JPS6146495B2 - - Google Patents

Info

Publication number
JPS6146495B2
JPS6146495B2 JP53075387A JP7538778A JPS6146495B2 JP S6146495 B2 JPS6146495 B2 JP S6146495B2 JP 53075387 A JP53075387 A JP 53075387A JP 7538778 A JP7538778 A JP 7538778A JP S6146495 B2 JPS6146495 B2 JP S6146495B2
Authority
JP
Japan
Prior art keywords
weight
acid
polymer
parts
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075387A
Other languages
Japanese (ja)
Other versions
JPS553426A (en
Inventor
Masaru Suzuki
Fumio Uchida
Tomoyuki Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP7538778A priority Critical patent/JPS553426A/en
Publication of JPS553426A publication Critical patent/JPS553426A/en
Publication of JPS6146495B2 publication Critical patent/JPS6146495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性良好なポリエステル中空成形品
に関するものである。 さらに詳しくは透明性、制電性、耐衝撃性、に
優れたポリエステル中空成形品に関するものであ
る。 ポリエステル、特にポリエチレンテレフタレー
トは優れた物理的性質、化学的性質を有している
ので繊維、フイルム、プラスチツク成形分野など
で多用されている。 従来プラスチツク中空成形品向け樹脂としては
主としてポリ塩化ビニルが用いられてきたが、近
年塩化ビニルモノマーの溶出問題により、特に食
品向け中空成形容器の分野で制限を受けるように
なつてきた。ポリエチレンテレフタレートは前述
の通り優れた諸特性を有しているにもかかわらず
中空成形分野への進出が十分でなかつた。この原
因はポリマの溶融時の粘度が低いことおよび極め
て結晶化が速く、製品が白化しやすいためであつ
た。 この問題に対してはモールダー業界において各
種のある程度の改良がなされ一応ポリ塩化ビニル
の代替としての機能をもつようになつたが、依然
として、ポリエチレンテレフタレートには極めて
帯電しやすく、成型時、加工時、使用時において
大きな障害となる問題および結晶化による白化、
耐衝撃性といつた問題が残存しているのである。 一方、これらの問題を改善するためにスルホン
酸塩誘導体およびポリアルキレングリコールを使
用する例が特公昭44−31828、特開昭52−47069、
特開昭52−47072、特開昭52−134662、特開昭52
−151365等に例示されている。 特公昭44−31828には実質的にポリエステルに
不溶性の高分子量ポリアルキレングリコールを用
いた例が述べられている。この場合得られるポリ
エステルの、制電性は、ある程度改良されている
が白濁しており透明性が悪いため使用できない。 特開昭52−47069、特開昭52−47072にはスルホ
ン酸塩誘導体と分子量400〜8000のポリアルキレ
ングリコールの組成物によるフイルムが例示され
ている。 この場合、確かにある程度の制電性は付与でき
るが、溶融成形後の冷却過程において白化しやす
く中空成形用途として必須のガラスライクの透明
性は得られないのである。 また、特開昭52−134662にはスルホン酸塩誘導
体のみをポリエステルに添加し、温度100℃〜250
℃で熱処理を行なうことにより制電性が得られる
例が述べられている。しかしながら、この方法も
溶融成形後の冷却過程における白化は何ら改良さ
れず、また耐衝撃性も向上されない。 本発明者らは、以上述べたような中空成形材料
としての各種欠点を同時に解決し、制電性、透明
性、耐衝撃性の優れたポリエステル成形品を提供
するため、鋭意検討した結果、本発明に到達した
ものである。 すなわち、本発明はテレフタル酸またはその低
級アルキルエステルとエチレングリコールの反応
によつて得られる実質的にポリエチレンテレフタ
レートであり、 (A) アルキルベンゼンスルホン酸アルカリ金属塩
0.01〜5.0重量% (B) 分子量600〜8000を有するポリエチレングリ
コール0.2〜5.0重量% (C) ジエチレングリコール成分1.3〜3.0重量% (D) Ti化合物および/またはGe化合物がTi金属
として3〜20ppm、Ge金属として10〜100ppm 含有〔ただし、上記(B)成分および(C)成分は共縮合
している〕してなる透明性良好なポリエステル中
空成形品である。 本発明に用いられる実質的なポリエチレンテレ
フタレートとはテレフタル酸およびエチレングリ
コールとのエステル化反応後、またジカルボン酸
の低級アルキルエステル例えばジメチルテレフタ
レート、ジエチルテレフタレートなどとエチレン
グリコールとのエステル交換反応後得られるビス
ジオールエステルおよび/またはその低重合体を
特定重合触媒の存在下で高温、真空下にて重縮合
せしめることにより得られるものであつて、テレ
フタル酸残基以外のジカルボン酸残基が少量存在
してもよい。 テレフタル酸残基以外のジカルボン酸残基とし
てはイソフタル酸、フタル酸、2,6−ナフタリ
ンジカルボン酸、トリメリツト酸、ピロメリツト
酸、アジピン酸、セバシン酸などの残基があり、
またP−オキシエトキシ安息香酸等のオキシカル
ボン酸成分などのオキシ酸成分も使用できる。ま
た、ジオール成分としてはエチレングリコール成
分が主体であるが、他のグリコールも少量併用し
てもよい。この例としてプロピレングリコール、
トリメチレングリコール、テトラメチレングリコ
ール、シクロヘキサンジメタノール成分などが挙
げられる。 本発明に用いる(A)成分すなわち、アルキルベン
ゼンスルホン酸アルカリ金属塩とは、特にアルキ
