JPS6152375B2 - - Google Patents
Info
- Publication number
- JPS6152375B2 JPS6152375B2 JP54102115A JP10211579A JPS6152375B2 JP S6152375 B2 JPS6152375 B2 JP S6152375B2 JP 54102115 A JP54102115 A JP 54102115A JP 10211579 A JP10211579 A JP 10211579A JP S6152375 B2 JPS6152375 B2 JP S6152375B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- indoor
- refrigerant
- air
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 52
- 238000001816 cooling Methods 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
この発明は、室外温度を推定する装置を備えた
空気調和装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner equipped with a device for estimating outdoor temperature.
従来、セパレート形空気調和装置等において、
例えばサーミスタ等の感温素子を用いた室外温度
検知器を室外ユニツト外壁に設け、その検知量を
用いて室内ユニツトに室外温度を表示したり、室
外温度に応じて室内温度を制御したりすることは
おこなわれていた。 Conventionally, in separate air conditioners, etc.
For example, an outdoor temperature detector using a temperature sensing element such as a thermistor is installed on the outer wall of the outdoor unit, and the detected amount is used to display the outdoor temperature on the indoor unit or to control the indoor temperature according to the outdoor temperature. was being carried out.
しかし、そのような室外温度検知器は、普通全
面に空気の流通口を有し、外面に白色塗装を施し
た筐体内に、防水構造を有するサーミスタを配置
したようなものであるので、直射日光等の熱放射
の影響を充分に除去できないばかりか、雨露や上
記熱放射等による劣化が激しいという欠点があつ
た。 However, such outdoor temperature detectors usually have air circulation holes all over the surface and a waterproof thermistor placed inside a white-painted case, so they cannot be exposed to direct sunlight. In addition to not being able to sufficiently eliminate the effects of heat radiation such as heat radiation, etc., it also has the drawback that deterioration due to rain and dew and the heat radiation described above is severe.
また、上記サーミスタの配線を動力線と束ねて
配線すると、動力線からのノイズが入つて誤動作
の原因となるので、別個の配線にする必要があ
り、そのために工事の手間を要するという欠点も
あつた。 Additionally, if the wiring for the thermistor is bundled with the power line, noise from the power line will enter and cause malfunctions, so separate wiring is required, which also requires additional work. Ta.
この発明は、上記欠点を改善することを目的と
するものである。 This invention aims to improve the above-mentioned drawbacks.
第1図はこの発明の一実施例を示す冷媒及び電
気の回路図で、図において、1は室内ユニツト、
2は冷媒と室内空気との間で熱交換をおこなう第
1の熱交換器、3は第1の熱交換器2に送風する
第1の送風機、4は室外ユニツト、5は上記冷媒
と室外空気との間で熱交換をおこなう第2の熱交
換器、6は第2の熱交換器5に送風する第2の送
風機、7は上記冷媒を圧縮する電動圧縮機、8は
減圧弁で、熱交換器2、5は圧縮機7、減圧弁8
及び冷媒配管A,B,C,D等とともに、ヒート
ポンプ式の冷凍サイクル(回路)を形成してい
る。 FIG. 1 is a refrigerant and electric circuit diagram showing an embodiment of the present invention. In the figure, 1 is an indoor unit;
2 is a first heat exchanger that exchanges heat between the refrigerant and indoor air, 3 is a first blower that blows air to the first heat exchanger 2, 4 is an outdoor unit, and 5 is a unit that exchanges heat between the refrigerant and the outdoor air. 6 is a second blower that blows air to the second heat exchanger 5; 7 is an electric compressor that compresses the refrigerant; 8 is a pressure reducing valve; Exchangers 2 and 5 are compressor 7 and pressure reducing valve 8
Together with the refrigerant pipes A, B, C, D, etc., it forms a heat pump type refrigeration cycle (circuit).
また、9は熱交換器2の室内空気吸込側に配置
された室内温度検知器、10は配管Aの熱交換器
2近傍に設けられた冷媒圧力検知器で、例えばダ
イヤフラムを介して、コンスタンタン線のような
感圧素子の張力を変化させ、電気出力として冷媒
圧力が検知できるように構成されている。また、
温度検知器9も電気的な出力を得られるようなも
ので、両検知器9,10の出力と、室温設定器1
3は室外温度推定制御装置12(以下、推定制御
装置と略す)の入力側に、そして出力側には圧縮
機7が接続されている。 Further, 9 is an indoor temperature sensor placed on the indoor air suction side of the heat exchanger 2, and 10 is a refrigerant pressure sensor placed in the vicinity of the heat exchanger 2 in the pipe A. The refrigerant pressure is configured to be able to be detected as an electrical output by changing the tension of a pressure sensing element such as. Also,
The temperature sensor 9 is also capable of obtaining electrical output, and the outputs of both detectors 9 and 10 and the room temperature setting device 1
3 is connected to the input side of an outdoor temperature estimation control device 12 (hereinafter abbreviated as the estimation control device), and the compressor 7 is connected to the output side.
