JPS61500756A - Process for the preparation of cathodically depositable aqueous dispersions containing crosslinking agents based on polyisocyanates blocked with amino groups - Google Patents

Process for the preparation of cathodically depositable aqueous dispersions containing crosslinking agents based on polyisocyanates blocked with amino groups

Info

Publication number
JPS61500756A
JPS61500756A JP85500715A JP50071585A JPS61500756A JP S61500756 A JPS61500756 A JP S61500756A JP 85500715 A JP85500715 A JP 85500715A JP 50071585 A JP50071585 A JP 50071585A JP S61500756 A JPS61500756 A JP S61500756A
Authority
JP
Japan
Prior art keywords
nickel
layer
coating
plating
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP85500715A
Other languages
Japanese (ja)
Inventor
ヤテス,ダグラス・エイ
Original Assignee
モ−ビル・ソラ−・エナ−ジ−・コ−ポレ−ション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/681,003 external-priority patent/US4609565A/en
Application filed by モ−ビル・ソラ−・エナ−ジ−・コ−ポレ−ション filed Critical モ−ビル・ソラ−・エナ−ジ−・コ−ポレ−ション
Publication of JPS61500756A publication Critical patent/JPS61500756A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の名称〕 太陽電池の製造方法 〔発明の背景〕 本勤は、1983年12月19日出願の米国特許出願第563.061号の継続 出龜である1984年10月10日出願の米国特許出願第659,279号の一 部継続出願である。[Detailed description of the invention] [Name of invention] How to manufacture solar cells [Background of the invention] This work is a continuation of U.S. Patent Application No. 563.061, filed December 19, 1983. No. 659,279, filed October 10, 1984, This is a continuation application.

本発厨は、光起電力電池(光電池)の製造法に関し、特に水素不動態化措置にお いて生じる破壊表回層が最終的なめつき(鍍金)工程におけるめっきマスクとし て用いられる多結晶シリコン太陽電池の改善された低コストの製造法に関する。This research focuses on the manufacturing method of photovoltaic cells (photovoltaic cells), especially on hydrogen passivation measures. The fractured surface layer generated during the process is used as a plating mask in the final plating process. The present invention relates to an improved low-cost manufacturing method for polycrystalline silicon solar cells used in industrial applications.

これまでは、シリコン太陽電池を製造する一般的な方法は、シリコン・ウェーハ またはリボンの前面に対して適当なビーパントを拡散し、前記前面に形成された 保護のための誘電マスキングにあるグリッド電極パターンのエツチングを行ない 、エツチングにより露出した全てのシリコン上にニッケルめっきを施し、このニ ッケルを銅およびスズで重ねめっきを行ない、前記前面から誘電マスキング層の 残部を除去し、前面の新たに露出された部分に反射防止コーティングを施すこと によpPN接合を形成する工程を含んでいる。Until now, the common method of manufacturing silicon solar cells has been to use silicon wafers. Or diffuse a suitable beapant against the front surface of the ribbon and form a Etching the grid electrode pattern on the dielectric masking for protection , all silicon exposed by etching is plated with nickel, and this A dielectric masking layer is layered from the front surface by over-plating the metal with copper and tin. Remove the remainder and apply an anti-reflective coating to the newly exposed portion of the front surface. The method includes a step of forming a pPN junction.

これらの製造工程は単結晶および多結晶質の両方のシリコンに対して等しく応用 することができるが、コスト面の配慮から後者の方法で太陽電池を製造する方が 望ましい。しかし、周知の如く、結晶粒境界における少数キャリアの損失、転位 等の故に、多結晶シリコン太陽電池において達成される効率は一般に単結晶電池 の場合よシも劣っている。このような状況は、水素の如き一価の元素を構造的な 欠陥と関連する愁垂結合と結合するような構造を生じることによシ少数キャリア の再結合損失を最小限度に抑えることに↓つて改善された。These manufacturing processes apply equally to both monocrystalline and polycrystalline silicon. However, due to cost considerations, it is better to manufacture solar cells using the latter method. desirable. However, as is well known, loss of minority carriers at grain boundaries, dislocation etc., the efficiency achieved in polycrystalline silicon solar cells is generally higher than that of monocrystalline cells. In the case of yoshi is also inferior. This situation makes monovalent elements such as hydrogen structurally minority carriers by generating structures that bind to the defect-associated conjunctival junctions. This has been improved by minimizing recombination loss.

当技術において周知の如く、セルの処理シーケンスを構成する重要な考察は、水 素の不動態化工程に続くどの工程における時間および温度の組合せもシリコンに 装入される水素を再び不動態化基板から拡散させてはならないことである。この ため、例えば、真空中で0.5時間にわたって600℃の温度に曝された水素不 動態化セルは略々全ての結合された水素を失い、その観察された電子ビームが生 じたその時の活動度により明らかなように、その不動態化前のレベルに戻ること が判った。この点に関して、太陽電池の製造における接合点拡散工程が900℃ 程度の温度を含むことが典型的であることに注目すべきである。As is well known in the art, an important consideration in structuring a cell's processing sequence is the Any combination of time and temperature in any step following the primary passivation step will The hydrogen introduced must not again diffuse out of the passivated substrate. this For example, hydrogen depletion exposed to a temperature of 600°C for 0.5 hours in vacuum The mobilization cell loses nearly all bound hydrogen and its observed electron beam is return to its pre-passivation level, as evidenced by its current level of activity. It turns out. In this regard, the junction diffusion process in the manufacture of solar cells is It should be noted that temperatures typically include temperatures of

また、水素の不動態化措置は通常銅の如き卑金属を接合点から移動させるに充分 な高温度までセルを加熱することによシ「ソフトな」ダイオード即ち短絡回路を 生じることも判った。Additionally, hydrogen passivation measures are usually sufficient to displace base metals such as copper from the junction. By heating the cell to high temperatures, a "soft" diode or short circuit can be created. It was also found that it occurs.