ル基は炭素数6〜20のものが好ましくその例とし
てはヘキシルベンゼンスルホン酸、オクチルベン
ゼンスルホン酸、ノニルベンゼンスルホン酸、デ
シルベンゼンスルホン酸、ドデシルベンゼンスル
ホン酸、ステアリルベンゼンスルホン酸などのナ
トリウム、カリウム、リチウム塩が挙げられる。 このうち特に制電性、ポリマ色調の点でドデシ
ルベンゼンスルホン酸ナトリウムが効果的であ
る。 アルキルベンゼンスルホン酸アルカリ金属塩の
量は0.01〜5.0重量%で好ましくは0.03〜2.0重量
%である。0.01重量%未満の場合は制電性は得ら
れず、また5.0重量%を越える場合はポリエステ
ル成形品のぬめり感が出ることおよび透明性が悪
化するなどの欠点が生じるため好ましくない。 本発明に用いられるポリエチレングリコールは
分子量が600〜8000を有するものであり、その添
加量は0.2〜5.0重量%で、好ましくは0.3〜2.5重
量%である。ここで、ポリエチレングリコールと
は他のポリアルキレングリコール単位を40モル%
以下共重合せしめたものも含まれる。ポリエチレ
ングリコールの分子量が600以下ではブロツク性
が小さくなるためか耐衝撃性、弾性が低下して好
ましくなく、また軟化点が極端に下がり寸法安定
性が悪化するばかりか、本発明の目的の一つであ
る制電性が発現しない。また、8000を越える場合
は、ポリエチレングリコール成分がポリエステル
に対して次第に不溶化してくるためポリマはもと
より、成形品も成形時の急冷にもかかわらず白化
するため、好ましくない。 尚、ポリエチレングリコールの添加量0.2重量
%未満の場合は制電性が充分でなく、5.0重量%
を越えるとポリマの耐熱性が悪化し、色調として
は黄味が強く実用に供さない。 かくして得られた従来のポリマは通常のポリエ
チレンテレフタレートに比べ制電性は改良される
が、透明性が劣る。ポリマ色調が黄味を帯び
る。耐衝撃性が充分に改良されない。などの欠
点が現われる。 そこで、ジエチレングリコール成分を1.3〜3.0
重量%および重合触媒としてTi化合物および/
またはGe化合物をTi金属として3〜20ppm Ge
金属として10〜100ppm含有せしめることにより
前記欠点を一挙に解決せしめ、さらに優れた制電
性が得られるのである。 ジエチレングリコール成分が1.3重量%未満の
場合中空成形品の透明性を充分に向上させること
ができず、3.0重量%を越えると軟化点の低下に
起因する成形品の実用上の寸法安定性が得られな
い。ジエチレングリコールのさらに好ましい添加
量は1.5〜2.5重量%である。 また、重合触媒として添加されるTi化合物お
よび/またはGe化合物の添加量がそれぞれ金属
として3ppm、10ppm未満の場合は、重合速度が
遅いため実用的でなく、また20ppm、100ppmを
越えるとポリマが着色してくることおよび得られ
たポリマの溶融成形時の冷却過程で結晶化しやす
く、中空成形品が白化しやすい欠点が生じてく
る。また、好ましいTi化合物および/またはGe
化合物の添加量はそれぞれ金属として5〜
15ppm、20〜80ppmである。 具体的なTi化合物としては、テトラブチルチ
タネート、テトラメチルチタネート、四塩化チタ
ン、修酸チタン、修酸チタン酸、酢酸チタン、ト
リメリツト酸チタン、およびこれらの加水分解物
または誘導体が例示される。 Ge化合物としては、酸化ゲルマニウム、ゲル
マニウムアルコキサイド、ゲルマン酸金属塩等が
例示される。 Tiおよび/またはGe化合物以外の重縮合触媒
としてアンチモン化合物、ケイ素化合物ジルコニ
ウム化合物などが知られているが、得られるポリ
マのくすみ、着色、耐熱性の点で好ましくない。 更に、これらの組成物に対してリン化合物、例
えば亜リン酸、リン酸およびこれらのエステル化
物などをリン原子としてポリマ中の全金属原子成
分に対して少くとも0.1モル倍共存させることは
ポリマの耐熱性、色調に対してより好適である。 また、この他必要に応じてフインダードフエノ
ール系で代表されるような酸化防止剤、ポリシロ
キサンの他、顔料、染料、不活性無機微粒子など
も適宜使用することができる。 本発明の中空成形用材料は、かくして得られる
ポリエステルよりなるものである。 中空成形品の製造法は、押出中空成形法、ある
いは射出中空成形あるいは射出/押出併用中空成
形法が適用されるが、真空成形、ブロー成形、一
軸または二軸延伸成形と組合せて用いることがで
きる。 例えば、延伸配向中空成形体製造法の列として
は、(1)パリソンの押出または射出成形、(2)パリソ
ンの再加熱、(3)軸方向の延伸、(4)吹込金型閉鎖、
(5)圧縮空気吹込み、(6)冷却、(7)金型開放、(8)取出
し工程などが挙げられる。 かくして得られたポリエステル中空成形品は、
制電性、透明性、耐衝撃性に優れ、特に食品、化
粧品、雑貨等の充てん、包装材料として優れ特に
店頭に放置した場合塵埃の付着がなく、通常のポ
リエチレンテレフタレートに比べて落下衝撃に対
しても極めて優れているものである。 以下、実施例を挙げて本発明に説明する。尚、
実施例の説明に先立ち、特性値の測定法について
説明する。 (1) 表面固有抵抗 川口電気製作所製MMA−15型超微小電流
計を用い室温20℃、湿度65%のもとに1時間放
置した厚み0.2mmのシートサンプルを測定し
た。 (2) ダスト付着テスト シートあるいは成形品にケイ砂をつけて、そ
の付着状態をしらべた。 (3) ヘイズ ASTM−D−1003−59T に準じ厚み0.2mm
±0.01mmのシートについて測定した。 (4) 極限粘度 ポリマの極限粘度0−クロロフエノール溶媒
を用い25℃で測定した値である。 (5) 寸法安定性 重量26gの円筒状有底パリソン(内容積27
c.c.)を105℃の雰囲気下で2軸方向に延伸し、
内容積約400c.c.のボルトを得る。このボルトを
40℃×90%RHの雰囲気下に14日間放置したと
きの体積収縮率を求め 収縮率 0.5%以下 優れる ◎ 0.5〜2% 良い 〇 2%〜4% やや劣る △ 4% 以上 劣る × の値をもつて判定した。 (6) 落下衝撃強度 重量26gの円筒状有底パリソン(内容積27
c.c.)を105℃の雰囲気下で2軸方向に延伸し、
内容積約400c.c.のボルトを得る。このボルトに
水を充てんし2.5mの高さからコンクリート床
面に落し、ボルトが破損したときの落下回数お
