JPS6151879B2 - - Google Patents

Info

Publication number
JPS6151879B2
JPS6151879B2 JP7853683A JP7853683A JPS6151879B2 JP S6151879 B2 JPS6151879 B2 JP S6151879B2 JP 7853683 A JP7853683 A JP 7853683A JP 7853683 A JP7853683 A JP 7853683A JP S6151879 B2 JPS6151879 B2 JP S6151879B2
Authority
JP
Japan
Prior art keywords
item
group
enzyme
alanine
carbobenzoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7853683A
Other languages
Japanese (ja)
Other versions
JPS59203494A (en
Inventor
Sawao Murao
Eiko Matsumura
Takashi Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7853683A priority Critical patent/JPS59203494A/en
Publication of JPS59203494A publication Critical patent/JPS59203494A/en
Publication of JPS6151879B2 publication Critical patent/JPS6151879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は公知のアミノアシラーゼとは種々な性
質において異なる新規な酵素N〓−カルボベンゾ
キシアミノ酸アミドヒドロラーゼおよびその製法
に関する。 アミノアシラーゼはアミノ酸のα−アミノ基が
アシル化されたN〓−アシルアミノ酸の酸アミド
結合に作用しアミノ酸とアシル基に相当する脂肪
酸を生成する反応を触媒する酵素である。またヒ
プレートヒドロラーゼ、あるいはヒプリカーゼと
呼称される酵素はアミノアシラーゼの一種であ
り、ヒプリン酸、即ち安息香酸とグリシンが酸ア
ミド結合で脱水縮合した化合物に作用し、安息香
酸とグリシンを生成する反応を触媒する酵素であ
る。 一般的に、これら酵素をN〓−アシル−DL−
アミノ酸混合物に作用させると選択的にN〓−ア
シル−L−アミノ酸を加水分解することができ
る。この原理に基づき、アシラーゼは光学純度の
高いL−アミノの製造工程に実用化されている。
微生物により生産されるアミノアシラーゼは既に
いくつか発明され、また実用化されているが、こ
れら既知のアシラーゼとは異なる新規なアミノア
シラーゼを提供することは、アミノ酸、ペプチ
ド、医薬品原料、試薬等の製造において重要な課
題の一つであり、また酵素化学或いは分析化学等
の見地からも重要視される課題である。 従来、L−アミノ酸のα−アミノ基がアシル化
されたN〓−アシルアミノ酸を加水分解する酵素
は哺乳動物の各組織、カビ、細菌、放線菌、各種
の植物種子などに存在することが知られており、
特に豚腎皮質由来のアミノアシラーゼ[J.Biol.
Chem.、194、455(1952)]は著名である。微生
物起源ではアスペルギルス(Aspergillus)また
はリゾプス(Rhizopus)属[Bull.Agr.Chem.
Soc.Jpn.、21、291、296、300、304(1957)]、コ
リネバクテリウム(Corynebacterium)属[特公
昭49−13989号]、シユードモナス
(Pseudomonas)属[特公昭56−43353号]、ラク
トバシラス(Lactobacillus)属[J.Biol.Chem.、
235、3193(1960)]、ストレプトミセス
(Streptomyces)属[特開昭53−59092号]等が
知られている。これら既知のアミノアシラーゼ類
は種々なアシルアミノ酸に分解作用を有するが、
アミノ酸のα−アミノ基がカルボベンゾキシ基で
保護された化合物、即ちN〓−カルボベンゾキシ
アミノ酸には全く作用しない。 そこで本発明者は、かかる現況に鑑みN〓−カ
ルボベンゾキシアミノ酸に作用する酵素の検索を
目的として広く微生物の培養物を検討した結果、
乳酸菌に属する細菌の培養物にN〓−カルボベン
キシシアミノ酸に作用する活性を発見した。この
活性因子につき鋭意研究を重ねた結果、従来に報
告例を見ない新規な酵素を見出し、N〓−カルボ
ベンゾキシアミノ酸アミドヒドロラーゼと命名し
た。本発明はこの発見に基づいて完成されたもの
である。 即ち、本発明は一般式: [式中、R1はカルボベンゾキシ基またはベンゾイ
ル基およびR2は水素、メチル基またはヒドロキ
シメチル基を表わす]で示される化合物に作用
し、アラニン、セリンまたはグリシンとベンジル
アルコールまたは安息香酸を生成する、以下の特
性を有する酵素N〓−カルボベンゾキシアミノ酸
アミドヒドロラーゼおよびその製法に関する: 基質特異性: グリシン、L−アラニンならびにL−セリンの
α−アミノ基がカルボベンゾキシ基、ベンゾイル
基、核置換基を有するカルボベンゾキシ基、また
は核置換基を有するベンジル基で保護された化合
物およびN〓−カルボベンゾキシグリシルグリシ
ンに作用するが、N〓−アセチルグリシン、N〓
−アセチル−L−アラニンには作用しない。 至適PH:5〜7 作用温度:37〜60℃ 分子量:約235000 等電点:4.3〜4.6 活性化:CoまたはZnイオンで活性化 本発明酵素はラクトバシラス属に属する菌株か
ら生産されることが解つた。菌株はN〓−カルボ
ベンゾキシアミノ酸アミドヒドロラーゼ生産能を
有する細菌であればいかなる菌株でもよく、また
これ等の菌株の変種もしくは変異株でもよい。そ
してラクトバシラス属に属する上記菌株の具体例
としては、ラクトバシラス・カゼイ
(Lactobacillus casei)が挙げられる。なお、本
菌株はアメリカン・タイプ・カルチユアー・コレ
クシヨン(American Type Culture
Collection)に寄託されているものであり、ラク
トバシラス・カゼイ(Lactobacillus casei)
ATCC7469である。 本発明において、N〓−カルボベンゾキシアミ
ノ酸アミドヒドロラーゼ生産菌を使用しN〓−カ
ルボベンゾキシアミノ酸アミドヒドロラーゼを製
造するにあたつて用いられる培地は、通常の乳酸
菌の培養に用いられる培地が挙げられる。即ち、
N〓−カルボベンゾキシアミノ酸アミドヒドロラ
ーゼ生産菌が資化しうる炭素源、窒素源および無
機塩、更に必要ならば微量栄養素を含有するもの
であればよい。 炭素源としては、例えばグルコース、フラクト
ース、ラクトース、シユークロース、デキストリ
ン、澱粉加水分解物、麦芽エキス、廃糖蜜等の炭
水化物、クエン酸、コハク酸、フマール酸、酢酸
等の有機酸類およびマンニトール、グリセリン等
のアルコール類が用いられる。培地の窒素源とし
ては資化しうる窒素化合物またはそれを含有する
ものであればよく、例えばポリペプトン、肉エキ
ス、大豆等の蛋白質の加水分解物、各種アミノ酸
類、アンモニウム塩、硝酸塩等が用いられる。そ
の他、無機塩としては、例えばマンガン、リン
酸、カリウム、マグネシウム等の無機塩類が適宜
用いられ、または有機微量栄養素としてアミノ
酸、ビタミン、プリン塩基およびこれらを含有す
るペプトン、酵母エキス等が適宜用いることがで
きる。 菌の培養は静置培養で行なう。大量培養などの
工業的生産には撹拌深部培養が好適であるが、通
気撹拌培養、浸透培養等の好気的条件下に培養す
ることもできる。培養温度は30〜40℃、好ましく
は37℃付近であり、培地PHは8〜5、好ましくは
7.0付近である。培養時間は培養形態によつても
異なるが、通常14〜17時間である。 本発明のN〓−カルボベンゾキシアミノ酸アミ
ドヒドロラーゼはN〓−カルボベンゾキシアミノ
酸アミドヒドロラーゼ生産菌の培養液中および菌
体内に存在するが、その大部分は菌体内中に存在
する。培養時間を長くすることにより自己消化を
引起しN〓−カルボベンゾキシアミノ酸アミドヒ
ドロラーゼを培養液中に遊離させることもでき
る。 本発明のN〓−カルボベンゾキシアミノ酸アミ
ドヒドロラーゼを培養物から抽出、精製するには
通常の酵素蛋白質抽出、精製法を適用することが
できる。 例えば、遠心分離法などの適当な操作により培
養物から菌体を集めた後、その菌体をガラスビー
ズなどの適当な摩耗剤とともに機械的に破砕する
方法、超音波照射によつて破砕する方法、フレン
チプレスを用いて破砕する方法、リゾチーム等の
溶菌酵素を用いる方法、またはオスモテイツクシ
ヨツクを起用する方法等により菌体を破砕する
か、または水あるいは生理食塩水もしくは緩衝液
中に菌体を懸濁し、トルエン等の存在下で放置も
しくは浸透して抽出した後、該溶液を遠心分離法
などの適当な操作により不溶物を除去し、これを
そのまま粗酵素液として得る。また通常の蛋白質
濃縮方法、例えば粗酵素液を凍結乾燥する方法、
あるいはエタノール、アセトン、イソプロパノー
ル等の有機溶媒を用いる分別沈澱による方法、も
しくは硫酸アンモニウム等の塩類を用いる塩析を
行なつた後限外濾過膜あるいは中空糸膜もしくは
コロジオン膜等を用いる透析操作を行なう方法等
を適宜選択して実施することにより粗酵素粉末を
得ることができる。 上記の粗酵素液もしくは粗酵素粉末より精製酵
素を分取するには、イオン交換、ゲル濾過、吸
着、電気泳動、アフイニテイクロマトグラフイー
等を適宜組合せて行なう。 例えば、ジエチルアミノエチル−セフアデツク
スなどのイオン交換体を用いるイオン交換クロマ
トグラフイー法、アミノヘキシル−セフアロース
もしくはヒドロキシアパタイト等の吸着体を用い
る吸着クロマトグラフイー法、セフアデツクスあ
るいはセフアロースもしくはセフアクリルなどの
親水性担体を用いるゲル濾過法、ポリアクリルア
ミドゲルあるいはキヤリア−アンフオライトなど
を用いる電気泳動法、適当なリガンド化合物を化
学結合させた親水性担体を用いるアフイニテイク
ロマトグラフイー法、分子篩膜あるいは中空糸膜
等を用いる分子量分画法等を適宜選択し、これら
の方法を組み合わせて行なうことにより、精製さ
れた本酵素を得ることができる。 本発明新規酵素の典型的な製法およびその採取
方法は、例えばラクトバシラス属のN〓−カルボ
ベンゾキシアミノ酸アミドヒドロラーゼ生産能を
有する菌株、例えばラクトバシラス・カゼイを培
養し、培養菌株を集めて中性PHの緩衝液中で破壊
し、破壊抽出液を塩析し、沈澱物を中性PHの緩衝
液に溶解後、同緩衝液で透析することによつて、
該酵素抽出液を得る。この抽出液は必要により以
下の方法で精製してもよい。例えば、上記抽出液
をアニオン交換能を有するデキストリンまたはセ
ルロース誘導体等で充填したカラムを用い、液体
クロマトグラフイーにかけ、その活性画分を採取
する。さらに限外濾過し、その濃縮液を採取して
もよい。必要ならば、上記限外濾過濃縮液を吸着
カラムクロマトグラフイーにかけ、その活性画分
を適当な方法、例えば適当な有機溶剤を用いて分
別沈澱させ、濃縮してもよい。さらに生成を要す
るときは、これを1ないしそれ以上のゲル濾過ク
ロマトグラフイーで分別し、活性画分を採取して
もよい。 上記の製法は最も好ましい方法であるが、本発
明方法はこれに限定されるものではなく、適当な
変更、例えば工程の一部を他の方法で代替する
か、工程の一部を省略してもよい。工程の代替、
付加および削除は、菌株の培養条件、種類、副生
成物、要請される純度等に応じて適宜選定すれば
よい。 上記の方法で得られる新規なN〓−カルボベン
ゾキシアミノ酸アミドヒドロラーゼは下記に記載
される特徴を有し、微生物または哺乳動物の組織
あるいは植物種子から採取される公知のアミノア
シラーゼとは明確に区別される。すなわち、これ
ら公知の酵素はアミノ酸のα−アミノ基がアシル
化されたN〓−アシルアミノ酸に作用し、そのア
シル基部分に相当する脂肪酸とアミノ酸を生成す
る反応を触媒するが、アミノ酸のα−アミノ基が
カルボベンゾキシ化されたN〓−カルボベンゾキ
シアミノ酸類には全く作用しない。これに反し、
本発明のN〓−カルボベンゾキシアミノ酸アミド
ヒドロラーゼはN〓−カルボベンゾキシアミノ酸
に極めて高い分解作用を示し、更にアミノアシラ
ーゼ類一般の好適な基質であるN〓−アシルアミ
ノ酸に全く分解作用を示さない。以上の知見より
本発明の酵素は公知の何れのアミノアシラーゼと
も明確に区別することができ、新規な酵素と認め
られる。 以下に本発明の酵素N〓−カルボベンゾキシア
ミノ酸アミドヒドロラーゼの理化学的性質を記載
する。 (1) 作用 N〓−カルボベンゾキシグリシンに作用し、
その反応産物としてベンジルアルコールとグリ
シンを生成する。N〓−カルボベンゾキシ−L
−アラニンに作用し、その反応産物としてベン
ジルアルコールとアラニンを生成する。N〓−
カルボベンゾキシ−L−セリンに作用し、その
反応産物としてベンジルアルコールとセリンを
生成する。 グリシンまたはアラニンのα−アミノ基がベ
ンゾイル化された化合物、即ち、N〓−ベンゾ
イルグリシンまたはN〓−ベンゾイル−L−ア
ラニンにも分解作用を示し、その分解反応の産
物として安息香酸とグリシンまたはアラニンを
生成する。 (2) 基質特異性 グリシン、L−アラニンならびにL−セリン
のα−アミノ基がカルボベンゾキシ基、ベンゾ
イル基、核置換基を有するカルボベンゾキシ
基、または核置換基を有するベンゾイル基で保
護された化合物に作用する。 グリシンあるいはL−アラニンのα−アミノ
基がアセチル化された化合物、即ち、N〓−ア
セチルグリシン、N〓−アセチル−L−アラニ
ンには全く作用せず、本酵素にはアミノアシラ
ーゼ様作用を示さない。 N〓−カルボベンゾキシ−D−アラニン、ま
たはN〓−ベンゾイル−D−アラニンを基質と
して用いた時、該化合物のL体の場合と異なつ
て、本酵素は全く作用せず、その分解作用はL
体アミノ酸を含有する化合物に特異的である。 グリシンのα−アミノ基が上記以外の基で保
護された化合物、例えばN〓−ホルミルグリシ
ン、N〓−フエニルアセチルグリシン、N〓−
p−ニトロフエニルアセチルグリシン、N〓−
2・4−ジニトロフエニルグリシン、N〓−ト
リフエニルグリシン、N〓−フタリルグリシ
ン、N〓−トリルスルホニルグリシン、あるい
はN〓−t−ブトキシカルボニルグリシン等に
は全く作用せず、L−アラニンの場合において
も同様の基で保護された化合物には全く作用し
ない。 N〓−カルボベンゾキシグリシンのカルボキ
シル基がアミノ酸残基以外で保護された化合
物、例えばN〓−カルボベンゾキシグリシン、
メチルエステル、N〓−カルボベンゾキシグリ
シンアミド等にはほとんど作用を示さない。 またグリシンがアミノ末端位に位置するペプ
チドであり、そのペプチド中のグリシン残基の
α−アミノ基がカルボベンゾキシ基で保護され
た化合物を基質として用いた時、本酵素はN〓
−カルボベンゾキシグリシルグリシンに作用し
グリシン残基間のペプチド結合の開裂が認めら
れたが、その他の化合物、例えばN〓−カルボ
ベンゾキシグリシル−L−ロイシン、N〓−カ
ルボベンゾキシグリシル−L−フエニルアラニ
ン、N〓−カルボベンゾキシグリシル−L−プ
ロリン、N〓−カルボベンゾキシグリシルグリ
シルグリシン、N〓−カルボベンゾキシグリシ
ルグリシル−L−フエニルアラニンまたはN〓
−カルボベンゾキシグリシルグリシル−L−セ
リン等には全く作用しない。そしてグリシンが
アミノ末端位に位置するペプチドであり、その
ペプチド中のグリシン残基のα−アミノ基がベ
ンゾイル基で保護された化合物、例えばN〓−
ベンゾイルグリシルグリシンあるいはN〓−ベ
ンゾイルグリシル−L−ヒスチジル−L−ロイ
シン等にはほとんど作用しない。 グリシンをカルボキシル末端位に含むジペプ
チド、例えばL−アラニル−グリシン、L−チ
ロシルグリシン、L−フエニルアラニル−グリ
シンあるいはグリシルグリシン等には全く作用
しない。またグリシンがアミノ末端位に位置す
るジペプチド、例えばグリシル−L−ロイシン
あるいはグリシル−L−フエニルアラニンにも
全く作用しない。 グリシンまたはL−アラニンあるいはL−セ
リン以外の天然型アミノ酸のα−アミノ基がカ
ルボベンゾキシ基、ベンゾイル基、またはアセ
チル基で保護された化合物には全く作用しな
い。 本酵素の種々な基質に対する活性を第1表に
示す。なお、第1表中の相対活性はN〓−カル
ボベンゾキシグリシンに対する分解活性を100
とした時の活性比で示したものである。