次に、第4図により推定制御装置12の詳細を
説明すると、サーミスタなどからなる室内温度検
知器9には抵抗器21を介して一定直流電圧が掛
けられており、その温度に応じて電圧がマルチプ
レクサ31(多点切換器)に、同じく圧力検知器
10も、そして、可変抵抗器20からなる室内温
度設定器13の出力もマルチプレクサ31に接続
される。その出力信号はアナログ/デジタル変換
器32で変換され入力インターフエース33を介
してマイクロプロセツサからなるCPU30に入
力される。CPU30はこれに接続されるメモリ
35にメモリされたプログラムおよびデータなど
によつて、以下の如く室外温度の推定演算ならび
に、室温と設定室温とを比較して、出力インター
フエース34を介してリレー22をON/OFF
と、この接点に接続された圧縮機7の運転・停止
を制御する。 Next, to explain the details of the estimation control device 12 with reference to FIG. 4, a constant DC voltage is applied to the indoor temperature detector 9 made of a thermistor etc. via a resistor 21, and the voltage changes depending on the temperature. The pressure detector 10 is also connected to the multiplexer 31 (multipoint switch), and the output of the indoor temperature setting device 13 consisting of the variable resistor 20 is also connected to the multiplexer 31 . The output signal is converted by an analog/digital converter 32 and inputted via an input interface 33 to a CPU 30 consisting of a microprocessor. The CPU 30 uses the program and data stored in the memory 35 connected thereto to calculate the outdoor temperature as described below, compares the room temperature with the set room temperature, and outputs the information to the relay 22 via the output interface 34. ON/OFF
and controls the operation/stop of the compressor 7 connected to this contact.
次に冷媒が実線矢印の方向に流れる冷房動作時
を例として、この装置の動作を説明する。 Next, the operation of this device will be described using as an example a cooling operation in which the refrigerant flows in the direction of the solid arrow.
蒸発器として動作する第1の熱交換器2を出た
冷媒ガスは、圧縮器7で圧縮されて、配管C中で
は高温高圧のガス体となり、第2の熱交換器5中
で室外空気により冷却されて液化する。その際、
送風機6により送風される送風量Voが一定であ
れば、外気温度Toが高ければ高い程冷媒の温度
は高くなり、減圧弁8を通つた後もその関係は保
たれ、圧力検知器10の位置の冷媒温度Teは外
気温度Toの函数となる。また冷媒は第1の熱交
換器2で蒸発する際、室内空気から熱量を奪うた
め、冷媒温度Teは室内温度TRが高ければ高い
程、やはり高温となる。すなわち、送風機3,6
の送風量VR,Voによつて、その函数形は異なる
が、圧力検知器10の位置での冷媒温度Teは室
内外温度TR,Toの函数となり、
Te=a1×TR+a2×To−a3 (1)
(a1,a2,a3は定数)
の関係が成立する。そして、この定数の一例は、
a1=0.544129,a2=0.182816,a3=9.06843であ
る。この関係式(1)の定数a1〜a3は空気調和装置の
形式、仕様が一定であれば、送風量VR,Voを組
合せごとに、実験式として求めることができる。
それらの一例を簡略化して図示したのが第2図で
ある。図において、To1等は室外温度で、To1<
To2<To3の関係にある。 The refrigerant gas that has exited the first heat exchanger 2, which operates as an evaporator, is compressed by the compressor 7, becomes a high-temperature, high-pressure gas body in the pipe C, and is converted into a high-temperature, high-pressure gas body in the second heat exchanger 5 by outdoor air. Cools and liquefies. that time,
If the air volume Vo blown by the blower 6 is constant, the higher the outside air temperature To, the higher the temperature of the refrigerant, and this relationship is maintained even after passing through the pressure reducing valve 8, and the position of the pressure detector 10 The refrigerant temperature Te is a function of the outside air temperature To. Further, when the refrigerant evaporates in the first heat exchanger 2, it takes heat from the indoor air, so the refrigerant temperature Te becomes higher as the indoor temperature T R increases. That is, blowers 3, 6
The shape of the function differs depending on the air flow volume V R and Vo, but the refrigerant temperature Te at the position of the pressure detector 10 is a function of the indoor and outdoor temperatures T R and To, Te=a 1 ×T R +a 2 The following relationship holds: ×To−a 3 (1) (a 1 , a 2 , and a 3 are constants). And an example of this constant is
a 1 =0.544129, a 2 =0.182816, a 3 =9.06843. If the type and specifications of the air conditioner are constant, the constants a 1 to a 3 of this relational expression (1) can be determined as an experimental formula for each combination of the air flow volumes V R and Vo.