よび破損状態をしらべた。 (7) 衝撃強度 厚み0.2mmの未延伸シートを5mm巾にサンプ
リングし、シヤルピー衝撃強度試験機で求めた
値である。 判定 2.2〜2.5Kg−cm/mm2以上 優れる ◎ 1.8〜2.2Kg−cm/mm2 良い 〇 1.3〜1.8Kg−cm/mm2 やや劣る△ 1.3 Kg−cm/mm2以下 劣る × 実施例 1 テレフタル酸とエチレングリコールのエステル
化によつて得られたエチレンテレフタレート低重
合体(反応率97.5%EGユニツト/TPAユニツト
のモル比1.2)を反応器に250℃で100重量部貯留
してある。 一方TPA 158重量部とエチレングリコール71
重量部をよく混ぜ合せ、得られたスラリーを一定
速度で連続的に該反応器に添加し、常圧下250℃
でエステル化反応を行ない生成する水を精留塔か
ら、連続的に系外へ留出させた。スラリーの供給
時間は3時間40分でエステル化反応は4時間で終
了した。 得られたエステル化反応生成物100重量部を重
縮合反応器に移し、リン酸0.002重量部、ジエチ
レングリコール1.0重量部、テトラブチルチタネ
ート0.0075重量部を添加し、さらに5分後ドデシ
ルベンゼンスルホン酸ナトリウム1.0重量部、分
子量4000を有するポリエチレングリコール2.0重
量部、メチルフエニルポリシロキサン0.01重量部
を添加し、常法により最終温度280℃、真空度0.5
mmHgのもとに、重縮合反応を行ない、極限粘度
0.643のポリマを得た。 該ポリマのジエチレングリコール含量は1.92重
量%で、ポリエチレングリコールは約2.1重量
%、ドデシルベンゼンスルホン酸ソーダ1.06重量
%、金属チタン11ppmであつた。 該ポリマを170℃、3時間真空乾燥後シリンダ
温度280℃の射出成型機を用い、重量26gの円筒
状有底パリソン(内容積27c.c.)を得る。次いで
105℃の雰囲気下で5分放置後2軸延伸し、内容
積400c.c.のボトルを得た。該ボトルのダスト付着
テストを行なつたところ、ケイ砂の付着は極めて
少く、制電性に優れ、落下衝撃強度回数は10回以
上であり、かつボトルの透明性、色調も良好で外
観としてはガラスライクであつた。 実施例 2 実施例1と同様な方法でドデシルベンゼンスル
ホン酸ナトリウム、ポリエチレングリコール、ジ
エチレングリコール成分の組成比を変更したポリ
マ(実験No.1〜25)を得た。但し、重合触媒は二
酸化ゲルマニウムを用いポリマ中のゲルマニウム
金属量は60ppmであつた。 結果を表1に示す。
The present invention relates to a polyester blow molded article with good transparency. More specifically, the present invention relates to a polyester hollow molded product having excellent transparency, antistatic properties, and impact resistance. Polyester, particularly polyethylene terephthalate, has excellent physical and chemical properties and is therefore widely used in the fields of fiber, film, and plastic molding. Conventionally, polyvinyl chloride has been mainly used as a resin for plastic blow-molded products, but in recent years it has come to be restricted, especially in the field of blow-molded containers for food products, due to the problem of elution of vinyl chloride monomers. Although polyethylene terephthalate has various excellent properties as mentioned above, it has not been sufficiently penetrated into the field of blow molding. The reason for this was that the viscosity of the polymer when melted was low and crystallization was extremely rapid, resulting in the product being susceptible to whitening. To address this problem, various improvements have been made in the molding industry to a certain extent, and it has come to function as a substitute for polyvinyl chloride, but polyethylene terephthalate is still extremely susceptible to electrostatic charge, and during molding and processing. Whitening due to crystallization and major problems during use,
Issues such as impact resistance remain. On the other hand, examples of using sulfonate derivatives and polyalkylene glycol to improve these problems are JP-B No. 44-31828, JP-A No. 52-47069,
JP-A-52-47072, JP-A-52-134662, JP-A-52