The present invention relates to a novel enzyme N-carbobenzoxyamino acid amide hydrolase, which differs in various properties from known aminoacylases, and a method for producing the same. Aminoacylase is an enzyme that acts on the acid amide bond of an N-acylamino acid in which the α-amino group of the amino acid is acylated, and catalyzes a reaction that produces an amino acid and a fatty acid corresponding to the acyl group. In addition, the enzyme called hiprate hydrolase or hiplicase is a type of aminoacylase, and it acts on hipric acid, a compound in which benzoic acid and glycine are dehydrated and condensed through an acid amide bond, and initiates the reaction that produces benzoic acid and glycine. It is a catalytic enzyme. Generally, these enzymes are N〓-acyl-DL-
When acting on a mixture of amino acids, N-acyl-L-amino acids can be selectively hydrolyzed. Based on this principle, acylase has been put to practical use in the production process of L-amino with high optical purity.
Although several aminoacylases produced by microorganisms have already been invented and put into practical use, it is important to provide new aminoacylases that are different from these known acylases in the production of amino acids, peptides, pharmaceutical raw materials, reagents, etc. This is one of the important issues in the field of chemistry, and it is also an important issue from the perspective of enzyme chemistry or analytical chemistry. It has been known that enzymes that hydrolyze N-acylamino acids, in which the α-amino group of L-amino acids is acylated, exist in mammalian tissues, molds, bacteria, actinomycetes, and various plant seeds. has been
In particular, aminoacylase derived from pig kidney cortex [J.Biol.
Chem., 194 , 455 (1952)] is well known. In microbial origin, Aspergillus or Rhizopus [Bull.Agr.Chem.
Soc.Jpn., 21 , 291, 296, 300, 304 (1957)], Corynebacterium genus [Special Publication No. 49-13989], Pseudomonas genus [Special Publication No. 56-43353], Lactobacillus (Lactobacillus) genus [J.Biol.Chem.,
235 , 3193 (1960)], and the genus Streptomyces [JP-A-53-59092]. These known aminoacylases have a degrading effect on various acylamino acids, but
It has no effect on compounds in which the α-amino group of an amino acid is protected with a carbobenzoxy group, ie, N-carbobenzoxy amino acids. Therefore, in view of the current situation, the present inventor conducted a wide range of studies on microbial cultures with the aim of searching for enzymes that act on N-carbobenzoxyamino acids.
We have discovered an activity that acts on N-carbobenxyamino acids in cultures of bacteria belonging to lactic acid bacteria. As a result of extensive research into this active factor, we discovered a novel enzyme that had never been reported before, and named it N-carbobenzoxyamino acid amide hydrolase. The present invention was completed based on this discovery. That is, the present invention has the general formula: [In the formula, R 1 represents a carbobenzoxy group or benzoyl group and R 2 represents a hydrogen, methyl group or hydroxymethyl group] to produce alanine, serine or glycine and benzyl alcohol or benzoic acid. The present invention relates to an enzyme N-carbobenzoxyamino acid amide hydrolase having the following properties and its production method: Substrate specificity: The α-amino group of glycine, L-alanine and L-serine is a carbobenzoxy group, a benzoyl group, or a nucleus. It acts on compounds protected with a carbobenzoxy group having a substituent or a benzyl group having a nuclear substituent and N〓-carbobenzoxyglycylglycine, but N〓-acetylglycine, N〓
-Does not act on acetyl-L-alanine. Optimum pH: 5-7 Working temperature: 37-60℃ Molecular weight: Approximately 235,000 Isoelectric point: 4.3-4.6 Activation: Activated with Co or Zn ions The enzyme of the present invention can be produced from a strain belonging to the genus Lactobacillus. I solved it. The bacterial strain may be any bacterial strain as long as it has the ability to produce N-carbobenzoxyamino acid amide hydrolase, or may be a variant or mutant of such a bacterial strain. A specific example of the above-mentioned strain belonging to the genus Lactobacillus is Lactobacillus casei. This strain is from the American Type Culture Collection.
Lactobacillus casei
It is ATCC7469. In the present invention, the medium used for producing N-carbobenzoxyamino acid amide hydrolase using N-carbobenzoxyamino acid amide hydrolase-producing bacteria may be a medium used for the cultivation of ordinary lactic acid bacteria. It will be done. That is,
Any material may be used as long as it contains a carbon source, a nitrogen source, an inorganic salt, and, if necessary, micronutrients that can be assimilated by the N-carbobenzoxyamino acid amide hydrolase producing bacteria. Examples of carbon sources include carbohydrates such as glucose, fructose, lactose, sucrose, dextrin, starch hydrolyzate, malt extract, and blackstrap molasses, organic acids such as citric acid, succinic acid, fumaric acid, and acetic acid, and mannitol and glycerin. Alcohols are used. The nitrogen source for the medium may be any nitrogen compound that can be assimilated or one containing it, such as polypeptone, meat extract, hydrolysates of proteins such as soybean, various amino acids, ammonium salts, nitrates, and the like. In addition, as inorganic salts, for example, inorganic salts such as manganese, phosphoric acid, potassium, and magnesium may be used as appropriate, or as organic micronutrients, amino acids, vitamins, purine bases, peptones containing these, yeast extracts, etc. may be used as appropriate. I can do it. The bacteria are cultured by static culture. Stirring submerged culture is suitable for industrial production such as mass culture, but culture can also be carried out under aerobic conditions such as aerated stirring culture and permeation culture. The culture temperature is 30 to 40°C, preferably around 37°C, and the medium pH is 8 to 5, preferably
It is around 7.0. The culture time varies depending on the culture format, but is usually 14 to 17 hours. The N-carbobenzoxyamino acid amide hydrolase of the present invention exists in the culture solution and within the bacterial cells of N-carbobenzoxyamino acid amide hydrolase-producing bacteria, but most of it exists within the bacterial cells. By prolonging the culture time, autolysis can be induced and N-carbobenzoxyamino acid amide hydrolase can be released into the culture solution. In order to extract and purify the N-carbobenzoxyamino acid amide hydrolase of the present invention from a culture, conventional enzyme protein extraction and purification methods can be applied. For example, after collecting bacterial cells from a culture using an appropriate operation such as centrifugation, the bacterial cells are crushed mechanically with an appropriate abrasion agent such as glass beads, or by ultrasonic irradiation. The bacterial cells can be disrupted using a French press, a lytic enzyme such as lysozyme, or an osmotic shock, or the bacterial cells can be dissolved in water, physiological saline, or a buffer solution. After suspending the enzyme and extracting it by standing or permeating in the presence of toluene, the solution is subjected to an appropriate operation such as centrifugation to remove insoluble materials, and the crude enzyme solution is obtained as it is. Ordinary protein concentration methods, such as freeze-drying a crude enzyme solution,