C,H,Seager 、 D、 J、 5harp、 J+に、 G、 Pa n1tz およびR,V、 D’ Aiellc者「真空科学および技術ジャー ナル」第20呑揖3号430〜435頁(1982年3月刊)に示されるように 、多結晶シリコンの不動態化は、キロ電子ボルト単位の水素イオンビームの発生 に用いられるカウフマン(Kaufman ) 111イオン発生ソースによっ て得ることができる。高いイオン・エネルギおよびフラックス(作用束)(例え ば1乃至3ミリアンに77口2)における比較的短い露出時間(例えば、05乃 至4分)の範囲が最適であると2、われる。このような露出が、もし基板が慎重 に適当なヒートシンクに接触させられるならば、一般に基板の温度を少なくとも 約275℃まで上昇させる結果となる。さもなければ、400℃を超える@度が 容易に達成される。しかし、温度はシリコン・マトリックスに対する卑金属の急 速な移動を避けるためには温度は約300℃より低く制限されることが重要であ る。しかし、不動態化措置の間熱的制御を行なうための基板およびヒートシンク を手操作することは、容易にこのようなイオン供給源による高処理量の操作にお ける速度の制限要因となる。その結果、低コスト、高処理量のプロセスを得るた めにはヒートシンク操作を避けることが望ましい。C, H, Seager, D, J, 5harp, J+, G, Pa n1tz and R, V, D’ Aiellc “Vacuum Science and Technology Journal” As shown in "Naru" No. 20 Dono 3, pages 430-435 (March 1982) , the passivation of polycrystalline silicon involves the generation of a hydrogen ion beam of kiloelectron volts. The Kaufman 111 ion generation source used in You can get it. High ion energies and fluxes (e.g. relatively short exposure times (e.g. 05-3 mA) at 77 mouths 2). A range of 2 to 4 minutes) is considered to be optimal. If such exposure is done, the board is carefully If the board is brought into contact with a suitable heat sink, it will generally reduce the temperature of the board to at least This results in an increase in temperature to approximately 275°C. Otherwise, temperatures exceeding 400℃ easily achieved. However, the temperature increases the steepness of the base metal relative to the silicon matrix. It is important that the temperature is limited to below about 300°C to avoid rapid migration. Ru. However, the substrate and heat sink for thermal control during the passivation procedure manual operation facilitates high-throughput operations with such ion sources. This is a limiting factor in the speed at which The result is a low-cost, high-throughput process. It is desirable to avoid heat sink operations.

更に、経済的に作ることができるEFG法シリコン・リボンの場合には1表面の 不規則性がヒートシンク操作を困難なものにする。Furthermore, in the case of EFG silicon ribbons that can be made economically, one surface Irregularities make heat sink operation difficult.

更にまた、水素の不動態化操作は基材のシリコン面が露出される時最も効率的で ある。このため、前面のグリッド電極パターンを画成するため用いられるどんな めっきマスクも不動態化操作前に除去されあるいはその後に付加されねばならな い。Furthermore, the hydrogen passivation operation is most efficient when the silicon surface of the substrate is exposed. be. For this reason, whatever is used to define the front grid electrode pattern Plating masks must also be removed before or added after the passivation operation. stomach.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は、水素の不動態化工程が高温度の処理工程の後であって しかも卑金属が構造中に含まれる前に行なわれる太陽電池の製造のための処理法 の提供にある。 Therefore, it is an object of the present invention that the hydrogen passivation step is performed after a high temperature treatment step. Moreover, the process for manufacturing solar cells is carried out before base metals are included in the structure. It is provided by.

本発明の別の目的は、部分的に形成されたセルの前面の電極構造部の下側のシリ コンおよびニッケル・シリコンの不動態化法を改善するため水素の不動態化工程 を盛り込むことにある・本発明の更に別の目的は、不動態化措置の開基板のヒー トシンク操作を行なう必要を回避するような方法でEFG法シリコン・リボンの 太陽電池への処理工程に水素の不動態化工程を盛シ込むことにある。Another object of the invention is to remove the silica underside of the electrode structure on the front side of the partially formed cell. Hydrogen passivation process to improve silicon and nickel silicon passivation methods It is a further object of the present invention to incorporate open substrate heating of passivation measures. EFG silicon ribbon in a manner that avoids the need to perform sink operations. The aim is to incorporate a hydrogen passivation process into the solar cell processing process.

〔発明の詳細な説明〕[Detailed description of the invention]

上記および他の目的は、シリコン太陽電池の製造法として応用される如き望まし い実施態様において、就中下記の工程、即ち(1)浅い接合のシリコン・リボン の前面上にニッケル(もしくは類似の物質)の薄いグリッド電極パターンを形成 し、(2)セルの接合側を水素不動態化措置を行ない、(3) ニッケルを焼結 して部分的にニッケルケイ酸塩を形成し、(4)別の金属をセルの金属で覆った 部分に対してめっきし、(5) シリコンの露出された面に無反射コーティング を施す工程を含むプロセスによって実現される。その後、シリコンを更に処理し 、例えば電気回路に結合するよう調製する。 The above and other objects are desirable as applied as a method of manufacturing silicon solar cells. In some embodiments, the following steps, among others: (1) Shallow bonding silicon ribbon Form a thin grid electrode pattern of nickel (or similar material) on the front surface of the (2) Perform hydrogen passivation on the joining side of the cell, (3) Sinter the nickel. (4) covered another metal with the cell metal. (5) Anti-reflective coating on the exposed silicone surface. This is achieved by a process that includes the step of applying After that, the silicon is further processed. , for example, to be coupled to an electrical circuit.

あるいは別のプロセスにおいては、不動態化操作の間サンプルの加熱はニッケル 焼結工程のためのエネルギを提供する。Alternatively, in another process, heating the sample during the passivation operation is performed using nickel. Provides energy for the sintering process.

このような製造法はいくつかの主な特徴を肩する。第1に、本出願人は、水素の 不動態化操作の間、衝突する水素イオンが変成面上への浸漬めっきにより金属の めっきを妨げるようにシリコン・ウェーハの表面を変成することを発見した。そ の結果、前面のグリッド電極ノミターンを面取するため最初に用いためつき用マ スクは、最初の金属層が基板上にめっきされた後除去することができる。不動態 化はこの時露出されたシリコンの基層上に行なわれ、不動態化はセルの性能を改 善するのみならず、表面層の変成においても以降の浸漬めっき工程における二次 めっきマスクとして作用する。その結果、露出したシリコン基板の不動態化は、 浸漬めっきのメタライズ処理に先立って余計なマスキング工程を必要とすること なく卑金属の添付の前に行なうことができる。更に、本出願人はまた不動態化が ニッケルの如き金属の薄い層にわたって生じ得ることが判った。このように、前 面O電極の最初の薄いニッケルめっきの下方のシリコンとニッケルケイ酸塩の不 動態化を行なうことができる。Such manufacturing methods bear several main characteristics. First, the applicant proposes that hydrogen During the passivation operation, the impinging hydrogen ions destroy the metal by immersion plating onto the metamorphic surface. discovered that it alters the surface of silicon wafers in a way that prevents plating. So As a result, the tampering machining machine that was first used to chamfer the front grid electrode chisel turn The mask can be removed after the first metal layer is plated onto the substrate. Passivity Passivation is then performed on the exposed silicon substrate, and passivation modifies the performance of the cell. Not only does it improve the surface layer, but it also prevents secondary immersion plating in the subsequent immersion plating process. Acts as a plating mask. As a result, the passivation of the exposed silicon substrate is Requires an extra masking process prior to metallization treatment for dip plating Can be done without attachment of base metals. Furthermore, the applicant also believes that passivation It has been found that this can occur over thin layers of metals such as nickel. In this way, before Silicon and nickel silicate defects below the first thin nickel plating of the plane O electrode. Dynamicization can be performed.