-151365 etc. Japanese Patent Publication No. 44-31828 describes an example using a high molecular weight polyalkylene glycol which is substantially insoluble in polyester. Although the antistatic property of the polyester obtained in this case has been improved to some extent, it is cloudy and has poor transparency, so it cannot be used. JP-A-52-47069 and JP-A-52-47072 exemplify films made from compositions of sulfonate derivatives and polyalkylene glycols having a molecular weight of 400 to 8,000. In this case, it is true that a certain degree of antistatic property can be imparted, but the material tends to whiten during the cooling process after melt molding and glass-like transparency, which is essential for blow molding applications, cannot be obtained. In addition, in JP-A-52-134662, only sulfonate derivatives were added to polyester, and the temperature was 100℃ to 250℃.
An example is described in which antistatic properties are obtained by heat treatment at ℃. However, this method does not improve whitening during the cooling process after melt molding, nor does it improve impact resistance. The inventors of the present invention have made the present invention as a result of extensive studies in order to simultaneously solve the various drawbacks of blow molding materials as described above and provide polyester molded products with excellent antistatic properties, transparency, and impact resistance. This invention has been achieved. That is, the present invention is essentially polyethylene terephthalate obtained by the reaction of terephthalic acid or its lower alkyl ester with ethylene glycol, and (A) an alkali metal salt of alkylbenzenesulfonic acid.
0.01-5.0% by weight (B) 0.2-5.0% by weight of polyethylene glycol having a molecular weight of 600-8000 (C) 1.3-3.0% by weight of diethylene glycol component (D) 3-20ppm of Ti compound and/or Ge compound as Ti metal, Ge It is a polyester blow-molded article containing 10 to 100 ppm of metal (the above components (B) and (C) are co-condensed) and has good transparency. Substantially polyethylene terephthalate used in the present invention refers to bisbenzene obtained after esterification reaction with terephthalic acid and ethylene glycol, or after transesterification reaction between lower alkyl esters of dicarboxylic acids, such as dimethyl terephthalate and diethyl terephthalate, and ethylene glycol. It is obtained by polycondensing diol ester and/or its low polymer in the presence of a specific polymerization catalyst at high temperature under vacuum, and contains a small amount of dicarboxylic acid residues other than terephthalic acid residues. Good too. Dicarboxylic acid residues other than terephthalic acid residues include residues such as isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, adipic acid, and sebacic acid.