Alternatively, a method of fractional precipitation using an organic solvent such as ethanol, acetone, or isopropanol, or a method of performing a dialysis operation using an ultrafiltration membrane, hollow fiber membrane, collodion membrane, etc. after salting out using salts such as ammonium sulfate. A crude enzyme powder can be obtained by appropriately selecting and implementing the following methods. In order to separate the purified enzyme from the above-mentioned crude enzyme solution or crude enzyme powder, an appropriate combination of ion exchange, gel filtration, adsorption, electrophoresis, affinity chromatography, etc. is carried out. For example, ion exchange chromatography using an ion exchanger such as diethylaminoethyl-cephadex, adsorption chromatography using an adsorbent such as aminohexyl-cephalose or hydroxyapatite, or hydrophilic carriers such as sephadex or cephalose or cephacryl. Gel filtration method used, electrophoresis method using polyacrylamide gel or carrier ampholite, affinity chromatography method using a hydrophilic carrier to which an appropriate ligand compound is chemically bonded, molecular weight method using molecular sieve membrane or hollow fiber membrane, etc. The purified enzyme can be obtained by appropriately selecting a fractionation method and performing a combination of these methods. A typical method for producing the novel enzyme of the present invention and its collection method is to culture a strain of the genus Lactobacillus having the ability to produce N-carbobenzoxyamino acid amidohydrolase, such as Lactobacillus casei, collect the cultured strains, and adjust the pH to neutral. By disrupting in a buffer solution of
The enzyme extract is obtained. This extract may be purified by the following method if necessary. For example, the above-mentioned extract is subjected to liquid chromatography using a column filled with dextrin or a cellulose derivative having anion exchange ability, and the active fraction thereof is collected. Further, the concentrated solution may be collected by ultrafiltration. If necessary, the ultrafiltration concentrate may be subjected to adsorption column chromatography, and the active fraction thereof may be fractionated and concentrated by an appropriate method, for example, using a suitable organic solvent. If further production is required, this may be fractionated by one or more gel filtration chromatographies and the active fraction may be collected. Although the above manufacturing method is the most preferred method, the method of the present invention is not limited thereto, and suitable changes may be made, such as substituting some of the steps with other methods or omitting some of the steps. Good too. process alternatives,
Additions and deletions may be appropriately selected depending on the culture conditions, type, by-products, required purity, etc. of the strain. The novel N-carbobenzoxyamino acid amide hydrolase obtained by the above method has the characteristics described below and is clearly distinguishable from known aminoacylases collected from microbial or mammalian tissues or plant seeds. be done. That is, these known enzymes act on N-acylamino acids in which the α-amino group of the amino acid is acylated, and catalyze the reaction that produces fatty acids and amino acids corresponding to the acyl group, but the α-amino acid of the amino acid It has no effect on N-carbobenzoxy amino acids whose amino group is carbobenzoxylated. On the contrary,
The N-carbobenzoxyamino acid amide hydrolase of the present invention exhibits an extremely high decomposition effect on N-carbobenzoxyamino acids, and also shows no decomposition effect on N-acyl amino acids, which are suitable substrates for aminoacylases in general. do not have. Based on the above findings, the enzyme of the present invention can be clearly distinguished from any known aminoacylases and is recognized as a novel enzyme. The physicochemical properties of the enzyme N-carbobenzoxyamino acid amide hydrolase of the present invention will be described below. (1) Action: Acts on N-carbobenzoxyglycine,
Benzyl alcohol and glycine are produced as reaction products. N〓-carbobenzoxy-L
-Acts on alanine and produces benzyl alcohol and alanine as reaction products. N〓-
It acts on carbobenzoxy-L-serine and produces benzyl alcohol and serine as reaction products. Compounds in which the α-amino group of glycine or alanine is benzoylated, that is, N-benzoylglycine or N-benzoyl-L-alanine, also exhibit a decomposition effect, and the products of the decomposition reaction are benzoic acid and glycine or alanine. generate. (2) Substrate specificity The α-amino group of glycine, L-alanine, and L-serine is protected with a carbobenzoxy group, a benzoyl group, a carbobenzoxy group with a nuclear substituent, or a benzoyl group with a nuclear substituent. It acts on compounds that are It has no effect on compounds in which the α-amino group of glycine or L-alanine is acetylated, that is, N-acetylglycine and N-acetyl-L-alanine, and this enzyme exhibits an aminoacylase-like action. do not have. When N-carbobenzoxy-D-alanine or N-benzoyl-D-alanine is used as a substrate, unlike in the case of the L-form of the compound, this enzyme does not act at all, and its degrading action is L
specific for compounds containing amino acids. Compounds in which the α-amino group of glycine is protected with a group other than the above, such as N-formylglycine, N-phenylacetylglycine, N-
p-Nitrophenylacetylglycine, N〓-
It has no effect on 2,4-dinitrophenylglycine, N-triphenylglycine, N-phthalylglycine, N-tolylsulfonylglycine, or N-t-butoxycarbonylglycine, and has no effect on L-alanine. Even in the case of , it has no effect on compounds protected with similar groups. A compound in which the carboxyl group of N-carbobenzoxyglycine is protected with a residue other than an amino acid residue, such as N-carbobenzoxyglycine,
It has almost no effect on methyl esters, N-carbobenzoxyglycinamide, etc. Furthermore, when a peptide in which glycine is located at the amino terminal position and a compound in which the α-amino group of the glycine residue in the peptide is protected with a carbobenzoxy group is used as a substrate, this enzyme
-Carbobenzoxyglycylglycine and cleavage of the peptide bond between glycine residues was observed, but other compounds such as N〓-carbobenzoxyglycyl-L-leucine, N〓-carbobenzoxyglycyl Cyl-L-phenylalanine, N〓-carbobenzoxyglycyl-L-proline, N〓-carbobenzoxyglycylglycylglycine, N〓-carbobenzoxyglycylglycyl-L-phenylalanine or N〓
-It has no effect on carbobenzoxyglycylglycyl-L-serine, etc. A peptide in which glycine is located at the amino terminal position, and a compound in which the α-amino group of the glycine residue in the peptide is protected with a benzoyl group, such as N
It has almost no effect on benzoylglycylglycine or N-benzoylglycyl-L-histidyl-L-leucine. It has no effect on dipeptides containing glycine at the carboxyl terminal position, such as L-alanyl-glycine, L-tyrosylglycine, L-phenylalanyl-glycine or glycylglycine. It also has no effect on dipeptides in which glycine is located at the amino terminal position, such as glycyl-L-leucine or glycyl-L-phenylalanine. It does not act at all on compounds in which the α-amino group of a natural amino acid other than glycine, L-alanine, or L-serine is protected with a carbobenzoxy group, benzoyl group, or acetyl group. Table 1 shows the activity of this enzyme against various substrates. In addition, the relative activity in Table 1 is based on the degrading activity for N-carbobenzoxyglycine 100
It is shown as an activity ratio when