本発明の他の目的については一部は明らかであろうし、また一部は以下本文にお いて明らかになるでろろう。従って、不発明は、いくつかの工程と、以下の詳細 な開示において例示される他の各々に関する1つ以上のかかる工程の関連からな り、またその応用の範囲については請求の範囲において示される。Other objects of the invention may be apparent in part or may be set forth below in the text. It will become clear. Therefore, some steps and the following details are not invented. One or more such steps with respect to each other exemplified in this disclosure. The scope of application thereof is indicated in the claims.

〔図面の簡単な説明〕[Brief explanation of the drawing]

本発明の性質および目的を更によく理解できるように、本発明の望ましい実施態 様に従って太陽電池の製造に際して含まれる多くの工程を示す図面と共に以下の 詳細な記述を照合されたい。 For a better understanding of the nature and purpose of the invention, preferred embodiments of the invention are described below. Below are drawings showing the many steps involved in the production of solar cells according to Please check the detailed description.

全ての図面)でおいては、同じ照合番号は同じ構造部を示している。In all drawings), the same reference number indicates the same structure.

図面において、いくつかのコーティングおよび領域の厚さおよび深さは、図示の 便のため一定の尺度に従うものでなく、かつその相対的な比率に正確に従う尺度 で示されるものではない。In the drawings, the thickness and depth of some coatings and areas are as shown. A scale that does not follow a fixed scale for stools, but precisely follows its relative proportions. This is not what is shown.

〔発明の詳細な説明〕[Detailed description of the invention]

次に図面においては、本発明の望ましい実泥態様は、EFG法で成長させたP型 接合のシリコン・リボンから太陽電池を製造する方法に関する。この実施態様に おいては1部分的に完成したセル1を出発片として提供される。部分的に完成し たセル1は、その片側に比較的浅い接合4(約3,000乃至7,000人単位 の深さ)が設けられたP型の導電性シリコン・リボンから形成されることが望ま しい基板2と、Nqの導電領域6と。 Next, in the drawings, a desirable embodiment of the present invention is a P type grown by the EFG method. The present invention relates to a method of manufacturing solar cells from bonded silicon ribbons. In this embodiment In this case, a partially completed cell 1 is provided as a starting piece. partially completed Cell 1 has a relatively shallow junction 4 (approximately 3,000 to 7,000 people) on one side. is preferably formed from a P-type conductive silicon ribbon with a depth of a new substrate 2 and a conductive region 6 of Nq.

マスク8とを有する。マスク8は、ニッケルの如き金属が僅かに接着する材料( 例えば、籾電体)からなシ、基板2の前面の各部を多くの分岐したグリッド9電 極(例えば、1つの電極は米国特許第3,686,036号に示された形態を有 する)のパターンに露出させる形態を呈する。この基板の反対側(以下本文にお いては、「後側」と呼ぶ)は、基板に対して合金化したアルミニウム層10とP +領域12とが設けられることが望ましい。It has a mask 8. The mask 8 is made of a material to which metal such as nickel slightly adheres ( For example, if the front surface of the board 2 is made up of many branched grids 9, poles (e.g., one electrode has the configuration shown in U.S. Pat. No. 3,686,036) It exhibits a form that is exposed to a pattern of The other side of this board (see text below) The aluminum layer 10 alloyed with the substrate and the P It is desirable that a + region 12 be provided.

このP+領域12は、約1乃至5μの範囲の深さを有することが望ましい。Preferably, the P+ region 12 has a depth in the range of about 1 to 5 microns.

部分的に完成したセル1は、当技術において公知の多くの手段のいずれかによっ て製造することができる。伺えば、接合4および領域6はリンの拡散によってP 型のシリコン基[2に形成することができ、マスク8はフォトリングラフ法また は印刷法によってその前面に形成することができる。層10およびP+領域12 は、基板の後側を蒸発によシ除去可能なテルピネオールの如き揮発性の有機性の 担体中のアルミニウム粉からなるアルミニウムイースト層でコーティングし、次 に奉板を加熱してペーストの揮発性もしくは熱分解可能な有機化合物を除去して 基板に対してアルミニウムを合金化してP+領域を形成することによ多形成する ことができる。しかし、他の形態の基板、接合および後側の電極、および他の製 造方法も同様に部分的に完成したセルlの提供のため使用することもできる。The partially completed cell 1 may be processed by any of a number of means known in the art. It can be manufactured using In other words, junction 4 and region 6 have P due to phosphorus diffusion. The silicon base [2] of the mold can be formed, and the mask 8 can be formed using the photophosphorographic method or can be formed on its front surface by a printing method. Layer 10 and P+ region 12 is a volatile organic compound such as terpineol that can be removed by evaporation on the backside of the substrate. Coated with an aluminum yeast layer consisting of aluminum powder in a carrier and then Heat the baking sheet to remove volatile or thermally decomposable organic compounds from the paste. Polymer is formed by alloying aluminum to the substrate to form a P+ region. be able to. However, other forms of substrates, bonding and backside electrodes, and other The manufacturing method can also be used to provide partially completed cells I as well.

このような予め調製された部材から始めて、基板の両側を最初にニッケルでめっ きし、ニッケルの接着性析出がアルミニウム層10の全域にわたって部材の後側 にニッケル層14を形成するが、前面側のニッケルの接着性析出はマスク8を介 して露出された領域上においてのみ基板2の直接表面上に層16を形成する。Starting with such a pre-prepared part, first plate both sides of the board with nickel. The adhesive deposit of nickel is deposited on the rear side of the member over the entire area of the aluminum layer 10. A nickel layer 14 is formed on the front side, but adhesive precipitation of nickel on the front side is performed through a mask 8. A layer 16 is formed directly on the surface of the substrate 2 only on the areas exposed by the step.

ニッケル層14と16のめつきは色々な方法で行なうことができる。周知の無電 解作用即ち浸漬めっき法、例えばK Pate:L等の米国特許第4,321, 283号に記載されたものと類似の浸漬めっき法によって行なわれることが望ま しい。本文においては、用語「無電解めっき法」とは、外部から加えられる電界 を使用することなく還元剤を保有する浴によるめっき法を指し、また用語「浸漬 めっき法」とは外部から加えられる電界を使用することなく対象物を還元剤を保 有しないめっき浴中に浸漬することによシ金属をめっきするプロセスを意味し、 めっきとは置換作用を含む。Plating the nickel layers 14 and 16 can be accomplished in a variety of ways. Well-known wireless Reaction or dip plating methods, such as K Pate:L et al., U.S. Pat. No. 4,321, Preferably, this is done by an immersion plating method similar to that described in No. 283. Yes. In this text, the term "electroless plating" refers to an externally applied electric field. Refers to a plating method with a bath containing a reducing agent without the use of ``Plating method'' is a method of retaining a reducing agent on an object without using an externally applied electric field. means the process of plating metal by immersion in a plating bath without Plating involves a displacement action.

