim 4, the distance between the upper belt and the lower belt is gradually reduced in the sludge transport direction so that a gradually larger pressurizing force is applied to the sludge moving through the dewatering section. By installing the upper belt with a gentle slope so that the height of the cut surface of the dewatering section is smaller toward the outlet than the sludge inlet, good contact between the sludge and the electrodes on the upper belt is achieved. An electroosmotic dewatering device that applies an electric field intensity that gradually increases in the direction of sludge transport where the sludge is leveled and the moisture content of the sludge decreases, thereby performing effective electroosmotic dewatering and at the same time compressing dewatering.
JP57144756A 1982-08-23 1982-08-23 Continuous electroosmosis dehydrating equipment for sludge by beltconveying system Granted JPS5936507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144756A JPS5936507A (en) 1982-08-23 1982-08-23 Continuous electroosmosis dehydrating equipment for sludge by beltconveying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144756A JPS5936507A (en) 1982-08-23 1982-08-23 Continuous electroosmosis dehydrating equipment for sludge by beltconveying system

Publications (2)

Publication Number Publication Date
JPS5936507A JPS5936507A (en) 1984-02-28
JPS6159164B2 true JPS6159164B2 (en) 1986-12-15

Family

ID=15369653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144756A Granted JPS5936507A (en) 1982-08-23 1982-08-23 Continuous electroosmosis dehydrating equipment for sludge by beltconveying system

Country Status (1)

Country Link
JP (1) JPS5936507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154974U (en) * 1988-04-11 1989-10-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216799A (en) * 1985-03-22 1986-09-26 Ishigaki Kiko Kk Filtering dehydration of purified sludge
GB2294948B (en) * 1994-10-06 1998-02-25 Scapa Group Plc Dewatering process
GB9420216D0 (en) 1994-10-06 1994-11-23 Scapa Group Plc Dewatering process
WO2001087782A1 (en) * 2000-05-18 2001-11-22 Ibiden Co., Ltd. Paper-making sludge treating method and paper-making treating device
GB0323068D0 (en) 2003-10-01 2003-11-05 Nuground Ltd Dewatering treatment system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154974U (en) * 1988-04-11 1989-10-25

Also Published As

Publication number Publication date
JPS5936507A (en) 1984-02-28

Similar Documents

Publication Publication Date Title
EP0784501B1 (en) Dewatering process
US3459122A (en) Apparatus for the continuous extraction of moisture from suspended matter
US3705847A (en) Method for forming a uniform continuous web of paper
JPS621426A (en) Electroosmotic dehydration apparatus
WO2018034300A1 (en) Combined dehydration device
JPS6159164B2 (en)
US3774760A (en) Sludge dewatering apparatus and process
JPS642405B2 (en)
US10315165B2 (en) Continuous electrokinetic dewatering of phosphatic clay suspensions
EP0046155A1 (en) Process and apparatus for slime and sludge dewatering
US4595499A (en) Gravity belt thickener and belt press combination
JPH0413003B2 (en)
US1229203A (en) Method of purifying and separating finely-divided substances.
JPS63256112A (en) Electroosmotic dehydrator
JPS6344408B2 (en)
JPH0356107A (en) Electroosmotic dehydrator
JPH042286B2 (en)
JPS61259800A (en) System for dehydration treatment of sludge
WO1997011767A1 (en) Electro-osmotic dewatering of sludges
KR870001736B1 (en) Dehydration method of sludge
JPS6344406B2 (en)
JPH0765324B2 (en) Excavator and sand reformer
SU1161477A1 (en) Electrolyzer for processing waste water sediment
JPS6097011A (en) Dehydration treatment system of sludge
SU899140A1 (en) Apparatus for separating dielectric materials