【表】【table】

【表】 (3) 力価の測定法 0.025M CoCl20.02mlと酵素液0.05mlに0.05M
リン酸緩衝液(PH6.0)を加えて全容0.45mlと
し、これに0.01M N〓−カルボベンゾキシグ
リシン0.05mlを加え、50℃で10〜30分間反応さ
せた後、蒸溜水0.5mlを加え全容を1mlとす
る。この反応混液を用い、酵素反応の結果、生
成遊離されるグリシンをニンヒドリン比色法
[E.W.Yemm&E.C.Cocking.、Analyst.、80
209(1955)]で定量した。 酵素活性の測定法は以下に示すごとくであ
る。 なお、上記反応系でグリシン1mMを1時間
で生成する酵素活性を1単位(unit)とした。
また比活性は上記の方法により測定した酵素活
性の酵素蛋白1mg当りの酵素単位で表示した。
なお蛋白の定量は紫外部の吸光度を測定するこ
とによつて行なつた。 (4) 作用至適PHおよび作用適温の範囲 第1図に示されるように作用至適PHの範囲は
5〜7であり、作用最適PHは6.0付近である。 第2図に示されるように作用適温の範囲は37
〜60℃であり、作用最適温度は50℃付近であ
る。 (5) 安定PHおよび安定温度範囲 安定PH範囲は6〜7にあり、第3図に示され
るようにPH6.5、35℃、16時間後の活性残存率
は70%である。 安定温度範囲は45℃までであり、第4図に示
されるようにPH6.2、40℃、1時間後の活性残
存率は100%であり、50℃、1時間で70%であ
り、60℃、1時間ではほぼ完全に失活する。 (6) 酵素活性に及ぼす各種金属イオンの影響 各種金属イオンを最終濃度が第2表に示す濃
度になるように酵素溶液に添加し、50℃、10分
間反応せしめた後、N〓−カルボベンゾキシグ
リシンを基質として用いて酵素活性を測定した
結果を第2表に示す。 なお第2表中の相対活性はCoCl21mM存在
下での分解活性を100とした時の活性比で示し
たものである。
[Table] (3) Titer measurement method 0.025M CoCl 2 0.02ml and enzyme solution 0.05ml 0.05M
Add phosphate buffer (PH6.0) to make a total volume of 0.45 ml, add 0.05 ml of 0.01 M N-carbobenzoxyglycine, react at 50°C for 10 to 30 minutes, and then add 0.5 ml of distilled water. Add to make a total volume of 1 ml. Using this reaction mixture, the glycine released as a result of the enzymatic reaction was measured using the ninhydrin colorimetric method [EWYemm & E.C. Cocking., Analyst., 80 ,
209 (1955)]. The method for measuring enzyme activity is as shown below. In addition, the enzyme activity to produce 1 mM of glycine in 1 hour in the above reaction system was defined as 1 unit.
Further, the specific activity was expressed in enzyme units per mg of enzyme protein of the enzyme activity measured by the above method.
The protein was quantified by measuring absorbance in ultraviolet light. (4) Range of optimal PH and temperature for action As shown in Figure 1, the range of optimal PH for action is 5 to 7, and the optimal PH for action is around 6.0. As shown in Figure 2, the range of suitable temperature for action is 37
~60°C, and the optimum temperature for action is around 50°C. (5) Stable PH and stable temperature range The stable PH range is between 6 and 7, and as shown in Figure 3, the activity residual rate after 16 hours at PH6.5 and 35°C is 70%. The stable temperature range is up to 45℃, and as shown in Figure 4, the activity residual rate is 100% after 1 hour at PH6.2 and 40℃, and 70% after 1 hour at 50℃. It is almost completely inactivated in 1 hour at ℃. (6) Effect of various metal ions on enzyme activity Various metal ions were added to the enzyme solution so that the final concentration was as shown in Table 2, and after reacting at 50°C for 10 minutes, N-carbobenzo Table 2 shows the results of measuring enzyme activity using xyglycine as a substrate. Note that the relative activities in Table 2 are expressed as activity ratios when the decomposition activity in the presence of 1 mM CoCl 2 is taken as 100.