予備的工程として、洗浄されたシリコン基板の表面を適当な薬品を用いて予め活 性化される。この予備活性法は、シリコンの表面がそれ自体無電解めっき法を支 持せず、未処理の表面上にめっきされたニッケルは一般にこれに対して僅かに接 着するため望ましいものである。活性剤としては、塩化プラチナ、塩化スズ−塩 化パラジウム、あるいは%jえば米国特許第3.489,603号に示されるよ うな他の周知の活性剤でもよいが、塩化金が活性剤として使用される。その後、 シリコン・リボンの両側は、望ましくは、前記米国特許第4,321,283号 において記載した水溶液浴もしくはpHが約29であるニッケルサルファメート とアンモニウムフッ化物の水溶液浴中で、約2乃至6分の期間略々室温において リボンの浸漬めっき法によりニッケル層で覆われる。As a preliminary step, the surface of the cleaned silicon substrate is pre-activated using an appropriate chemical. Be sexualized. In this preactivation method, the silicon surface itself supports electroless plating. Nickel plated on an untreated surface will generally have a slight contact with this It is desirable for wearing clothes. As an activator, platinum chloride, tin chloride salt palladium chloride, or %j as shown in U.S. Pat. No. 3,489,603. Gold chloride is used as the activator, although other well-known activators, such as, may also be used. after that, Both sides of the silicone ribbon are preferably as described in U.S. Pat. No. 4,321,283. or nickel sulfamate with a pH of about 29 as described in and ammonium fluoride in an aqueous bath at about room temperature for a period of about 2 to 6 minutes. The ribbon is coated with a nickel layer by dip plating.

この段階において、マスク8は基板2から剥離される。マスクの性質に従って、 この剥離は、例えば緩衝液エツチングの使用による等公知の多くの方法のいずれ かで行なうことができる。At this stage, the mask 8 is peeled off from the substrate 2. According to the nature of the mask, This stripping can be accomplished by any of a number of known methods, such as by using buffer etching. It can be done by

マスクを除去した結果、基板2の前面はニッケル層16で形成されたグリッド電 極パターンに沿って露出される。As a result of removing the mask, the front surface of the substrate 2 is covered with a grid electrode formed by the nickel layer 16. exposed along a polar pattern.

次に、セルは水素により不動態化される。望ましい方法としては、基板2(およ びニッケル層16)の前面が、基板から約15c7nの位置に置かれたカウフマ ン型(広いビームの)イオン・ソースの水素イオンビームに対して露出される。Next, the cell is passivated with hydrogen. A desirable method is to and the front surface of the nickel layer 16) is located approximately 15c7n from the substrate. exposed to a hydrogen ion beam from a wide beam ion source.

このイオン・ソースは、約20乃至50ミリトール(水素)の範囲内つ圧力にお いて毎分25乃至405ccQiの水素流量で、ソースと基板間で約1.700 DCボルトの電位において、また基板において約1乃至3ミリアン〈ア/crn 2の範囲内のビーム量を以て作動することが望ましい。約1乃至4分のに小時間 が、E1’G法シリコンセルの場合(約20乃至80μの深さ、即ち接合4の深 さの約100倍で不動態化区域を提供する)において、同時に基板2の露出てれ た部分に対して約200X単位の深さで変成された表面層18を提供しながら典 型的に経験される少数キャリアの再結合損失を最小限度に抑えるために共に充分 であることが判った。また、イオン・ビームを50%の使用サイクルにおいて断 続・ξルスを生じるため機械的シャッタを用いた結果、不動態化操作の間基板の @度上昇が最小限度に抑えられることも判った。This ion source can be operated at pressures in the range of approximately 20 to 50 mTorr (hydrogen). with a hydrogen flow rate of 25 to 405 ccQi per minute, approximately 1.700 ccQi between source and substrate. At a potential of DC volts, and at the substrate, approximately 1 to 3 milliamps (A/crn) It is desirable to operate with a beam dose within the range of 2. A short time of about 1 to 4 minutes However, in the case of the E1'G method silicon cell (about 20 to 80μ depth, that is, the depth of junction 4) at the same time that the exposed edge of the substrate 2 is while providing a metamorphosed surface layer 18 at a depth of approximately 200X units to the together sufficient to minimize the minority carrier recombination losses typically experienced. It turned out to be. Additionally, the ion beam is cut off at 50% of the usage cycle. As a result of using a mechanical shutter to create a It was also found that the rise in temperature was kept to a minimum.

変成表面層18の正確な性質に知られていない。しかし、結晶構造がやや崩壊さ れたシリコンは一部がイオン・ビームから水素を取ってSiHまたはS I H 2を形成するが、物質はおそらくはアモルファスである破壊相であると考えられ る。所要の変成表面層の形成のためには真空系内で少量の炭素または1つ以上の 炭化水素が必要とされる。最初に組立てられたように、使用されたカウフマンの イオン・ソースは直径が約13cm(5インチ)のグラファイトの支持段が設け られ、その上に典型的には5乃至10cm(2乃至4インチ)の基板が片側の中 央に配置される。このグラファイト段の代シにシリコン支持段を設ける場合には 、グラファイト段が使用された場合のように形成される変成層はめつきマスクと しては形成しない。これに基づいて、グラファイト股上の水素イオン・ビームの 衝突によシ生じる炭素または炭化水素が基板の表面上の誘電層の形成を強化する という仮説がなされた。その性質の如何に拘らず、約1400乃至1700ボル トの範囲内の加速電圧および1分間という楚い露出時間によるこの過程により生 じた変成表面層18はニッケル層16間のシリコン基板のそれ以降の浸漬めっき を阻止するに充分であることが判った。The exact nature of the metamorphosed surface layer 18 is unknown. However, the crystal structure is slightly collapsed. A portion of the silicon removed is removed from the ion beam to form SiH or SIH. 2, but the material is thought to be in the fracture phase, which is probably amorphous. Ru. For the formation of the required metamorphosed surface layer, a small amount of carbon or one or more Hydrocarbons are required. Kaufmann's used as originally assembled The ion source has a graphite support stage approximately 13 cm (5 inches) in diameter. on top of which typically 5 to 10 cm (2 to 4 inches) of substrate is placed inside one side. placed in the center. If a silicon support stage is provided in place of this graphite stage, , a metamorphic layer plating mask and a metamorphic layer formed as when graphite stages are used. It will not form. Based on this, the hydrogen ion beam on graphite The carbon or hydrocarbons produced by the collisions enhance the formation of a dielectric layer on the surface of the substrate. A hypothesis was made. Approximately 1400 to 1700 volts, regardless of its nature. This process with an accelerating voltage in the range of The metamorphic surface layer 18 is formed by subsequent immersion plating of the silicon substrate between the nickel layer 16. It was found to be sufficient to prevent

次に、基板を不活性ガス即ち窒素雰囲気内でニッケル層を焼結して基板の前面に おけるニッケル層16を隣接するシリコンと反応させてニッケルケイ酸塩のオー ミック接触を形成するに充分な時間ある温度まで加熱される。この目的のため、 基板は約15乃至40分間約300℃の温度まで加熱されることが望ましい。こ のため、ニッケルケイ酸塩層20に対してニッケル層16と基板2間の空隙に約 200X単位の深さを生じる。後側のニッケル層14はアルミニウム層10との 合金を形成する。Next, the substrate is sintered in an inert gas, i.e. nitrogen atmosphere, to form a nickel layer on the front side of the substrate. The nickel layer 16 in the nickel silicate layer 16 is reacted with the adjacent silicon to form a nickel silicate heated to a certain temperature for a sufficient time to form contact. For this purpose, Preferably, the substrate is heated to a temperature of about 300° C. for about 15 to 40 minutes. child Therefore, the gap between the nickel layer 16 and the substrate 2 is approximately equal to the nickel silicate layer 20. Produces a depth of 200X units. The rear nickel layer 14 is connected to the aluminum layer 10. Forms an alloy.