Oxyacid components such as oxycarboxylic acid components such as P-oxyethoxybenzoic acid can also be used. Further, the diol component is mainly an ethylene glycol component, but a small amount of other glycols may also be used in combination. An example of this is propylene glycol,
Examples include trimethylene glycol, tetramethylene glycol, and cyclohexanedimethanol components. Component (A) used in the present invention, that is, an alkali metal salt of alkylbenzenesulfonic acid, preferably has an alkyl group having 6 to 20 carbon atoms, and examples thereof include hexylbenzenesulfonic acid, octylbenzenesulfonic acid, and nonylbenzenesulfonic acid. , decylbenzenesulfonic acid, dodecylbenzenesulfonic acid, stearylbenzenesulfonic acid, and other sodium, potassium, and lithium salts. Among these, sodium dodecylbenzenesulfonate is particularly effective in terms of antistatic properties and polymer color tone. The amount of alkali metal alkylbenzenesulfonic acid salt is from 0.01 to 5.0% by weight, preferably from 0.03 to 2.0% by weight. If it is less than 0.01% by weight, antistatic properties cannot be obtained, and if it exceeds 5.0% by weight, disadvantages such as a slimy feeling in the polyester molded product and deterioration in transparency occur, which is not preferable. The polyethylene glycol used in the present invention has a molecular weight of 600 to 8000, and the amount added is 0.2 to 5.0% by weight, preferably 0.3 to 2.5% by weight. Here, polyethylene glycol means 40 mol% of other polyalkylene glycol units.
Copolymerized products are also included below. If the molecular weight of polyethylene glycol is less than 600, it is undesirable because the impact resistance and elasticity are lowered probably because the blocking properties are lowered, and the softening point is extremely lowered and the dimensional stability is deteriorated, which is one of the objects of the present invention. The antistatic properties are not exhibited. If it exceeds 8,000, the polyethylene glycol component gradually becomes insoluble in the polyester, which is not preferable because not only the polymer but also the molded product will turn white despite rapid cooling during molding. In addition, if the amount of polyethylene glycol added is less than 0.2% by weight, the antistatic property will not be sufficient, and the amount of polyethylene glycol added will be 5.0% by weight.
If it exceeds this value, the heat resistance of the polymer will deteriorate and the color will be too yellowish to be of practical use. The conventional polymer thus obtained has improved antistatic properties compared to ordinary polyethylene terephthalate, but is inferior in transparency. The polymer color has a yellowish tinge. Impact resistance is not sufficiently improved. Such shortcomings appear. Therefore, the diethylene glycol component should be 1.3 to 3.0.
wt% and Ti compound and/or as polymerization catalyst
Or 3-20ppm Ge as Ti metal with Ge compound
By containing 10 to 100 ppm of the metal, the above-mentioned drawbacks can be solved at once, and even better antistatic properties can be obtained. If the diethylene glycol component is less than 1.3% by weight, it will not be possible to sufficiently improve the transparency of the blow molded product, and if it exceeds 3.0% by weight, the molded product will not have practical dimensional stability due to a decrease in the softening point. do not have. A more preferable addition amount of diethylene glycol is 1.5 to 2.5% by weight. In addition, if the amount of Ti compound and/or Ge compound added as a polymerization catalyst is less than 3 ppm and 10 ppm as metal, it is not practical because the polymerization rate is slow, and if it exceeds 20 ppm and 100 ppm, the polymer will become colored. In addition, the resulting polymer tends to crystallize during the cooling process during melt molding, resulting in the drawback that the hollow molded product is susceptible to whitening. Also, preferred Ti compounds and/or Ge
The amount of each compound added is 5 to 5 as metal.
15ppm, 20-80ppm. Specific Ti compounds include tetrabutyl titanate, tetramethyl titanate, titanium tetrachloride, titanium oxalate, titanium oxalate, titanium acetate, titanium trimellitate, and hydrolysates or derivatives thereof. Examples of the Ge compound include germanium oxide, germanium alkoxide, germanic acid metal salts, and the like. Antimony compounds, silicon compounds, zirconium compounds, and the like are known as polycondensation catalysts other than Ti and/or Ge compounds, but these are not preferred in terms of dullness, coloration, and heat resistance of the resulting polymer. Furthermore, coexisting phosphorus compounds such as phosphorous acid, phosphoric acid, and esterified products thereof in these compositions as phosphorus atoms at least 0.1 times by mole based on the total metal atom components in the polymer is important for improving the quality of the polymer. More suitable for heat resistance and color tone. In addition, in addition to antioxidants such as found phenol type antioxidants, polysiloxanes, pigments, dyes, inert inorganic fine particles, etc. may be used as appropriate. The blow molding material of the present invention is made of the polyester thus obtained. Extrusion blow molding, injection blow molding, or injection/extrusion combined blow molding is applied to the manufacturing method of blow molded products, but it can also be used in combination with vacuum forming, blow molding, and uniaxial or biaxial stretch molding. . For example, a series of methods for producing stretch-oriented hollow bodies include (1) extrusion or injection molding of the parison, (2) reheating of the parison, (3) axial stretching, (4) blow mold closure,