【表】【table】

【表】 (7) 酵素活性に及ぼす金属キレート化合物、SH
試薬、または蛋白修飾試薬の影響 各種の金属キレート化合物、SH試薬、有機
水銀化合物、または蛋白修飾試薬を最終濃度が
第3表に示す濃度になるように酵素溶液(1m
M CoCl2を含有)に添加し、50℃、10分間反
応せしめた後、N〓−カルボベンゾキシグリシ
ンを基質として用いて残存酵素活性を測定した
結果を第3表に示す。 なお第3表中の相対活性は上記の薬剤を添加
しないで測定した時の酵素活性を100とし、そ
の活性比で示したものである。
[Table] (7) Effect of metal chelate compounds and SH on enzyme activity
Effects of reagents or protein modification reagents Various metal chelate compounds, SH reagents, organic mercury compounds, or protein modification reagents were added to enzyme solutions (1 ml) at final concentrations shown in Table 3.
Table 3 shows the results of measuring the residual enzyme activity using N-carbobenzoxyglycine as a substrate after reacting at 50° C. for 10 minutes. The relative activities in Table 3 are expressed as activity ratios, with the enzyme activity measured without the addition of the above-mentioned drugs being taken as 100.

【表】 (8) 分子量 0.1M NaClを含有する0.01Mリン酸緩衝液
(PH6.8)で平衡化したセフアロース 6B(フア
ルマシア・フアインケミカルズ社製)を用いた
ゲル濾過クロマトグラフイーにより分子量を測
定した。標準蛋白質としてはチログロブリン、
カタラーゼ、アルトラーゼを用いた。その結果
本酵素の分子量は235000であることが解つた。 (9) 等電点 ポリアクリルアミドゲル等電点分離法により
等電点を測定した。この結果、本酵素の等電点
は4.3〜4.6の範囲にあることが解つた。 (10) デイスク電気泳動 ポリアクリルアミドを担体とし7.0%ゲル濃
度、PH8.0のトリス・バルビタール緩衝液を用
いデイスク電気泳動を行なつた。カラム1本あ
たり3mAの電流を通じ、4℃で1時間泳動を
行なつた後、クマシブリリアントブルーR−
250で染色した。その結果、マーカー(ブロム
フエノールブルー)に対する本酵素の比泳動距
離RmBPB=0.51であつた。 本発明の新規な酵素N〓−カルボベンゾキシア
ミノ酸アミドヒドロラーゼは以上の性質を有する
酵素である。 以下、実施例を挙げて本発明を具体的に説明す
るが、本発明はこれにより制限されるものではな
い。 実施例 1 水1につきカザミノ酸(デイフコ社製)5
g、バクトトリプトン(デイフコ社製)5g、L
−システイン0.2g、L−アスパラギン酸0.1g、
DL−アラニン0.5g、DL−トリプトフアン0.2
g、グルコース20g、酢酸ナトリウム10g、コハ
ク酸ナトリウム20g、KH2PO40.5g、K2HPO40.5
g、FeSO4・7H2O10mg、MnSO4・H2O10mg、
MgSO4・7H2O10mg、NaCl 10mg、チアミン1
mg、パントテン酸カルシウム1mg、葉酸0.25mg、
p−アミノ安息香酸0.5mg、ビオチン5μg、ア
デニン硫酸塩5mg、グアニン塩酸塩5mg、ウラシ
ル5mg、Tween80 1mlを含有する培養量をPH6.8
に調整後、100ml容三角フラスコ10本にそれぞれ
100mlずつ分注し、120℃で10分間殺菌した。この
殺菌培地にラクトバシラス・カゼイ ATCC7469
株の穿刺培地より、それぞれ3白金耳を接種し、
37℃、24時間静置培養を行なつた。 この前培養液200mlを前培養に用いた培地と全
く同じ組成の培地20の入つた30容ステンレス
製ジヤーフアーメンターに移し、37℃で毎分45回
転の撹拌で本培養を行なつた。 16時間で本培養を終了し、培養液を遠心分離
し、菌体を集めた。同様に5度の培養を行ない合
計100の培養液から湿重量で1Kgの菌体を得
た。 このようにして得られた菌体を0.01Mリン酸緩
衝液(PH6.8)約2000mlに懸濁し、0.1mm径ガラス
ビーズ約1.2Kgを入れたダイノミル(ウイリー・
エー・バコオヘン社製)を用い、0℃の水で冷却
しつつ菌体を破壊した。この破壊液を遠心分離
(0℃、12000rpm、30分)し、粘性のある淡黄色
の細胞抽出液2750mlを得た。 実施例 2 実施例1で得られた粗酵素液2750mlに固形硫安
662gを氷冷下、撹拌しながら少量ずつ添加し、
40%飽和とする。このものは氷室に30分放置後、
生じた沈澱を遠心分離にて除去し、その上澄液に
更に固形硫安564gを氷冷下、撹拌しながら少量
ずつ添加し70%飽和とする。このものは一夜氷室
に放置した後、生じた沈澱を遠心分離にて回収し
た。得られた硫安沈澱物は0.01Mリン酸緩衝液
(PH6.8)に溶解し、同緩衝液に対して16時間透析
を行ない、800mlの透析溶液を得た。この酵素液
のN〓−カルボベンゾキシグリシン分解活性は
9.35単位/ml、蛋白濃度は13mg/mlであつた。 実施例 3 実施例2で得られた酵素液800mlを、予め3m
MのNaN3を含む0.01Mリン酸緩衝液(PH6.8)で
平脚衡化したDEAE−セフアデツクスA−50(フ
アルマシア・フアインケミカルズ社製)の7.0cm
×86.0cmのカラムに注ぎ、同緩衝液にて十分洗浄
した後、同緩衝液を用い、0〜1M NaClの直線
グラジエント溶出を行ない、N〓−カルボベンゾ
キシアミノ酸アミドヒドロラーゼ活性画分800ml
を得、これをメンブラン濃縮器(米国アミコン社
製、PM−10)で限外濾過を行ない、145mlの酵素
液を得た。この酵素液の活性は51単位/mlであつ
た。 実施例 4 実施例3で得られた酵素液145mlを、予め
0.01Mリン酸緩衝液(PH6.8)で平衡化したAH−
セフアロース 4B(フアルマシア・フアインケ
ミカルズ社製)の3.0cm×58.0cmのカラムに注
ぎ、同緩衝液2.5で洗浄した後、同緩衝液を用
い、0〜1M NaClの直線グラジエント溶出を行
ない、N〓−カルボベンゾキシアミドヒドロラー
ゼ活性画分116mlを得、これをポリエチレングリ
コールを用いて濃縮し、29mlの酵素液を得た。こ
の酵素液の活性は208単位/mlであつた。 実施例 5 実施例4で得られた酵素液29mlを、予め3mM
NaN3、0.01%2−メルカプトエタノールおよ
び0.1M NaClを含有した0.01Mリン酸緩衝液(PH
6.8)で平衡化したセフアデツクス G−150(フ
アルマシア・フアインケミカルズ社製)の5.0cm
×88.0cmのカラムに注ぎ、同緩衝液により、22.5
ml/hrの流速で溶出を行ない、N〓−カルボベン
ジルオキシアミノ酸アミドヒドロラーゼ活性画分
295mlを得、これをポリエチレングリコールを用
いて濃縮し、34mlの酵素液を得た。この酵素液の
活性は233単位/mlであつた。 実施例 6 実施例5で得られた酵素液34mlを、0.01%メル
カプトエタノールおよび3mM NaN3を含む
0.01Mリン酸緩衝液(PH6.8)で平衡化したDEAE
−セフアデツクス A−50(フアルマシア・フア
インケミカルズ社製)の5.0cm×70.0cmのカラム
に注ぎ、カラムを同緩衝液で十分洗浄した後、同
緩衝液を用い、0〜1M NaClの直線グラジエン
ト溶出を行ない、N〓−カルボベンゾキシアミノ
酸アミドヒドロラーゼ活性画分117mlを得、これ
をポリエチレングリコールで濃縮して、22.5mlの
酵素液を得た。この酵素液の活性は373単位/ml
であつた。 実施例 7 実施例6で得られた酵素液22.5mlを予め、0.01
%2−メルカプトエタノール、3mM NaN3
び0.1M NaClを含有した0.01Mリン酸緩衝液(PH
6.8)で平衡化したセフアクリル S−300(フア
ルマシア・フアインケミカルズ社製)の2.6cm×
91.0cmのカラムに注ぎ、同緩衝液を用い12.5ml/h
rの流速で溶出を行ない、N〓−カルボベンゾキ
シアミノ酸アミドヒドロラーゼ活性画分60mlを
得、これをポリエチレングリコールで濃縮して、
14mlの酵素液を得た。この酵素液の活性は431単
位/mlであつた。 実施例 8 実施例7で得られた酵素液14mlを、予め実施例
7と全く同条件の緩衝液で平衡化したセフアクリ
ル S−300(フアルマシア・フアインケミカル
ズ社製)の2.6cm×91.0cmのカラムに注ぎ、同緩
衝液を用いて9.5ml/hrの流速で溶出を行ない、N
〓−カルボベンゾキシアミノ酸アミドヒドロラー
ゼ活性画分75mlを得、これをポリエチレングリコ
ールで濃縮して、25mlの酵素液を得た。この精製
酵素液の活性は362単位/mlで、蛋白1mg当り995
単位の活性を示した。 上記精製工程における全活性、比活性、収率を
第4表に示す。
[Table] (8) Molecular weight Molecular weight was determined by gel filtration chromatography using Sepharose 6B (manufactured by Pharmacia Fine Chemicals) equilibrated with 0.01M phosphate buffer (PH6.8) containing 0.1M NaCl. It was measured. Standard proteins include thyroglobulin,
Catalase and altolase were used. As a result, the molecular weight of this enzyme was found to be 235,000. (9) Isoelectric point Isoelectric point was measured by polyacrylamide gel isoelectric point separation method. As a result, it was found that the isoelectric point of this enzyme was in the range of 4.3 to 4.6. (10) Disk electrophoresis Disc electrophoresis was performed using polyacrylamide as a carrier and a Tris-barbital buffer solution with a gel concentration of 7.0% and a pH of 8.0. After running a current of 3 mA per column and running at 4°C for 1 hour, Kumasi Brilliant Blue R-
Stained with 250. As a result, the specific electrophoretic distance of this enzyme with respect to the marker (bromophenol blue) was Rm BPB = 0.51. The novel enzyme N-carbobenzoxyamino acid amide hydrolase of the present invention has the above properties. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example 1 5 parts of casamino acid (manufactured by Difco) per 1 part of water
g, Bactotryptone (manufactured by Difco) 5g, L
- Cysteine 0.2g, L-aspartic acid 0.1g,
DL-alanine 0.5g, DL-tryptophan 0.2
g, glucose 20g, sodium acetate 10g, sodium succinate 20g, KH 2 PO 4 0.5g, K 2 HPO 4 0.5
g, FeSO47H2O10mg , MnSO4H2O10mg ,
MgSO 4 7H 2 O 10mg, NaCl 10mg, Thiamine 1
mg, calcium pantothenate 1 mg, folic acid 0.25 mg,
A culture volume containing 0.5 mg of p-aminobenzoic acid, 5 μg of biotin, 5 mg of adenine sulfate, 5 mg of guanine hydrochloride, 5 mg of uracil, and 1 ml of Tween 80 was adjusted to pH 6.8.