この焼結工程の温度は、温度が高くなるに伴ってシリコンに対するニッケル層1 6の過度の浸透を生じるため、300℃を大きく越えてはならない。この熱処理 は1だ、もし形反ガス申(窒素95%および水素5%)で行なわれるならば、ニ ッケル層16に対し緩く結合した水素を剥離させることによりそれ以降のめっき の接着力を強化するように思われる。As the temperature of this sintering process increases, the nickel layer 1 relative to silicon increases. The temperature should not be much higher than 300°C as this will result in excessive penetration of 6. This heat treatment is 1, if performed in the form of antigas (95% nitrogen and 5% hydrogen) By peeling off hydrogen loosely bonded to the nickel layer 16, subsequent plating is prevented. seems to strengthen the adhesion of

これに続いて、層14と16のニッケルは高温の薄い硝酸によるエツチング作用 を受け、その後超音波況浄が行なわれて過剰量のニッケルを基板の両面から除去 する。このニッケルのエツチングは過剰量のニッケルを除去する許シでなく、焼 結工程中すほの後9・jに形成されたニッケルとアルミニウムの合金の一部の除 去をも行なう。ニッケルのエツチング工程の後、層14はアルミニウム電極層1 0上に重なるニッケルーアルミニウム合金層を特徴とするが1層16は予め選択 されたグリッド電極パターンと対応するニッケルケイ酸塩層20を露出させるた め剥離される。Following this, the nickel in layers 14 and 16 is etched with hot dilute nitric acid. followed by ultrasonic cleaning to remove excess nickel from both sides of the substrate. do. This nickel etching is not a way to remove excess nickel; Part of the nickel-aluminum alloy formed at 9.j during the bonding process was removed. I also leave. After the nickel etching step, the layer 14 is replaced by the aluminum electrode layer 1. Features a nickel-aluminum alloy layer overlapping 0, but 1 layer 16 is selected in advance To expose the nickel silicate layer 20 corresponding to the grid electrode pattern It will be peeled off.

その後、ニッケルケイ酸塩層20とニッケルーアルミニウムライズされて、適当 な接触状態を提供する。このようなメタライズ工程において、基板2の変成され た表面層18はめっきマスクとして作用して金属が既に付着したニッケルケイ酸 塩層20の−ξターン間で基板の表面に対して接着することを阻止する。この別 のメタライズ工程が層14.20に対するニッケルの第2の層の付着をもたらす ことが必須0要件ではないが望ましい。更に別のニッケル層がニッケル層14. 16の形成と関連して上記の方法において浸漬めっき法にょシ添着されるが、こ れは浸漬めっき法によ、?ニッケル層14.16上には付着するが変成面18に は付着しないためである。その直後に、1つ以上の銅の層が(浸漬めっき法およ び(または→電気めっき法により、lた轟技術において周知の諸技術によって) 露出されたニッケルに河し基板の両側に添着されてニッケル層に対して結合し、 またこれによりこれらの層を酸化から保護し、かつ高い導電性を保証する。銅メ ッキを行なうために変成表面層18にマスクを設ける必要はない。これは鍋が変 成層に接着しないためである。その後、できたものは周知の目的のため他の処理 を受けることがでさる、例えば、スズおよびはんだ層を前に添着した金属層上に 連続的に添着することもできる。メタライズ工程に続いて、セルの縁部(口承せ ず)を整え、無反射コーティング26がセルの前面に対して添着される。この後 者の工程は、多くの公知の方法、例えばTlO2の化学的な蒸着法等によって行 なうことができる。あるいはまた、無反射コーティング26は、シリコン亜硝酸 塩のプラズマ析出法により形成することができる。After that, the nickel silicate layer 20 and nickel-aluminiumized are applied. Provides contact conditions. In such a metallization process, the substrate 2 is metamorphosed. The surface layer 18 acts as a plating mask to cover the nickel silicate layer to which metal has already been deposited. This prevents the salt layer 20 from adhering to the surface of the substrate between the -ξ turns. This other a metallization step results in the deposition of a second layer of nickel to layer 14.20. Although this is not an essential requirement, it is desirable. A further nickel layer is nickel layer 14. In connection with the formation of No. 16, it is impregnated by dip plating in the above method. Is this by dip plating? It adheres on the nickel layer 14.16, but on the metamorphic surface 18. This is because it does not stick. Immediately thereafter, one or more layers of copper (dip plating and (or → by electroplating methods, by various techniques well known in the art) The exposed nickel is coated on both sides of the substrate and bonded to the nickel layer. This also protects these layers from oxidation and ensures high electrical conductivity. Copper metal It is not necessary to provide a mask to the modified surface layer 18 for cleaning. This is a strange pot. This is because it does not adhere to the stratification. After that, the resulting product is processed in other ways for well-known purposes. For example, on a metal layer previously applied with a tin and solder layer. It can also be attached continuously. Following the metallization process, the edges of the cell (oral 2) and an anti-reflective coating 26 is applied to the front side of the cell. After this This process can be carried out by a number of known methods, such as TlO2 chemical vapor deposition. can become. Alternatively, the anti-reflective coating 26 is made of silicon nitrite. It can be formed by a salt plasma deposition method.

事例として1本発明を実施する望ましい方法は、各工程毎に詳細に述べた望まし い方法においてかつ前述のシーケンスにおいて前述の如き個々の工程を実施する ことからなる。As an example, a preferred method of carrying out the invention is described in detail for each step. carrying out the individual steps as described above in a suitable manner and in the sequence described above; Consists of things.

本発明の望ましい方法は、詳細に述べた個々の望ましい工程を冥胎し1.これら の工程は本文に示した順序において実施されることが判るであろう。The preferred method of the present invention includes the individual preferred steps described in detail: 1. these It will be appreciated that the steps are performed in the order indicated in the text.