(5) compressed air blowing, (6) cooling, (7) mold opening, and (8) ejecting steps. The polyester blow molded product thus obtained is
It has excellent antistatic properties, transparency, and impact resistance, making it particularly suitable for filling and packaging materials such as food, cosmetics, and miscellaneous goods.It does not attract dust when left in a store, and is more resistant to drop impact than ordinary polyethylene terephthalate. However, it is extremely excellent. Hereinafter, the present invention will be explained with reference to Examples. still,
Prior to explaining the examples, a method for measuring characteristic values will be explained. (1) Surface specific resistance A 0.2 mm thick sheet sample was left for 1 hour at a room temperature of 20° C. and a humidity of 65% and was measured using a MMA-15 type ultra-micro ammeter manufactured by Kawaguchi Electric Seisakusho. (2) Dust adhesion test We applied silica sand to the sheet or molded product and examined the adhesion state. (3) Haze thickness 0.2mm according to ASTM-D-1003-59T
Measurements were made on sheets of ±0.01 mm. (4) Intrinsic viscosity Intrinsic viscosity of the polymer is a value measured at 25°C using 0-chlorophenol solvent. (5) Dimensional stability Cylindrical bottomed parison weighing 26g (inner volume 27g)
cc) in an atmosphere of 105℃ in two axial directions,
Obtain a bolt with an internal volume of approximately 400 c.c. this bolt
Determine the volumetric shrinkage rate when left in an atmosphere of 40℃ x 90% RH for 14 days. Shrinkage rate 0.5% or less Excellent ◎ 0.5-2% Good 〇 2%-4% Slightly poor △ 4% or more Poor × Values I made a judgment. (6) Drop impact strength Cylindrical bottomed parison weighing 26 g (inner volume 27
cc) in an atmosphere of 105℃ in two axial directions,
Obtain a bolt with an internal volume of approximately 400 c.c. This bolt was filled with water and dropped onto a concrete floor from a height of 2.5 m, and the number of drops and the state of damage when the bolt broke were determined. (7) Impact strength This is the value determined using a Charpy impact strength tester using a 5 mm wide sample of an unstretched sheet with a thickness of 0.2 mm. Judgment 2.2-2.5Kg-cm/mm 2 or more Excellent ◎ 1.8-2.2Kg-cm/mm 2 Good 〇 1.3-1.8Kg-cm/mm 2 Slightly poor △ 1.3 Kg-cm/mm 2 or less Poor × Example 1 Terephthal 100 parts by weight of ethylene terephthalate low polymer obtained by esterification of acid and ethylene glycol (reaction rate 97.5%, molar ratio of EG unit/TPA unit 1.2) was stored at 250°C in a reactor. while TPA 158 parts by weight and ethylene glycol 71 parts by weight
The parts by weight were mixed well, and the resulting slurry was continuously added to the reactor at a constant rate, and heated at 250°C under normal pressure.
The water produced by the esterification reaction was continuously distilled out of the system from the rectification column. The slurry supply time was 3 hours and 40 minutes, and the esterification reaction was completed in 4 hours. 100 parts by weight of the obtained esterification reaction product was transferred to a polycondensation reactor, 0.002 parts by weight of phosphoric acid, 1.0 parts by weight of diethylene glycol, and 0.0075 parts by weight of tetrabutyl titanate were added, and after another 5 minutes, 1.0 parts by weight of sodium dodecylbenzenesulfonate was added. 2.0 parts by weight of polyethylene glycol having a molecular weight of 4000 and 0.01 parts by weight of methylphenyl polysiloxane were added, and the final temperature was 280°C and the degree of vacuum was 0.5 using a conventional method.
Polycondensation reaction is carried out under mmHg, and the intrinsic viscosity is
A polymer of 0.643 was obtained. The diethylene glycol content of the polymer was 1.92% by weight, about 2.1% by weight of polyethylene glycol, 1.06% by weight of sodium dodecylbenzenesulfonate, and 11 ppm of titanium metal. After vacuum drying the polymer at 170° C. for 3 hours, an injection molding machine with a cylinder temperature of 280° C. is used to obtain a cylindrical bottomed parison (inner volume 27 c.c.) weighing 26 g. then
After being left in an atmosphere at 105°C for 5 minutes, it was stretched biaxially to obtain a bottle with an internal volume of 400 c.c. When we conducted a dust adhesion test on the bottle, we found that there was very little adhesion of silica sand, it had excellent anti-static properties, the impact resistance was 10 times or more, and the bottle had good transparency and color, and the appearance was good. It was glass-like. Example 2 Polymers (Experiments Nos. 1 to 25) were obtained in the same manner as in Example 1, with different composition ratios of sodium dodecylbenzenesulfonate, polyethylene glycol, and diethylene glycol components. However, germanium dioxide was used as the polymerization catalyst, and the amount of germanium metal in the polymer was 60 ppm. The results are shown in Table 1.