After adjusting to 100 ml Erlenmeyer flasks, each
The mixture was dispensed into 100ml portions and sterilized at 120°C for 10 minutes. This sterilized medium contains Lactobacillus casei ATCC7469.
Three loopfuls of each were inoculated from the puncture medium of the strain,
Static culture was performed at 37°C for 24 hours. 200 ml of this preculture solution was transferred to a 30 volume stainless steel jar fermenter containing medium 20 having exactly the same composition as the medium used for preculture, and main culture was carried out at 37° C. with stirring at 45 revolutions per minute. The main culture was terminated after 16 hours, the culture solution was centrifuged, and the bacterial cells were collected. The culture was carried out 5 times in the same manner, and bacterial cells weighing 1 kg (wet weight) were obtained from a total of 100 culture solutions. The bacterial cells thus obtained were suspended in approximately 2000 ml of 0.01M phosphate buffer (PH6.8), and Dynomill (Willy) containing approximately 1.2 kg of 0.1 mm diameter glass beads was suspended.
(manufactured by A-Bakoohen Co., Ltd.), and the bacterial cells were destroyed while cooling with water at 0°C. This disrupted solution was centrifuged (0° C., 12,000 rpm, 30 minutes) to obtain 2,750 ml of a viscous pale yellow cell extract. Example 2 Solid ammonium sulfate was added to 2750 ml of the crude enzyme solution obtained in Example 1.
Add 662g little by little while stirring under ice cooling.
Set to 40% saturation. After leaving this item in the ice room for 30 minutes,
The resulting precipitate was removed by centrifugation, and 564 g of solid ammonium sulfate was added little by little to the supernatant with stirring under ice cooling to achieve 70% saturation. This product was left in an ice chamber overnight, and the resulting precipitate was collected by centrifugation. The obtained ammonium sulfate precipitate was dissolved in 0.01M phosphate buffer (PH6.8) and dialyzed against the same buffer for 16 hours to obtain 800 ml of dialysis solution. The N-carbobenzoxyglycine degrading activity of this enzyme solution is
The protein concentration was 9.35 units/ml and 13 mg/ml. Example 3 800 ml of the enzyme solution obtained in Example 2 was placed in a 3 m
7.0 cm of DEAE-Sephadex A-50 (manufactured by Pharmacia Fine Chemicals) equilibrated with 0.01M phosphate buffer (PH6.8) containing M NaN3
Pour into a x86.0cm column, wash thoroughly with the same buffer, perform linear gradient elution from 0 to 1M NaCl using the same buffer, and collect 800ml of N-carbobenzoxyamino acid amide hydrolase active fraction.
This was subjected to ultrafiltration using a membrane concentrator (PM-10, manufactured by Amicon, USA) to obtain 145 ml of enzyme solution. The activity of this enzyme solution was 51 units/ml. Example 4 145 ml of the enzyme solution obtained in Example 3 was added in advance.
AH− equilibrated with 0.01M phosphate buffer (PH6.8)
Pour into a 3.0 cm x 58.0 cm column of Sepharose 4B (manufactured by Pharmacia Fine Chemicals), wash with 2.5 cm of the same buffer, and perform linear gradient elution from 0 to 1 M NaCl using the same buffer. - 116 ml of a carbobenzoxyamide hydrolase active fraction was obtained, which was concentrated using polyethylene glycol to obtain 29 ml of an enzyme solution. The activity of this enzyme solution was 208 units/ml. Example 5 29ml of the enzyme solution obtained in Example 4 was diluted with 3mM in advance.
0.01M phosphate buffer (PH
6.8) and 5.0 cm of Cephadex G-150 (manufactured by Pharmacia Fine Chemicals).
Pour into a x 88.0 cm column and add 22.5
Elution was performed at a flow rate of ml/hr, and the N-carbobenzyloxyamino acid amide hydrolase active fraction
295 ml was obtained, which was concentrated using polyethylene glycol to obtain 34 ml of enzyme solution. The activity of this enzyme solution was 233 units/ml. Example 6 34 ml of the enzyme solution obtained in Example 5 was mixed with 0.01% mercaptoethanol and 3mM NaN3 .
DEAE equilibrated with 0.01M phosphate buffer (PH6.8)
- Pour into a 5.0cm x 70.0cm column of Cephadex A-50 (manufactured by Pharmacia Fine Chemicals), wash the column thoroughly with the same buffer, and then elute with a linear gradient of 0 to 1M NaCl using the same buffer. 117 ml of N-carbobenzoxyamino acid amide hydrolase active fraction was obtained, which was concentrated with polyethylene glycol to obtain 22.5 ml of enzyme solution. The activity of this enzyme solution is 373 units/ml
It was hot. Example 7 22.5 ml of the enzyme solution obtained in Example 6 was added in advance to a concentration of 0.01
0.01M phosphate buffer ( PH
6.8) of Cephacryl S-300 (manufactured by Pharmacia Fine Chemicals), 2.6 cm x
Pour into a 91.0 cm column and use the same buffer at 12.5 ml/h.
Elution was performed at a flow rate of r to obtain 60 ml of N-carbobenzoxyamino acid amidohydrolase active fraction, which was concentrated with polyethylene glycol.
14 ml of enzyme solution was obtained. The activity of this enzyme solution was 431 units/ml. Example 8 14 ml of the enzyme solution obtained in Example 7 was placed in a 2.6 cm x 91.0 cm Cefacryl S-300 (manufactured by Pharmacia Fine Chemicals) equilibrated in advance with a buffer solution under exactly the same conditions as in Example 7. Pour into the column and elute with the same buffer at a flow rate of 9.5 ml/hr.
75 ml of a carbobenzoxyamino acid amide hydrolase active fraction was obtained and concentrated with polyethylene glycol to obtain 25 ml of an enzyme solution. The activity of this purified enzyme solution is 362 units/ml, which is 995 units per mg of protein.
It showed the activity of the unit. Table 4 shows the total activity, specific activity, and yield in the above purification process.