FIG. 2 shows a simplified example of these. In the figure, To 1, etc. is the outdoor temperature, and To 1 <
There is a relationship of To 2 < To 3 .
また、一方冷媒温度と冷媒圧力との間には一義
的な関数関係があり、冷媒温度Teと検知器10
の検知圧力Pとの間には、
の関係式(2)が成立する。そして、この定数の一例
はa4=103427、a5=1、a6=3、a7=0.686943、
a8=117.187である。 On the other hand, there is a unique functional relationship between the refrigerant temperature and the refrigerant pressure, and the refrigerant temperature Te and the detector 10
Between the detected pressure P and The relational expression (2) holds true. And an example of this constant is a 4 = 103427, a 5 = 1, a 6 = 3, a 7 = 0.686943,
a 8 = 117.187.
この実施例においては、送風機3の送風量VR
は強、中、弱の3通り、送風機6の送風量Voは
強、弱の2通りの固定量であるので、それらの組
合せによる6つの関係式(1)及び関係式(2)を室外温
度推定装置12にメモリさせておき、室内温度検
知知器9では室内温度TRをまた冷媒圧力検知器
10では冷媒圧力Pを検知して、それらの検知量
TR,P推定装置12にインプツトしてやれば関
係式(1),(2)により、室外温度Toを演算し、推定
装置12の出力として室外温度Toに応じた信号
を得ることができる。 In this embodiment, the amount of air blown by the blower 3 V R
There are three fixed amounts: strong, medium, and weak, and the amount of air blown by the blower 6 Vo is fixed in two ways: strong and weak. Therefore, the six relational expressions (1) and relational expressions (2) based on their combinations can be expressed as outdoor temperature. The estimation device 12 stores them in memory, and the indoor temperature detector 9 detects the indoor temperature T R and the refrigerant pressure detector 10 detects the refrigerant pressure P, and inputs these detected amounts T R and P into the estimation device 12. For example, the outdoor temperature To can be calculated using the relational expressions (1) and (2), and a signal corresponding to the outdoor temperature To can be obtained as the output of the estimation device 12.
この出力信号を用いて、制御装置14により、
圧縮機7に運転、停止を制御するサーモスタツト
13の設定温度を変化させてやれば、室外温度
Toに応じて室内温度TRを調節することができ
る。 Using this output signal, the control device 14:
By changing the set temperature of the thermostat 13 that controls the operation and stop of the compressor 7, the outdoor temperature can be changed.
The indoor temperature T R can be adjusted according to To.
ここで上述したこの発明の実施例による動作の
詳細を、フロートチヤートにより説明する。第5
図は演算制御の流れを説明するフローチヤートで
あり、ステツプ40で室内温度9を、ステツプ4
1で冷媒圧力10を続込み、ステツプ42で両者
を用いた室外温度を演算推定する。ステツプ43
で室内温度設定値を読込み、ステツプ44で上記
推定室外温度によつて設定室温の値を変更し、ス
テツプ45で室温とその変更後の設定室温とを比
較し、例えば冷房時であれば室温が設定室温より
高ければ、ステツププ46に行き圧縮機7を運転
し、低ければステツプ45に行き圧縮機7を停止
する。以上の流れは所定のインターバルで繰り返
されることになる。 The details of the operation according to the embodiment of the invention described above will now be explained using a float chart. Fifth
The figure is a flowchart explaining the flow of calculation control, in which the indoor temperature 9 is determined in step 40,
In step 1, a refrigerant pressure of 10 is applied, and in step 42, the outdoor temperature is calculated and estimated using both. Step 43
In step 44, the set room temperature is read, and in step 44, the set room temperature is changed based on the estimated outdoor temperature. In step 45, the room temperature is compared with the changed set room temperature. If the temperature is higher than the set room temperature, the process goes to step 46 and the compressor 7 is operated; if it is lower, the process goes to step 45 and the compressor 7 is stopped. The above flow will be repeated at predetermined intervals.