【表】 実験No.1、2、8、9、14、15、18〜20および
25は本発明の範囲外の比較実験例である。 表1に示す如く、アルキルベンゼンスルホン酸
ナトリウム成分0.01〜5.0重量%、分子量600〜
8000を有するポリエチレングリコール0.2〜5.0重
量%、ジエチレングリコール成分1.3〜3.0重量%
を有する組成範囲のポリマは制電性、透明性、耐
衝撃性および寸法安定性共優れていることを確認
した。 比較実施例 1 重縮合触媒として、三酸化アンチモンを0.03重
量部添加した以外は、実施例1と全く同様な方法
でポリマを製造した。 得られたポリマは、該触媒を用いた通常のポリ
エチレンテレフタレートよりはるかに黒味を帯
び、かつ射出成形した円筒状有底パリソンも不透
明で、中空成形品としては好ましいものでないこ
とがわかつた。 実施例 3 ジメチルテレフタレート150重量部、エチレン
グリコール87重量部、ジエチレングリコール0.8
重量部、酢酸マンガン4水塩0.06重量部を混合
し、窒素気流下において140〜220℃でメタノール
を留去しながら、エステル交換反応を行なつた。 引きつづき反応物を重合缶に移し、リン酸トリ
メチル0.025重量部、重合触媒として二酸化ゲル
マニウム0.01重量部、修酸チタン酸0.005重量
部、およびドデシルベンゼンスルホン酸ナトリウ
ム2.25重量部、分子量2000を有するポリエチレン
グリコール3.0重量部、メチルフエニルポリシロ
キサン0.02重量部を加えて、系内を減圧昇温し、
最終的に282℃、0.2mmHgで4時間重縮合を行い
極限粘度0.691の透明性に優れ、かつ黄着色の極
めて少ないポリマ(ポリマ中のジエチレングリコ
ール成分2.1重量%で、かつGe金属残存量
23ppm、チタン金属残存量6ppm)を得た。該ポ
リマの未延伸シート(厚み250ミクロン)を90℃
の条件で真空深絞り成形した箱型トレイに米菓を
入れ40℃×65%RH雰囲気下に放置したが塵埃の
付着は極めて少く透明性も全く失われなかつた。
[Table] Experiment No. 1, 2, 8, 9, 14, 15, 18-20 and
No. 25 is a comparative experimental example outside the scope of the present invention. As shown in Table 1, sodium alkylbenzenesulfonate component 0.01-5.0% by weight, molecular weight 600-
Polyethylene glycol with 8000% by weight, diethylene glycol component 1.3-3.0% by weight
It was confirmed that the polymer having the composition range has excellent antistatic properties, transparency, impact resistance, and dimensional stability. Comparative Example 1 A polymer was produced in exactly the same manner as in Example 1, except that 0.03 parts by weight of antimony trioxide was added as a polycondensation catalyst. It was found that the obtained polymer had a much darker tinge than ordinary polyethylene terephthalate using this catalyst, and the injection-molded cylindrical bottomed parison was also opaque, making it undesirable as a blow-molded product. Example 3 150 parts by weight of dimethyl terephthalate, 87 parts by weight of ethylene glycol, 0.8 parts by weight of diethylene glycol
parts by weight and 0.06 parts by weight of manganese acetate tetrahydrate were mixed, and a transesterification reaction was carried out while distilling off methanol at 140 to 220°C under a nitrogen stream. Subsequently, the reactants were transferred to a polymerization vessel, and 0.025 parts by weight of trimethyl phosphate, 0.01 parts by weight of germanium dioxide as a polymerization catalyst, 0.005 parts by weight of titanate oxalate, and 2.25 parts by weight of sodium dodecylbenzenesulfonate, polyethylene glycol having a molecular weight of 2000 were added. Add 3.0 parts by weight and 0.02 parts by weight of methylphenylpolysiloxane, reduce the pressure in the system and raise the temperature.
Finally, polycondensation was performed at 282℃ and 0.2mmHg for 4 hours to create a polymer with an intrinsic viscosity of 0.691, excellent transparency, and extremely little yellowing (diethylene glycol component in the polymer was 2.1% by weight, and residual Ge metal content).
23ppm, residual amount of titanium metal 6ppm). An unstretched sheet (thickness 250 microns) of the polymer was heated at 90°C.
Rice crackers were placed in a vacuum deep-drawn box-shaped tray under these conditions and left in an atmosphere of 40°C and 65% RH, but there was very little dust adhesion and no loss of transparency was observed.