【表】 参考例 1 N〓−ベンゾイルグリシンを0.05Mリン酸緩衝
液(PH6.8)に溶かし、10μmol/mlの溶液を調整
し、その20mlに上記精製法で得られた酵素液1ml
を加え、37℃で1時間反応した後、この反応液を
エーテル20mlを用いて3回抽出を行なつた。この
エーテル層を無水硫酸ナトリウムで乾燥した後、
エーテルを留去すると白色の結晶が析出した。こ
の結晶をIR、MS、UV、TLCで検討した結果、
エーテル層から得られた白色結晶は安息香酸であ
つた。 また、エーテル抽出した後の水層を濃縮した
後、シリカゲル 60のPre−Coated PLC plate
(メルク社製)に塗布し、溶媒、MeOH:
H2O60:40で展開した後、グリシン展開部分のシ
リカゲルをかきとり、ビーカー中で水で抽出を行
なつた。シリカゲルを濾過して取除いた後、水溶
液を濃縮し析出した白色結晶をMeOHと水の混液
から再結晶した。この結晶はIR、mp、TLC元素
分析の結果、グリシンであつた。 N〓−ベンゾイルアラニンを全く同じ方法で処
理した結果、エーテル層から安息香酸、水層から
アラニンを検出した。 参考例 2 N〓−カルボベンゾキシグリシンを0.05Mリン
酸緩衝液(PH6.8)に溶かし、10μmol/mlの溶液
を調整し、その10mlに上記精製法で得られた酵素
液1mlおよびM/10 CoCl2水溶液0.1mlを加え、
37℃で1時間反応した後、この反応液をエーテル
20mlを用いて3回抽出を行なつた。このエーテル
層を無水硫酸ナリリウムで乾燥した後、溶媒を留
去し、残つた液体をIR、UV、TLCおよびMSで
検討した結果、エーテルに抽出されたものはベン
ジルアルコールであつた。 また、エーテル抽出した後の水層をPH2.0に調
整したアンバーライトIR−120(ローム・アン
ド・ハース社製)にバツチ法で吸着させ、次に5
%NH4OHを用いて溶出した。これを濃縮して析
出した結晶をTLC、mp、IR元素分析で検討した
結果、水層から得られた結晶はグリシンであつ
た。 N〓−カルボベンゾキシアラニンを全く同じ方
法で処理した結果、エーテル層からベンジルアル
コール、水層からアラニンを検出した。
[Table] Reference example 1 Dissolve N-benzoylglycine in 0.05M phosphate buffer (PH6.8) to prepare a 10 μmol/ml solution, and add 1 ml of the enzyme solution obtained by the above purification method to 20 ml of the solution.
After reacting at 37° C. for 1 hour, the reaction solution was extracted three times with 20 ml of ether. After drying this ether layer with anhydrous sodium sulfate,
When the ether was distilled off, white crystals were precipitated. As a result of examining this crystal using IR, MS, UV, and TLC,
The white crystals obtained from the ether layer were benzoic acid. In addition, after concentrating the aqueous layer after ether extraction, silica gel 60 Pre-Coated PLC plate
(manufactured by Merck & Co.), solvent, MeOH:
After developing with H 2 O 60:40, the silica gel in the glycine developed area was scraped off and extracted with water in a beaker. After removing the silica gel by filtration, the aqueous solution was concentrated and the precipitated white crystals were recrystallized from a mixture of MeOH and water. As a result of IR, MP, and TLC elemental analysis, this crystal was found to be glycine. When N-benzoylalanine was treated in exactly the same manner, benzoic acid was detected in the ether layer and alanine was detected in the aqueous layer. Reference Example 2 Dissolve N-carbobenzoxyglycine in 0.05M phosphate buffer (PH6.8) to prepare a 10 μmol/ml solution, and add 1 ml of the enzyme solution obtained by the above purification method and M/ml to 10 ml of the solution. Add 0.1 ml of 10 CoCl 2 aqueous solution,
After reacting at 37°C for 1 hour, the reaction solution was diluted with ether.
Three extractions were performed using 20 ml. After drying this ether layer over anhydrous sodium sulfate, the solvent was distilled off, and the remaining liquid was examined by IR, UV, TLC, and MS. As a result, what was extracted into the ether was benzyl alcohol. In addition, the aqueous layer after ether extraction was adsorbed to Amberlite IR-120 (manufactured by Rohm and Haas) adjusted to pH 2.0 using the batch method, and then
Elution was performed using % NH4OH . The crystals precipitated by concentrating this were examined by TLC, MP, and IR elemental analysis, and the crystals obtained from the aqueous layer were found to be glycine. When N-carbobenzoxyalanine was treated in exactly the same manner, benzyl alcohol was detected in the ether layer and alanine was detected in the aqueous layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、N〓−カルボベンゾキシアミノ酸ア
ミドヒドロラーゼの最適PHを示す図である。第2
図は、N〓−カルボベンゾキシアミノ酸アミドヒ
ドロラーゼの作用温度を示す図である。第3図
は、N〓−カルボベンゾキシアミノ酸アミドヒド
ロラーゼの35℃におけるPH安定性を示す図であ
る。第4図は、N〓−カルボベンゾキシアミノ酸
アミドヒドロラーゼの熱安定性を示す図である。
FIG. 1 is a diagram showing the optimum pH of N-carbobenzoxyamino acid amidohydrolase. Second
The figure shows the action temperature of N-carbobenzoxyamino acid amidohydrolase. FIG. 3 is a diagram showing the PH stability of N-carbobenzoxyamino acid amidohydrolase at 35°C. FIG. 4 is a diagram showing the thermostability of N-carbobenzoxyamino acid amidohydrolase.