特に客の滞留時間の短かい店舗等においては、
室外温度Toが高いときには室内温度TRが比較的
高くとも快適に感ずるので、室外温度Toととも
に室内温度TRが上下するように制御装置14を
構成しておくと省エネルギ効果が得られる。 Especially in stores where customers stay for a short time,
When the outdoor temperature To is high, the user feels comfortable even if the indoor temperature T R is relatively high, so if the control device 14 is configured so that the indoor temperature T R rises and falls with the outdoor temperature To, an energy saving effect can be obtained.
室内温度TRを調節するには送風機3,6の少
くとも何れか一方の送風量を制御するようにして
もよい。 In order to adjust the indoor temperature T R , the amount of air blown by at least one of the blowers 3 and 6 may be controlled.
また、推定装置12の出力信号による制御対称
としては、冷暖房時の急速運転や過負荷の際に使
用する補助交換器やヒータ、或いは除湿機の除湿
後の空気の加熱体のような補助的冷熱装置や暖房
時の熱交換器5の除霜指令等種々なものが考えら
れる。 In addition, the output signal of the estimating device 12 can be used to control auxiliary cooling/heating devices such as auxiliary exchangers and heaters used during rapid operation or overload during cooling/heating, or heating elements for air after dehumidifying a dehumidifier. Various things can be considered, such as a defrosting command for the device or the heat exchanger 5 during heating.
また、上記各実施例のように推定装置12の出
力信号によつて自動制御をおこなわず、その出力
信号により、室内ユニツト1上に設けた表示器
に、室外温度Toを表示して、ユーザの好みに合
せて手動で室温を調節してもよいし、自動制御を
おこなう場合にも、表示器に室外温度Toを表示
させると何かと便利である。 In addition, instead of performing automatic control based on the output signal of the estimation device 12 as in each of the above embodiments, the outdoor temperature To is displayed on the display provided on the indoor unit 1 using the output signal, so that the user can You can manually adjust the room temperature according to your preference, or even when using automatic control, it is convenient to display the outdoor temperature To on the display.
本発明者等は、第1図のような構成のもので、
室内相対湿度50%以下の条件では、室外温度To
が27〜45℃の範囲に対し、±2℃以下の誤差で室
外温度Toを推定することができた。 The present inventors designed a structure as shown in Fig. 1,
When the indoor relative humidity is below 50%, the outdoor temperature To
It was possible to estimate the outdoor temperature To with an error of less than ±2°C in the range of 27 to 45°C.
このように屋内に圧力検知器10を設けた場合
には、従来の屋外温度検知器のように熱放射によ
る誤差が発生せず、雨露や熱放射による劣化も起
らない。また、特別の配線工事をおこなう必要も
ない。 When the pressure sensor 10 is installed indoors in this way, unlike conventional outdoor temperature sensors, errors due to heat radiation do not occur, and deterioration due to rain and dew or heat radiation does not occur. Further, there is no need to perform any special wiring work.
また、第2の熱交換器5の冷媒流出側にある配
管Dの部分に冷媒圧力検知器10を設けると、そ
の冷媒は外気と熱交換をおこなつた直後のもので
あのので途中の擾乱がなく、±1.5℃以下の誤差で
室外温度Toを推定することができる。この場
合、配管Dが屋内にあるものに関しては問題ない
が、屋外にあるものに関しては屋内にあるものと
同様に効果が得られるとはいゝがたい。しかし、
配管Dが室内ユニツト1と余り離れた位置にない
限り、冷媒に接する部分と、電気出力変換部分と
に一対のダイヤフラムを設け、両ダイヤフラム間
に蒸気圧の低い、例えばシリコーンオイルのよう
な圧力達体を密封し、その部分をよく断熱した圧
力伝達部を有する圧力検知器10を用いれば、従
来の配管配線工事と同時におこなうことができ、
特に工事の手間を要することはない。また、上記
圧力伝達部と配管Dとの接続部は、従来の室外温
度検知器のように室外空気を流通させる必要がな
いので、容易に完全な密閉断熱をおこなうことが
できる。従つて、その部分に劣化や誤差が発生す
ることがない。 Furthermore, if the refrigerant pressure detector 10 is installed in the part of the pipe D on the refrigerant outflow side of the second heat exchanger 5, the refrigerant will be the one that has just exchanged heat with the outside air, so there will be no disturbance during the process. Therefore, the outdoor temperature To can be estimated with an error of ±1.5°C or less. In this case, there is no problem if the pipe D is located indoors, but if the pipe D is located outdoors, it is difficult to obtain the same effect as if it is located indoors. but,
As long as the pipe D is not located too far from the indoor unit 1, a pair of diaphragms should be provided in the part that contacts the refrigerant and the part that converts the electrical output, and there should be a low vapor pressure material such as silicone oil between the two diaphragms. By using the pressure sensor 10, which has a pressure transmission part whose body is sealed and whose part is well insulated, it can be carried out simultaneously with conventional piping and wiring work.