Claims (1)

【特許請求の範囲】 1 テレフタル酸またはその低級アルキルエステ
ルとエチレングリコールの反応によつて得られる
実質的にポリエチレンテレフタレートであり、 (A) アルキルベンゼンスルホン酸アルカリ金属塩
0.01〜5.0重量% (B) 分子量600〜8000を有するポリエチレング0.2
〜5.0重量% (C) ジエチレングリコール成分1.3〜3.0重量% (D) Ti化合物および/またはGe化合物がTi金属
として3〜20ppm、Ge金属として10〜
100ppm、 を含有〔ただし、上記(B)成分および(C)成分は共縮
合している〕してなる透明性良好なポリエステル
中空成形品。
[Scope of Claims] 1. Substantially polyethylene terephthalate obtained by the reaction of terephthalic acid or its lower alkyl ester with ethylene glycol, (A) an alkali metal salt of alkylbenzenesulfonic acid;
0.01-5.0% by weight (B) Polyethylene with a molecular weight of 600-8000 0.2
~5.0% by weight (C) Diethylene glycol component 1.3~3.0% by weight (D) Ti compound and/or Ge compound 3~20ppm as Ti metal, 10~20ppm as Ge metal
A polyester blow-molded article with good transparency, containing 100 ppm [However, the above components (B) and (C) are co-condensed].
JP7538778A 1978-06-23 1978-06-23 Hollow molded polyester article having improved transparency Granted JPS553426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7538778A JPS553426A (en) 1978-06-23 1978-06-23 Hollow molded polyester article having improved transparency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7538778A JPS553426A (en) 1978-06-23 1978-06-23 Hollow molded polyester article having improved transparency

Publications (2)

Publication Number Publication Date
JPS553426A JPS553426A (en) 1980-01-11
JPS6146495B2 true JPS6146495B2 (en) 1986-10-14

Family

ID=13574722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7538778A Granted JPS553426A (en) 1978-06-23 1978-06-23 Hollow molded polyester article having improved transparency

Country Status (1)

Country Link
JP (1) JPS553426A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158936A (en) * 1984-01-17 1985-08-20 Hitachi Metals Ltd Straight wire having high fatigue strength and its manufacture
US6346070B1 (en) 1998-12-25 2002-02-12 Mitsui Chemicals Inc Catalyst for polyester production, process for producing polyester using the catalyst, polyester obtained by the process, and uses of the polyester
KR100531041B1 (en) * 2003-05-27 2005-11-24 주식회사 효성 Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same
JP4986105B2 (en) 2005-09-21 2012-07-25 株式会社吉野工業所 Heat-resistant and pressure-resistant plastic bottle made of polyester resin
JP5135682B2 (en) * 2005-12-22 2013-02-06 富士ゼロックス株式会社 Polyester production method, resin particle dispersion and production method thereof, electrostatic image developing toner and production method thereof, electrostatic charge image developer, and image forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324392A (en) * 1976-08-19 1978-03-07 Teijin Ltd Polyester material for hollow moldings
JPS5326893A (en) * 1976-08-26 1978-03-13 Teijin Ltd Polyester hollow molding and its preform
JPS5328676A (en) * 1976-08-31 1978-03-17 Teijin Ltd Process for manufacturing polyester hollow object or preceding object thereof
JPS5328693A (en) * 1976-08-31 1978-03-17 Teijin Ltd Polyester polyestier rlow molded articles or other preliminary molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324392A (en) * 1976-08-19 1978-03-07 Teijin Ltd Polyester material for hollow moldings
JPS5326893A (en) * 1976-08-26 1978-03-13 Teijin Ltd Polyester hollow molding and its preform
JPS5328676A (en) * 1976-08-31 1978-03-17 Teijin Ltd Process for manufacturing polyester hollow object or preceding object thereof
JPS5328693A (en) * 1976-08-31 1978-03-17 Teijin Ltd Polyester polyestier rlow molded articles or other preliminary molded article

Also Published As

Publication number Publication date
JPS553426A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
US4499262A (en) Process for the preparation of sulfo-modified polyesters
KR102138388B1 (en) Clear semi-crystalline articles with improved heat resistance
EP0698631B1 (en) Ester copolymer resin, alloy thereof and packaging material using the same
JP2001510493A (en) Polyester products
JP2002539308A (en) 1,3-propanediol copolyester with improved gas barrier properties
JPS6146495B2 (en)
JP2024501278A (en) Improved polyester compositions for extrusion blow molded containers
JPH04153021A (en) Manufacture of transparent heat-resistant container
JPS6221021B2 (en)
JP2002220442A (en) Copolymer polyester and its molded article
JPH11255880A (en) Preparation of copolymerized polyester
JPH0985810A (en) Direct blow molded product
JP2613642B2 (en) Copolyesters and their uses
JP3350646B2 (en) Molded product made of polyester resin
JP3395423B2 (en) polyester
JPH10101781A (en) Polyester resin and molding obtained therefrom
JPH03277626A (en) Production of polyester
JPH08113631A (en) Polyester copolymer and packaging material and packaging container made thereof
JPH0457692B2 (en)
JPH05271520A (en) Thermoformed articles of polyester
JPS59223724A (en) Copolyester hydrazide and stretching product thereof
JP3580910B2 (en) Polyester resin composition
JPH05279464A (en) Polyester and thermal molding sheet comprising the same
JPH11269257A (en) Production of copolyester
JPH01279918A (en) Polyester resin composition and drawn product thereof