EFG法で成長したリボンから上記の工程IC従って作られた太陽電池は平均効 率において10乃至20%の増加を呈することが判った。更に、このような物質 の場合に、水素不動態化工程はまた電池の効率の分布を著しく狭めることも判っ た。Solar cells made according to the above process IC from ribbons grown by the EFG method have an average efficiency of It has been found that there is a 10-20% increase in rate. Furthermore, such substances The hydrogen passivation step was also found to significantly narrow the cell efficiency distribution in Ta.

上記のプロセスは他の多くのオリ点を有する。第1に、浸漬めっき法、例えば上 記の如きニッケルめっき法による以降のめっきのだめのマスクとして水素の不動 態化操作の間生じる基板の変成表面層の使用に際して、本方法はこのような以降 のメタライズ工程に先立って露出した基板の不動態化措置を可能にする。The above process has many other points of interest. First, immersion plating method, e.g. The immobility of hydrogen is used as a mask for subsequent plating using the nickel plating method as described below. Upon use of the modified surface layer of the substrate that occurs during the transformation operation, the present method allows passivation measures of the exposed substrate prior to the metallization step.

このため、清潔な基板の不動態化操作(めっきのマスク層を介する不動態化操作 の代りに)を可能にし、(不動態化操作中の卑金属から生じる)「ソフトな」即 ち短絡状態の電池を避け。For this purpose, a passivation operation on a clean substrate (passivation operation through a plating mask layer) is required. (instead of Avoid short-circuited batteries.

かつこれ以上のマスキング工程を必要としないため浸漬めっき法に:る不動態化 とその後のメタライズ工程間の諸工程の経済性を図るものである。前記の水素不 動態化領域はまた浸漬めっき法または電気めっき法による銅の付着を妨げるマス クとしても作用する。更にまた、薄い層の前面の電極物質を介して不動態化措置 を施すことにより、最初のニッケル層の厚さが予め基板もまた同様に不動態化措 置を行なうことができる。また、本発明の方法が、電池の以降の処理が不動態化 操作の効果に悪影響を及はさない電池の製造の段階、における不動態化操作を含 むものであることも理解されよう。And since no further masking process is required, the passivation method is suitable for immersion plating. This aims to improve the economic efficiency of various processes between the metallization process and the subsequent metallization process. The above-mentioned hydrogen The mobilization area is also a mass that prevents copper deposition by immersion or electroplating. It also acts as a check. Furthermore, passivation measures are taken through a thin layer of front electrode material. By applying a You can do the following. Additionally, the method of the present invention allows the subsequent treatment of the battery to passivate. Including passivation operations at the stage of battery production, which do not adversely affect the effectiveness of the operation. It will also be understood that

本文に述べた本発明の範囲から逸脱することなく多くの変更が本プロセスに対し て行なうことができることが理解されよう。Many modifications may be made to this process without departing from the scope of the invention as described herein. It will be understood that this can be done.

このため、望ましい実施態様;(おいてはニッケル焼結工程12不動態化工程に 続いて行なわれたが、この焼結工程は不動態化操作の直前に行なうこともできる 。このような場合には、浅い接合の電池の場合には、適当なヒートシンクによる 基板の熱管理の肩無に拘らず、ニッケルケイ酸塩の接合に対する移動の阻止を保 証するため短いイオン・ビーム露出が望ましい。このような制御はまた他のケイ 化物(NiSiまたはN15t。)ではなくNi□S1を生じ、これによシケイ 化物の分子当シ比教的少ないシリコンを包含し、ケイ化物によるN十領域の完全 な浸透の阻止を保証する。また、もしニッケルの焼結操作が不動態化操作の前に 行なわれるならば、緩く結合した水素をこれ以上の処理に先立ってニッケルの追 出しのため不動態化操作に続く焙焼工程を必要とする場合もあることが理解され よう。For this reason, in the preferred embodiment; (in the nickel sintering step 12 passivation step) Although performed subsequently, this sintering step can also be performed immediately before the passivation operation. . In such cases, batteries with shallow junctions should be provided with a suitable heat sink. Maintains anti-migration against nickel silicate bonds, regardless of thermal management of the substrate. A short ion beam exposure is desirable for verification. Such control also applies to other Ni□S1 instead of NiSi or N15t. The silicide molecules contain relatively little silicon, and the N0 region is completely covered by silicides. guarantees prevention of infiltration. Also, if the nickel sintering operation is performed before the passivation operation If carried out, the loosely bound hydrogen should be removed by addition of nickel prior to further processing. It is understood that a passivation operation may be followed by a torrefaction step for release. Good morning.

また、不動態化操作の間電池の加熱がニッケルの焼結工程の少なくとも一部を行 うため使用することができることも明らかであろう。Additionally, the heating of the cell during the passivation operation performs at least part of the nickel sintering process. It will also be clear that it can be used to

また更に、本発明の方法の望ましい実施態様は前にめっきされたニッケルを除い て以降の&漬ニッケルめっき部をマスクするため水素の不動態化操作によシ形成 される変成表面層を利用するものであるが、本方法はニッケル以外の他の金属と 共に使用することもできる。例えば、当業者には理解されるように、浅い接合の シリコン素子における前面の電極の最初の層は当業者には周知つ種々の方法にお いて、オーミック接触を(望ましくは低い温度において)形成しかつ以降の工程 で付着される鍋もしくは他の年金属の拡散に対する障壁として作用し得る多くの 反応が比較的小さなどんな物質でもめつきすることによって付着することができ る。銅と共に使用される適当な金属には。Still further, a preferred embodiment of the method of the invention eliminates the previously plated nickel. Formed by hydrogen passivation to mask the subsequent nickel plating. This method utilizes a metamorphosed surface layer that is They can also be used together. For example, for shallow junctions, as will be understood by those skilled in the art. The first layer of the front electrode in a silicon device can be formed by various methods well known to those skilled in the art. to form ohmic contact (preferably at low temperature) and further processing. Many metals deposited in pots or other materials can act as a barrier to diffusion of metals. Any substance with a relatively small reaction can be attached by plating. Ru. Suitable metals used with copper include.

パラジウム、プラチナ、コバルト、ロジウム、ならびにニッケルが含まれる。こ れらの物質は全てケイ化物を形成するが、ケイ化物層は必ずしも必須ではない。Includes palladium, platinum, cobalt, rhodium, and nickel. child All of these materials form silicides, but a silicide layer is not necessary.

しかし、最初の金属層が適正に接着してオーミック接触をもたらし、後に付着さ れる金属の移動に対する障壁として作用し、かつ接合自体に対する著しい移動を 生じないことが重要である。However, if the first metal layer adheres properly and provides ohmic contact, then the act as a barrier to metal migration, and prevent significant migration to the bond itself. It is important that this does not occur.