No special construction work is required. Moreover, since there is no need for outdoor air to flow through the connection between the pressure transmission section and the pipe D as in conventional outdoor temperature detectors, complete hermetic insulation can be easily achieved. Therefore, no deterioration or error occurs in that part.
以上の実施例においては、冷媒圧力検知器10
を配管A及びDに設けた場合について説明した
が、検知器10の設置位置はこれらの位置に限ら
れるものではなく、関係式(1),(2)の形や、室外温
度Toの推定値の精度は異なつてくるが、冷凍サ
イクル中の何れの場合でも室外温度Toを推定す
ることは可能である。また、室内温度検知器9も
必ずしも熱交換器2の吸込側に限られるものでは
なく室温を検知し得るような位置に配置されてい
ればよい。 In the above embodiment, the refrigerant pressure sensor 10
Although we have explained the case where the detector 10 is installed in pipes A and D, the installation position of the detector 10 is not limited to these positions, and it can be Although the accuracy of will vary, it is possible to estimate the outdoor temperature To in any case during the refrigeration cycle. Further, the room temperature detector 9 is not necessarily limited to the suction side of the heat exchanger 2, but may be placed at a position where room temperature can be detected.
以上の実施例においては、室内の湿度が50%の
場合の実験結果について説明したが、湿度が70%
に達すると室外温度Toの推定誤差は急増する。
これは熱交換器2に凝縮した水分の潜熱が、冷媒
温度Teに及ぼす影響が顕緒に現れてきたためで
ある。第3図はその関係を簡略化して示したもの
で、RH1等は室内の相対湿度を示し、RH1<RH2
の関係にある。 In the above example, the experimental results were explained when the indoor humidity was 50%, but when the humidity was 70%.
When the temperature reaches , the estimation error of the outdoor temperature To increases rapidly.
This is because the influence of the latent heat of the moisture condensed in the heat exchanger 2 on the refrigerant temperature Te has become evident. Figure 3 shows the relationship in a simplified manner, where RH 1 , etc. indicates the relative humidity in the room, and RH 1 < RH 2
There is a relationship between
すなわち、湿度の高い条件では、冷媒温度Te
は室内外温度TR,Toのみの函数でなく、室内相
対湿度RHをも含む、
Te=a10×TR+a11
×To−a12×RH−a13 (3)
(a10〜a13は定数)
のような関係式(3)を考えなければならない。そし
てこの定数の一例は、a10=0.55797、a11=
0.192396、a12=0.0415121、a13=7.63610である。 That is, under humid conditions, the refrigerant temperature Te
is not only a function of the indoor and outdoor temperatures T R and To, but also includes the indoor relative humidity RH, Te=a 10 ×T R +a 11 ×To−a 12 ×RH− a 13 ( 3 ) is a constant), we have to consider the relational expression (3). And an example of this constant is a 10 = 0.55797, a 11 =
0.192396, a 12 = 0.0415121, a 13 = 7.63610.
上記湿度RHによる誤差を除去する方法は種々
考えられるが、その第1は第1図に一点鎖線で示
した室内湿度検知器11を設ける方法である。こ
の方法にも更に幾つかの方法があり、湿度の検知
量から理論的に凝縮熱量を算出して、実測された
冷媒圧力Pより求まつた冷媒温度Teに補正を加
える方法や、実験式中に予め湿度RH項(必ずし
も一次項のみとは限らない。)を設け実験式を求
める方法がある。 Various methods can be considered to eliminate the error caused by the humidity RH, the first of which is to provide an indoor humidity detector 11 shown by a dashed line in FIG. There are several other methods for this method, such as one in which the amount of heat of condensation is calculated theoretically from the detected amount of humidity and a correction is made to the refrigerant temperature Te determined from the actually measured refrigerant pressure P, and one in which the experimental formula There is a method to obtain an empirical formula by providing a humidity RH term (not necessarily only a first-order term) in advance.