Claims (1)

【特許請求の範囲】 1 一般式: [式中、R1はカルボベンゾキシ基またはベンゾイ
ル基およびR2は水素、メチル基またはヒドロキ
シメチル基を表わす]で示される化合物に作用
し、アラニン、セリンまたはグリシンとベンジル
アルコールまたは安息香酸を生成する、以下の特
性を有する酵素N〓−カルボベンゾキシアミノ酸
アミドヒドロラーゼ: 基質特異性: グリシン、L−アラニンならびにL−セリンの
α−アミノ基がカルボベンゾキシ基、ベンゾイル
基、核置換基を有するカルボベンゾキシ基、また
は核置換基を有するベンジル基で保護された化合
物およびN〓−カルボベンゾキシグリシルグリシ
ンに作用するが、N〓−アセチルグリシン、N〓
−アセチル−L−アラニンには作用しない。 至適PH:5〜7 作用温度:37〜60℃ 分子量:約235000 等電点:4.3〜4.6 活性化:CoまたはZnイオンで活性化 2 ラクトバシラス属から得られる第1項記載の
N〓−カルボベンゾキシアミノ酸アミドヒドロラ
ーゼ。 3 DISC電気泳動がRm=0.51である第1項記載
のN〓−カルボベンゾキシアミノ酸アミドヒドロ
ラーゼ。 4 ラクトバシラス属に属し、一般式: [式中、R1はカルボベンゾキシ基またはベンゾイ
ル基およびR2は水素、メチル基またはヒドロキ
シメチル基を表わす]で示される化合物に作用
し、アラニン、セリンまたはグリシンとベンジル
アルコールまたは安息香酸を生成する、以下の特
性を有する酵素N〓−カルボベンゾキシアミノ酸
アミドヒドロラーゼ生産能を有する菌株を培地に
培養し培養物より新規なN〓−カルボベンゾキシ
アミノ酸アミドヒドロラーゼを採取することを特
徴とするN〓−カルボベンゾキシアミノ酸アミド
ヒドロラーゼの製法: 基質特異性: グリシン、L−アラニンならびにL−セリンの
α−アミノ基がカルボベンゾキシ基、ベンゾイル
基、核置換基を有するカルボベンゾキシ基、また
は核置換基を有するベンジル基で保護された化合
物およびN〓−カルボベンゾキシグリシルグリシ
ンに作用するが、N〓−アセチルグリシン、N〓
−アセチル−L−アラニンには作用しない。 至適PH:5〜7 作用温度:37〜60℃ 分子量:約235000 等電点:4.3〜4.6 活性化:CoまたはZnイオンで活性化 5 菌株がラクトバシラス・カゼイである第4項
記載の製造法。 6 採取を、培養液から菌株を集め、中性PHの緩
衝液中でこれを破壊し、破壊抽出液を塩析し、沈
澱物を中性PHの緩衝液に溶解後、同緩衝液で透析
することにより行う第4項記載の製法。 7 採取を、第6項記載の透析液をアニオン交換
液体クロマトグラフイーで処理し、その活性画分
を限外濾過し、その濃縮液を採取することにより
行う第4項記載の製法。 8 採取を、第7項記載の限外濾過濃縮液を吸着
カラムクロマトグラフイーにかけ、その活性画分
を所望により濃縮することにより行う第4項記載
の製法。 9 採取を、第8項記載の活性画分またはその濃
縮液をゲル濾過クロマトグラフイーにかけ、その
活性画分を所望により濃縮することにより行う第
4項記載の製法。 10 採取を、第9項記載の活性画分またはその
濃縮液をさらにゲル濾過クロマトグラフイーにか
ける第9項記載の製法。
[Claims] 1. General formula: [In the formula, R 1 represents a carbobenzoxy group or benzoyl group and R 2 represents a hydrogen, methyl group or hydroxymethyl group] to produce alanine, serine or glycine and benzyl alcohol or benzoic acid. The enzyme N-carbobenzoxyamino acid amide hydrolase has the following properties: Substrate specificity: α-amino groups of glycine, L-alanine, and L-serine have carbobenzoxy groups, benzoyl groups, and nuclear substituents. It acts on compounds protected with a carbobenzoxy group or a benzyl group having a nuclear substituent and N〓-carbobenzoxyglycylglycine, but N〓-acetylglycine, N〓
-Does not act on acetyl-L-alanine. Optimum pH: 5-7 Working temperature: 37-60°C Molecular weight: Approx. 235000 Isoelectric point: 4.3-4.6 Activation: Activated with Co or Zn ions 2 Benzoxyamino acid amide hydrolase. 3. The N-carbobenzoxyamino acid amide hydrolase according to item 1, wherein DISC electrophoresis shows Rm=0.51. 4 Belongs to the genus Lactobacillus, general formula: [In the formula, R 1 represents a carbobenzoxy group or benzoyl group and R 2 represents a hydrogen, methyl group or hydroxymethyl group] to produce alanine, serine or glycine and benzyl alcohol or benzoic acid. A strain capable of producing an enzyme N-carbobenzoxyamino acid amide hydrolase having the following characteristics is cultured in a medium, and a novel N-carbobenzoxyamino acid amide hydrolase is collected from the culture. -Production method of carbobenzoxy amino acid amide hydrolase: Substrate specificity: α-amino groups of glycine, L-alanine and L-serine are carbobenzoxy groups, benzoyl groups, carbobenzoxy groups having a nuclear substituent, or nuclear It acts on compounds protected with benzyl groups having substituents and N〓-carbobenzoxyglycylglycine, but N〓-acetylglycine, N〓
-Does not act on acetyl-L-alanine. Optimum pH: 5-7 Working temperature: 37-60°C Molecular weight: Approximately 235000 Isoelectric point: 4.3-4.6 Activation: Activated with Co or Zn ions 5 The production method according to item 4, wherein the bacterial strain is Lactobacillus casei . 6. Collect the bacterial strain from the culture solution, disrupt it in a buffer with a neutral pH, salt out the disrupted extract, dissolve the precipitate in a buffer with a neutral pH, and dialyze it with the same buffer. The manufacturing method according to item 4, which is carried out by. 7. The production method according to item 4, wherein the collection is performed by treating the dialysate according to item 6 with anion exchange liquid chromatography, ultrafiltering the active fraction, and collecting the concentrated solution. 8. The production method according to item 4, wherein the collection is performed by subjecting the ultrafiltration concentrate according to item 7 to adsorption column chromatography and optionally concentrating the active fraction. 9. The production method according to item 4, wherein the collection is performed by subjecting the active fraction described in item 8 or its concentrated solution to gel filtration chromatography, and optionally concentrating the active fraction. 10. The production method according to item 9, in which the collected active fraction or its concentrate according to item 9 is further subjected to gel filtration chromatography.
JP7853683A 1983-05-04 1983-05-04 N(alpha)-carbobenzoxyamino acid amide hydrolase and production thereof Granted JPS59203494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853683A JPS59203494A (en) 1983-05-04 1983-05-04 N(alpha)-carbobenzoxyamino acid amide hydrolase and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853683A JPS59203494A (en) 1983-05-04 1983-05-04 N(alpha)-carbobenzoxyamino acid amide hydrolase and production thereof

Publications (2)

Publication Number Publication Date
JPS59203494A JPS59203494A (en) 1984-11-17
JPS6151879B2 true JPS6151879B2 (en) 1986-11-11

Family

ID=13664628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853683A Granted JPS59203494A (en) 1983-05-04 1983-05-04 N(alpha)-carbobenzoxyamino acid amide hydrolase and production thereof

Country Status (1)

Country Link
JP (1) JPS59203494A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116980A1 (en) * 1991-05-24 1992-11-26 Degussa METHOD FOR THE PRODUCTION OF ENANTIOMERIC REINFORCED N-ALKYL-L OR D-AMINOSAURES

Also Published As

Publication number Publication date
JPS59203494A (en) 1984-11-17

Similar Documents

Publication Publication Date Title
Ståhl et al. The synthesis of a D-amino acid ester in an organic media with α-chymotrypsin modified by a bio-imprinting procedure
US4080259A (en) Process of preparing L and D α-amino acids by enzyme treatment of DL-α-amino acid amide
JPS6121095A (en) Production of l-alpha-aspartyl-l-phenylalanine lower alkyl ester
US5916774A (en) D-aminoacylase
US6030823A (en) D-aminoacylase
US4014860A (en) Plasminostreptin (enzyme inhibitor) and method for producing it from streptomyces
JPS6151879B2 (en)
US4581332A (en) Novel alkaline protease
JP3093039B2 (en) Novel esterase A and method for producing the same
JP3155448B2 (en) Method for producing L-amino acid or salt thereof
JP3685814B2 (en) Aminopeptidase and production method thereof
JPH01317387A (en) Novel d-amidase and production of d-alpha-alanine and/or l-alpha-alanineamide using same
EP0735143B1 (en) Process for preparing D-amino acids
JPS6152679B2 (en)
JPS6152678B2 (en)
JPH0822228B2 (en) Amino acid amide hydrolase and use thereof
JPS5840473B2 (en) Novel proline acylase and its production method
US5134073A (en) Microbiologically produced n-acetyl-2,3-didehydroleucine acylase
JP2000078971A (en) New enzyme for synthesizing oligopeptide from d- or l- aminoacid ester and microorganism producing the same
US4877734A (en) Microbiologically produced α-acetylamino cinnamic acid acylase, method of its production and its use
JPS6058068A (en) Novel amine dehydrogenase and oxidation of amine using it
JP3415218B2 (en) Method for producing D-α-amino acid
JP3866357B2 (en) Thermostable, solvent-resistant esterase
JP2674078B2 (en) Process for producing D-α-amino acid
JP2950865B2 (en) New aspartate racemase