熱論、本発明によシ提供されるプロセスはEFG法の基板からの太陽電池の製造 に限定されるものではない。従って、例えば、鋳造された多結晶のライン基鈑、 冶金処理レベルのシリコン上のエピタキシャル・シリコンもしくは化学的また( 2物理的な蒸着法1てよシ形成された繊細レベルのポリシリコン層を本発明によ るDNSの比較的高い太陽電池の形成のため用いることができる。また、本プロ セスは単結晶シリコンに対して適用可能である。また更に1本プロセスはN型な らびにP型接合物質を用いて実施することもできる。Thermal theory, the process provided by the present invention is for the production of solar cells from substrates using the EFG method. It is not limited to. Thus, for example, cast polycrystalline line base plates, Epitaxial silicon on silicon at metallurgical processing level or chemical or ( 2. Physical vapor deposition method 1. The fine-level polysilicon layer formed by can be used for the formation of solar cells with relatively high DNS. Also, this professional The process is applicable to single crystal silicon. Furthermore, one process is N type. It can also be carried out using a P-type junction material.

本文に含まれる本発明の範囲から逸脱することなく上記のプロセスにおいて上記 および他の変更が可能であるため、本文の記述および図面に含まれる全ての事柄 は例示であって限定の意味に解釈されるべきものではない。In the process described above without departing from the scope of the invention contained herein. and all matters contained in the text and drawings, subject to other changes. are illustrative and should not be construed in a limiting sense.

国隙v4食報告Kokugaku v4 meal report

Claims (12)

【特許請求の範囲】[Claims] 1.ソリツドステート半導体素子を製造する方法において、(a)第1と第2の 対向する面を有するシリコン基板を提供し、(b)ある強さの水素イオン・ビー ムに対して、選択された金属が僅かに接着する前記第1の面上にある表面層を形 成するに充分なある期間だけ前記第1の面の選択された領域を露出し、および (c)前記の選択された領域を除く前記第1の面を前記の選択された金属の少な くとも1つのメタライズ処理する工程をこの順序で含む方法。1. In a method of manufacturing a solid-state semiconductor device, (a) first and second (b) hydrogen ion beams of a certain strength; forming a surface layer on said first surface to which the selected metal slightly adheres to the film; exposing the selected area of the first surface for a period of time sufficient to (c) coating said first surface, excluding said selected areas, with a small amount of said selected metal; A method comprising at least one metallizing step in this order. 2.前記第1の面と隣接する前記基板の接合を形成する工程を含む請求の範囲第 1項記載の方法。2. Claim 1, comprising the step of forming a bond between the substrate adjacent to the first surface. The method described in Section 1. 3.前記素子が光起電力電池であり、前記第1の面に対して無反射コーテイング を添着する工程を含む請求の範囲第1項記載の方法。3. The element is a photovoltaic cell, and the first surface is coated with a non-reflective coating. The method according to claim 1, comprising the step of attaching. 4.前記メタライズ処理が、ニツケル、パラジウム、コバルト、プラチナおよび ロジウムを含む金属のグループから選択された金属を用いて行衣われる請求の範 囲第1項記載の方法。4. The metallization treatment includes nickel, palladium, cobalt, platinum and The claims are made of a metal selected from the group of metals including rhodium. The method described in box 1. 5.ソリツドステート半導体素子を製造する方法において、(a)第1と第2の 対向する面を有し、かつ前記第1の面と隣接する接合と前記第1の面の選択され た部分を露出するめつきマスクとを有するシリコン基板を提供し、(b)前記第 2の面に対してアルミニウムのコーテイングを添着し、 (c)前記アルミニウムのコーテイングのアルミニウムを前記シリコン基板と合 金化させるに充分な時間前記シリコン基板をある温度に加熱し、 (d)ニツケルのコーテイングを前記第1の面の前記の選択された部分に添着さ せ、 (e)前記めつきマスクを除去し、 (f)ある強さの水素イオン・ビームに対して、選択された導電性金属が値かに 接着する前記第1の面上にある表面層を形成するに充分なある期間だけ前記第1 の面を露出し、(g)前記の選択された領域における前記ニツケルとシリコンが その境界においてニツケルケイ酸塩を形成するため反応するように前記ニツケル ・コーテイングを焼結し、および(h)前記ニツケルとアルミニウムのコーテイ ングを前記の導電性金属の少なくとも1つの層により覆う工程をこの順序で含む 方法。5. In a method of manufacturing a solid-state semiconductor device, (a) first and second a junction having opposing surfaces and adjacent to the first surface; and a selected portion of the first surface. (b) providing a silicon substrate having a plating mask that exposes a portion of the silicon substrate; Apply aluminum coating to the second side, (c) combining the aluminum of the aluminum coating with the silicon substrate; heating the silicon substrate to a certain temperature for a sufficient time to convert it into gold; (d) applying a nickel coating to said selected portions of said first side; height, (e) removing the plating mask; (f) For a hydrogen ion beam of a certain intensity, the value of the selected conductive metal the first surface for a period of time sufficient to form a surface layer on the first surface to be bonded; (g) exposing the surface of the nickel and silicon in the selected area; At its interface the nickel reacts to form nickel silicate. - sintering the coating, and (h) said nickel and aluminum coating. covering the ring with at least one layer of said conductive metal. Method. 6.前記の少なくとも1つの層が、(a)結合されないニツケルを除去するため エツチヤントにより前記ニツケル・コーテイングと接触させ、および(b)前記 ニツケル・コーテイングを銅で更に覆うことにより添着される請求の範囲第5項 記載の方法。6. said at least one layer (a) for removing unbonded nickel; (b) contacting said nickel coating with an etchant; Claim 5 attached by further covering the nickel coating with copper Method described. 7.前記第1の面に対する前記無反射コーテイングの添着の工程を含む請求の範 囲第5項記載の方法。7. Claims including the step of applying the anti-reflection coating to the first surface. The method described in box 5. 8.前記水素イオン・ビームに対して前記基板を更に露出する工程が、前記基板 の少数キヤリア損失を波少させるに充分な時間と強さである請求の範囲第5項記 載の方法。8. further exposing the substrate to the hydrogen ion beam; The time and intensity are sufficient to reduce the minority carrier loss of claim 5. How to put it on. 9.ソリツドステート半導体素子を製造する方法において、(a)第1と第2の 対向する面を有し、かつ前記第1の面と隣接する接合と前記第1の面の選択され た部分を露出するめつきマスクとを有するシリコン基板を提供し、(b)前記第 1の面の前記の選択された部分に対してニツケルのコーテイングを添着し、 (c)前記めつきマスクを除去し、 (d)ある弦さの水素イオン・ビームに対して、金属か僅かに接着する前記第1 の面上にある表面層を形成するに充分なある期間だけ前記第1の面を露出し、 (a)前記の選択された領域における前記ニツケルとシリコンがその境界におい てニツケルケイ酸塩を形成するため反応する上うに前記ニツケル・コーテイング を焼結し、および(f)前記ニツケル・コーテイングを少なくとも1つの別の導 電性金属層により覆う工程をこの順序で含む方法。9. In a method of manufacturing a solid-state semiconductor device, (a) first and second a junction having opposing surfaces and adjacent to the first surface; and a selected portion of the first surface. (b) providing a silicon substrate having a plating mask that exposes a portion of the silicon substrate; applying a nickel coating to the selected portions of the face of 1; (c) removing the plating mask; (d) The first metal slightly adheres to the hydrogen ion beam of a certain chord size. exposing the first surface for a period of time sufficient to form a surface layer on the surface; (a) the nickel and silicon in the selected region are at the boundary; The above nickel coating reacts to form a nickel silicate. and (f) sintering said nickel coating with at least one other conductor. A method comprising the steps of covering with an electrically conductive metal layer in this order. 10.前記の少なくとも1つの別の導電性金属層が浸漬めつき法により形成され るニツケル履からなる請求の範囲第9項記載の方法。10. said at least one further conductive metal layer is formed by dip plating. 10. The method of claim 9, comprising nickel footwear made of nickel. 11.前記めつき法がニツケル酸塩とフツ化物のイオンからなる浴を用いる請求 の範囲第10項記載の方法。11. A claim in which the plating method uses a bath consisting of nickelate and fluoride ions. The method according to item 10. 12.前記の少なくとも1つの別の導電性金属層が、浸漬めつき法または電気め つき法により形成される1層の銅からなる請求の範囲第7項記載の方法。12. Said at least one further conductive metal layer is formed by dip plating or electroplating. 8. The method of claim 7, comprising a single layer of copper formed by a plating process.
JP85500715A 1983-12-19 1984-12-14 Process for the preparation of cathodically depositable aqueous dispersions containing crosslinking agents based on polyisocyanates blocked with amino groups Pending JPS61500756A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US56306183A 1983-12-19 1983-12-19
US65927984A 1984-10-10 1984-10-10
US659279 1984-10-10
US06/681,003 US4609565A (en) 1984-10-10 1984-12-13 Method of fabricating solar cells
US681003 1984-12-13
PCT/US1984/002065 WO1985002939A1 (en) 1983-12-19 1984-12-14 Method of fabricating solar cells
US563061 1990-08-06