また、他の方法としては室内の湿球温度を測定
して、その検知量を含んだ実験式を求める方法、
熱交換器2の室内空気吸込側と吐出側とに一対の
室内温度検知器9を設け、それらの温度差と、送
風量VRと、冷媒圧力Pから求まる冷房能力とか
ら湿度RHを求める方法もある。 Another method is to measure the indoor wet bulb temperature and find an empirical formula that includes the detected amount.
A method in which a pair of indoor temperature detectors 9 are provided on the indoor air suction side and the discharge side of the heat exchanger 2, and the humidity RH is determined from the temperature difference therebetween, the air flow rate VR , and the cooling capacity determined from the refrigerant pressure P. There is also.
また、熱交換器2の室内空気の吸込側と吐出側
とに一対の室内温度検知器9を設けるとともに、
配管A及びBの各々熱交換器2寄りの部分に一対
の冷媒圧力検知器10を設けて、それら4個の検
知器9,10の検知量を用いた実験式を求め、そ
れら実験式により室外温度Toを算出すると湿度
RHが高い場合でも良好な精度で室外温度Toを推
定することができる。 In addition, a pair of indoor temperature detectors 9 are provided on the indoor air suction side and the discharge side of the heat exchanger 2, and
A pair of refrigerant pressure detectors 10 are installed in the portions of piping A and B near the heat exchanger 2, and an experimental formula using the detected amounts of these four detectors 9 and 10 is determined. Humidity when calculating temperature To
Even when RH is high, outdoor temperature To can be estimated with good accuracy.
ちなみに本発明者等の実験によれば、湿度RH
が70%の条件下で、室外温度Toが27〜45℃の範
囲に対し、±1℃以下の誤差で室外温度Toを推定
することができた。 By the way, according to the experiments conducted by the present inventors, the humidity RH
70%, it was possible to estimate the outdoor temperature To within the range of 27 to 45°C with an error of ±1°C or less.
この発明は以上説明したとうり、室内温度検知
器と冷媒圧力検知器の各検知量を用いて室外温度
を推定するようにすることにより、従来の室外温
度検知器を用いたのに比し、直射日光や雨露等の
影響を受けずに信頼性が高く、配線、配管工事も
簡単な空気調和装置が得られるという効果があ
る。 As explained above, the present invention estimates the outdoor temperature using the detected quantities of the indoor temperature sensor and the refrigerant pressure sensor, and thereby achieves This has the effect of providing an air conditioner that is highly reliable, unaffected by direct sunlight, rain and dew, etc., and that requires simple wiring and piping work.
第1図はこの発明の一実施例を示す冷媒及び電
気の回路図、第2図及び第3図はこの発明の原理
の説明のためのグラフ、第4図は第2図に示した
ものの電気回路の詳細ブロツク図、第5図はこの
発明の実施例の動作を説明するためのフローチヤ
ートである。
図において、2は第1の熱交換器、3は第1の
送風機、5は第2の熱交換器、6は第2の送風
機、7は圧縮機、9は室内温度検知器、10は冷
媒圧力検知器、11は室内湿度検知器、12は室
外温度推定装置、13は室内温度調節用感熱体、
A,B,C,Dは冷媒配管、Teは冷媒温度、TR
は室内温度、To1〜To3は室外温度、RH1,RH2は
室内相対湿度である。尚、各図中同一符号は同一
または相当部分を示す。
Fig. 1 is a refrigerant and electrical circuit diagram showing one embodiment of this invention, Figs. 2 and 3 are graphs for explaining the principle of this invention, and Fig. 4 is an electrical circuit diagram of the circuit shown in Fig. 2. FIG. 5 is a detailed block diagram of the circuit and is a flowchart for explaining the operation of the embodiment of the present invention. In the figure, 2 is a first heat exchanger, 3 is a first blower, 5 is a second heat exchanger, 6 is a second blower, 7 is a compressor, 9 is an indoor temperature sensor, and 10 is a refrigerant. 11 is an indoor humidity detector, 12 is an outdoor temperature estimation device, 13 is a heat sensitive body for adjusting indoor temperature,
A, B, C, D are refrigerant pipes, Te is refrigerant temperature, T R
is the indoor temperature, To 1 to To 3 are the outdoor temperature, and RH 1 and RH 2 are the indoor relative humidity. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
1の熱交換器、この熱交換器とともに冷凍サイク
ルを形成し、上記冷媒と室外空気との間で熱交換
をおこなう第2の熱交換器、上記室内空気の温度
を検知する室内温度検知器、上記冷媒の圧力を検
知する冷媒圧力検知器、及び上記各検知器の検知