Publications (1)

Publication Number Publication Date
JPS61500756A true JPS61500756A (en) 1986-04-17

Family

ID=27415903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP85500715A Pending JPS61500756A (en) 1983-12-19 1984-12-14 Process for the preparation of cathodically depositable aqueous dispersions containing crosslinking agents based on polyisocyanates blocked with amino groups

Country Status (9)

Country Link
EP (1) EP0167589A4 (en)
JP (1) JPS61500756A (en)
AU (1) AU574761B2 (en)
CH (1) CH669476A5 (en)
DE (1) DE3490612T1 (en)
GB (1) GB2162996B (en)
NL (1) NL8420338A (en)
SE (1) SE456624B (en)
WO (1) WO1985002939A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160360B (en) * 1983-12-19 1987-09-16 Mobil Solar Energy Corp Method of fabricating solar cells
US4650695A (en) * 1985-05-13 1987-03-17 Mobil Solar Energy Corporation Method of fabricating solar cells
NL2009382C2 (en) 2012-08-29 2014-03-18 M4Si B V Method for manufacturing a solar cell and solar cell obtained therewith.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004044A (en) * 1975-05-09 1977-01-18 International Business Machines Corporation Method for forming patterned films utilizing a transparent lift-off mask
US4347264A (en) * 1975-09-18 1982-08-31 Solarex Corporation Method of applying contacts to a silicon wafer and product formed thereby
US4152824A (en) * 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
US4214966A (en) * 1979-03-20 1980-07-29 Bell Telephone Laboratories, Incorporated Process useful in the fabrication of articles with metallized surfaces
US4224084A (en) * 1979-04-16 1980-09-23 Rca Corporation Method and structure for passivating a semiconductor device
US4289381A (en) * 1979-07-02 1981-09-15 Hughes Aircraft Company High selectivity thin film polarizer
US4261762A (en) * 1979-09-14 1981-04-14 Eaton Corporation Method for conducting heat to or from an article being treated under vacuum
JPS6059994B2 (en) * 1979-10-09 1985-12-27 三菱電機株式会社 Method for forming fine patterns on aluminum film or aluminum alloy film
US4343830A (en) * 1980-11-13 1982-08-10 Motorola, Inc. Method for improving the efficiency of solar cells having imperfections
JPS5821324A (en) * 1981-07-30 1983-02-08 Agency Of Ind Science & Technol Pretreatment of metal surface substrate for semiconductor thin film growth added with hydrogen
NL8420337A (en) * 1983-12-19 1985-11-01 Mobil Solar Energy Corp METHOD FOR MANUFACTURING SOLAR CELLS
GB2160360B (en) * 1983-12-19 1987-09-16 Mobil Solar Energy Corp Method of fabricating solar cells

Also Published As

Publication number Publication date
CH669476A5 (en) 1989-03-15
AU574761B2 (en) 1988-07-14
SE8503833L (en) 1985-08-16
GB8515901D0 (en) 1985-07-24
EP0167589A4 (en) 1989-01-19
AU3888685A (en) 1985-07-12
SE8503833D0 (en) 1985-08-16
GB2162996B (en) 1987-08-12
SE456624B (en) 1988-10-17
DE3490612T1 (en) 1985-11-28
NL8420338A (en) 1985-11-01
GB2162996A (en) 1986-02-12
WO1985002939A1 (en) 1985-07-04
EP0167589A1 (en) 1986-01-15

Similar Documents

Publication Publication Date Title
US4557037A (en) Method of fabricating solar cells
US4612698A (en) Method of fabricating solar cells
US4321283A (en) Nickel plating method
US4609565A (en) Method of fabricating solar cells
JPH0520914B2 (en)
US5010040A (en) Method of fabricating solar cells
WO1995012898A1 (en) High efficiency silicon solar cells and methods of fabrication
CN110004472A (en) The method of contact structures is formed on the solar cell
EP0935296A3 (en) Method of forming thin zinc oxide film, and method of producing semiconductor element substrate and photovoltaic element using thin zinc oxide film
JPH0572114B2 (en)
KR960001468B1 (en) Method of fabricating solar cells with anti-reflection coating
US4392010A (en) Photovoltaic cells having contacts and method of applying same
JPS61500756A (en) Process for the preparation of cathodically depositable aqueous dispersions containing crosslinking agents based on polyisocyanates blocked with amino groups
US4650695A (en) Method of fabricating solar cells
AU573696B2 (en) Ion milling
AU574431B2 (en) Proton milling as a form of plating mask
RU2065227C1 (en) Low-resistance contact to silicon solar cell
JPS61500755A (en) How to manufacture solar cells
GB2107741A (en) Electroless plating of nickel onto silicon
JPS5975681A (en) Method for electrode formation of solar battery
Iles et al. Development of low cost contacts to silicon solar cells. Semi-annual report, 15 Octobr 1978--31 May 1979
JPS58100465A (en) Forming method for electrode of solar cell
KR870000768A (en) Manufacturing method of solar cell
TW201034225A (en) Method of fabricating a solar cell