量により、室外温度に応じた出力信号を発生する
室外温度推定装置を備えた空気調和装置。 2 室外温度推定装置の出力信号に応動して室内
温度を調節する制御装置を備えたことを特徴とす
る特許請求の範囲第1項記載の空気調和装置。 3 冷媒を圧縮する圧縮機の運転、停止を制御す
る室内温度調節用感熱体の設定温度を制御するよ
うに制御装置を構成したことを特徴とする特許請
求の範囲第2項記載の空気調和装置。 4 第1の熱交換器に送風する送風量を制御する
ように制御装置を構成したことを特徴とする特許
請求の範囲第2項または第3項記載の空気調和装
置。 5 第2の熱交換器に送風する送風量を制御する
ように制御装置を構成したことを特徴とする特許
請求の範囲第2項乃至第4項の何れかに記載の空
気調和装置。 6 室内温度を調節する補助的冷熱装置を有する
ものにおいて、制御装置により上記冷熱装置を制
御するようにしたことを特徴とする特許請求の範
囲第2項乃至第5項の何れかに記載の空気調和装
置。 7 室外温度推定装置による推定室外温度の高低
に応じ、室内温度を調節する制御装置の設定温度
を上下せしめるようにしたことを特徴とする特許
請求の範囲第2項乃至第6項の何れかに記載の空
気調和装置。 8 室外温度推定装置の出力信号により室外温度
を表示するようにしたことを特徴とする特許請求
の範囲第1項または第2項記載の空気調和装置。 9 冷媒圧力検知器を屋内に配置したことを特徴
とする特許請求の範囲第1項、第2項または第8
項記載の空気調和装置。 10 冷媒圧力検知器を複数個配置したことを特
徴とする特許請求の範囲第1項、第2項、第8項
または第9項記載の空気調和装置。 11 第1の熱交換器の冷媒流入側及び流出側に
各々冷媒圧力検知器を設けたことを特徴とする特
許請求の範囲第10項記載の空気調和装置。 12 第2の熱交換器の冷媒流出側に冷媒圧力検
知器を設けたことを特徴とする特許請求の範囲第
1項、第2項、第8項、第9項または第10項記
載の空気調和装置。 13 室内温度検知器を複数個配置したことを特
徴とする特許請求の範囲第1項、第2項、第8
項、第9項、第10項または第12項記載の空気
調和装置。 14 第1の熱交換器の室内空気吸込側及び吐出
側の各々に室内温度検知器を設けたことを特徴と
する特許請求の範囲第13項記載の空気調和装
置。 15 室内温度検知器が室内空気の湿球温度を検
知するようなものであることを特徴とする特許請
求の範囲第1項、第2項、第8項、第9項、第1
0項、第12項または第13項記載の空気調和装
置。 16 冷媒と室内空気との間で熱交換をおこなう
第1の熱交換器、この熱交換器とともに冷凍サイ
クルを形成し、上記冷媒と室内空気との間で熱交
換をおこなう第2の熱交換器、上記室内空気の温
度を検知する室内温度検知器、上記室内空気の湿
度を検知する室内湿度検知器、上記冷媒の圧力を
検知する冷媒圧力検知器、及び上記各検知器の検
知量により、室外温度に応じた出力信号を発生す
る室外温度推定装置を備えた空気調和装置。[Claims] 1. A first heat exchanger that exchanges heat between the refrigerant and indoor air, forming a refrigeration cycle together with this heat exchanger, and exchanging heat between the refrigerant and outdoor air. A second heat exchanger, an indoor temperature detector that detects the temperature of the indoor air, a refrigerant pressure sensor that detects the pressure of the refrigerant, and an output signal according to the outdoor temperature based on the detection amount of each of the above detectors. An air conditioner equipped with a device for estimating the outdoor temperature generated. 2. The air conditioner according to claim 1, further comprising a control device that adjusts the indoor temperature in response to the output signal of the outdoor temperature estimating device. 3. The air conditioner according to claim 2, characterized in that the control device is configured to control the set temperature of a heat sensitive element for indoor temperature adjustment that controls the operation and stop of a compressor that compresses refrigerant. . 4. The air conditioner according to claim 2 or 3, wherein the control device is configured to control the amount of air blown to the first heat exchanger. 5. The air conditioner according to any one of claims 2 to 4, wherein the control device is configured to control the amount of air blown to the second heat exchanger. 6. The air conditioner according to any one of claims 2 to 5, which has an auxiliary cooling device for adjusting indoor temperature, and wherein the cooling device is controlled by a control device. harmonization device. 7. Any one of claims 2 to 6, characterized in that the set temperature of a control device for adjusting indoor temperature is raised or lowered in accordance with the height of the estimated outdoor temperature by the outdoor temperature estimating device. The air conditioner described. 8. The air conditioner according to claim 1 or 2, wherein the outdoor temperature is displayed by an output signal of an outdoor temperature estimating device. 9 Claims 1, 2, or 8, characterized in that the refrigerant pressure detector is placed indoors.
Air conditioner as described in section. 10. The air conditioner according to claim 1, 2, 8, or 9, characterized in that a plurality of refrigerant pressure detectors are arranged. 11. The air conditioner according to claim 10, characterized in that a refrigerant pressure detector is provided on each of the refrigerant inflow side and the refrigerant outflow side of the first heat exchanger. 12. The air according to claim 1, 2, 8, 9, or 10, characterized in that a refrigerant pressure detector is provided on the refrigerant outflow side of the second heat exchanger. harmonization device. 13 Claims 1, 2, and 8 characterized in that a plurality of indoor temperature detectors are arranged.
The air conditioner according to item 9, item 10, or item 12. 14. The air conditioner according to claim 13, characterized in that an indoor temperature sensor is provided on each of the indoor air suction side and the indoor air discharge side of the first heat exchanger. 15 Claims 1, 2, 8, 9, and 1, characterized in that the indoor temperature sensor is one that detects the wet bulb temperature of indoor air.
The air conditioner according to item 0, 12 or 13. 16 A first heat exchanger that exchanges heat between the refrigerant and indoor air, and a second heat exchanger that forms a refrigeration cycle with this heat exchanger and exchanges heat between the refrigerant and indoor air. , an indoor temperature sensor that detects the temperature of the indoor air, an indoor humidity sensor that detects the humidity of the indoor air, a refrigerant pressure sensor that detects the pressure of the refrigerant, and the detected amount of each of the above detectors. An air conditioner equipped with an outdoor temperature estimation device that generates an output signal according to temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211579A JPS5627848A (en) | 1979-08-10 | 1979-08-10 | Balanced air circulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211579A JPS5627848A (en) | 1979-08-10 | 1979-08-10 | Balanced air circulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5627848A JPS5627848A (en) | 1981-03-18 |
JPS6152375B2 true JPS6152375B2 (en) | 1986-11-13 |
Family
ID=14318793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10211579A Granted JPS5627848A (en) | 1979-08-10 | 1979-08-10 | Balanced air circulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5627848A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6231078A (en) * | 1985-07-31 | 1987-02-10 | Daicel Chem Ind Ltd | Disk case |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711608B2 (en) * | 1982-10-18 | 1995-02-08 | キヤノン株式会社 | How to create an optical waveguide |
-
1979
- 1979-08-10 JP JP10211579A patent/JPS5627848A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6231078A (en) * | 1985-07-31 | 1987-02-10 | Daicel Chem Ind Ltd | Disk case |
Also Published As
Publication number | Publication date |
---|---|
JPS5627848A (en) | 1981-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6186407B1 (en) | Humidity control based on an estimation using heating plant cycle, of inside window surface temperature | |
US8695887B2 (en) | Temperature compensation method for thermostats | |
JP6250076B2 (en) | Air conditioning control device, air conditioning control system, air conditioning control method, and program | |
JPH08510348A (en) | Indoor temperature controller | |
JPS58120054A (en) | Air conditioner | |
JPH10153353A (en) | Air conditioner | |
US11953217B2 (en) | Humidification apparatus and method | |
US11281201B2 (en) | Air conditioner and methods of operation having a learning event | |
JPS6152375B2 (en) | ||
JP3213662B2 (en) | Air conditioner | |
JP7191110B2 (en) | Air conditioner, control device, air conditioning method and program | |
US20170102157A1 (en) | Air conditioner units and methods for determining indoor room temperatures | |
US10837670B2 (en) | Air-conditioning apparatus | |
JP2000199641A (en) | Relative humidity detector and air conditioning indoor unit having the same | |
JPH0441264B2 (en) | ||
JP2011247525A (en) | Refrigerating device | |
JPS6124615B2 (en) | ||
JPH0131103B2 (en) | ||
US11371761B2 (en) | Method of operating an air conditioner unit based on airflow | |
JPS6124614B2 (en) | ||
JPH05346261A (en) | Air conditioning device | |
JPS6011782B2 (en) | air conditioner | |
JPS6128903B2 (en) | ||
JPS61149751A (en) | Air conditioner | |
US20230228451A1 (en) | Method of commissioning an hvac system |