JPS6129718A - Photoelectric transmission type encoder - Google Patents

Photoelectric transmission type encoder

Info

Publication number
JPS6129718A
JPS6129718A JP15106884A JP15106884A JPS6129718A JP S6129718 A JPS6129718 A JP S6129718A JP 15106884 A JP15106884 A JP 15106884A JP 15106884 A JP15106884 A JP 15106884A JP S6129718 A JPS6129718 A JP S6129718A
Authority
JP
Japan
Prior art keywords
light
transparent
light transmission
parts
transparent body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15106884A
Other languages
Japanese (ja)
Other versions
JPH0253728B2 (en
Inventor
Akio Takamura
昭生 高村
Kazuo Makishima
一雄 巻島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP15106884A priority Critical patent/JPS6129718A/en
Publication of JPS6129718A publication Critical patent/JPS6129718A/en
Publication of JPH0253728B2 publication Critical patent/JPH0253728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To measure movement distance by arranging three light transmission bodies having light transmission parts at specific pitches, reducing the pitch width of transmission parts of the center light transmisson body, and detecting relative pitch positions of respective light transmission parts from variation of transmitted light. CONSTITUTION:An encoder for linear movement distance detection is constituted by arranging the 1st, the 2nd, and the 3rd three light transmission bodies 10, 20' and 30. Further, the 1st and the 3rd light transmission bodies 10 and 30 have light transmission parts 11 and 31 and nontransmission parts 12 and 32 formed alternately to equal pitch width. The 2nd light transmission body 20' has light transmission parts 21' formed alternately to pitch width smaller than 50% of that of nontransmission parts 22'. Then, the three transmission bodies 10, 20', and 30 are irradiated with scattered light from a projection source 1' and transmitted light is photodetected by a photodetection part 2 to detect the quantity of photodetection electrically. At this time, the quantity of photodetection varies with relative positions of the light transmission parts 11, 21', and 31. For the purpose, one of the light transmission body is coupled with a moving body, whose movement distance is detected from variation in the quantity of photodetection, so measurement is taken with high precision.

Description

【発明の詳細な説明】 産業上の利用すl −/7’l 朶lI+11 t+   (Ird 斗+
r T 4+I= 1m jtl; /n開齢÷−フル
の回動角度の検出、あるいは往復動テーブルの直線移動
距離の検出等に利用される充電式透過型エンコーダに関
する。
[Detailed description of the invention] Industrial use l −/7'l 朶lI+11 t+ (Ird 斗+
The present invention relates to a rechargeable transmission encoder used for detecting the rotation angle of r T 4 + I = 1 m jtl; /n opening age ÷ - full, or detecting the linear movement distance of a reciprocating table.

従来の技術 第2図は、直線移動距離の検出に利用されるものの従来
技術の原理を説明するためのものである。これは細巾の
板状体の、微小一定距離ごとにスリット状の透光部11
,11.・・・と非透光部12,12.・・・を等間隔
で同じ巾に交互に形成した第1の透光体10と、上記と
同じように透光部21,21.・・・と非透光部22,
22.・・・が交互に形成された第2の透光体20とを
間隔を有して重合状態にし、その第1.$2の透光体1
0.20を挟んで投光部1と受光部2を対向させたもの
であり、投光部1がら発光させた略平行光を第1の透光
体10の透光部1.Lll、・・・を介して第2の透光
体20に照射し、その照射光のうち透光部21.21.
・・・を通過した光を受光部2で受け、その受光量に対
応した電圧を発生させるようにしたものである。
BACKGROUND OF THE INVENTION FIG. 2 is a diagram for explaining the principle of a conventional technique used to detect linear movement distance. This is a thin plate-like body with slit-shaped transparent parts 11 at every minute constant distance.
, 11. ... and non-transparent parts 12, 12 . . . , formed alternately with the same width at equal intervals, and the same transparent parts 21, 21 . . . as described above. ... and the non-transparent part 22,
22. . . are formed alternately with the second transparent bodies 20 at intervals, and the first . . . Transparent body 1 for $2
A light projecting section 1 and a light receiving section 2 are opposed to each other with a distance of 0.20 mm between them, and substantially parallel light emitted from the light projecting section 1 is transmitted to the light transmitting section 1.0 of the first light transmitting body 10. Lll, .
... is received by the light receiving section 2, and a voltage corresponding to the amount of received light is generated.

尚、通常は透光体10.または20のいずれか一方を静
止させ、他方を被検出対象と一体化させるが、両者を異
なる移動体に結合して相対移動量を検出することもあり
、その場合には、投・受光部1,2もいずれか一方と結
合することになる。以」二のものにおいては、透光体1
0と透光体20とがそのピッチ(透光部11,11.・
・または21.21.・・・の配列間隔)分だけ相対移
動するごとに、透光部11,11.・・と透光部21,
2]、・・・の重合面積が周期的に変化し、その結果、
透光部1から受光部2に達する光量が周期的に変わり、
受光部2からは周期的に変化する交番電圧信号が取り出
される。したがって、この交番電圧信号の周期数を測定
することにより透光体10と透光体20の相対移動量が
求められる。尚、」二記は直線移動距離の検出用のもの
であるが、回動角度の検出用は、透光体10、透光体2
0のいずれが一方または両方を円板の周辺に形成する点
が異なるだけで、他は何等異なる点はない。
Incidentally, normally the transparent body 10. Alternatively, either one of 20 is made stationary and the other is integrated with the object to be detected, but both may be coupled to different moving bodies to detect the relative movement amount. , 2 will also be combined with either one. In the second case, the transparent body 1
0 and the transparent body 20 have the same pitch (transparent parts 11, 11...
・Or 21.21. . . . each time the translucent portions 11, 11 . . . ... and the transparent part 21,
2], the polymerization area of... changes periodically, and as a result,
The amount of light reaching the light-receiving part 2 from the light-transmitting part 1 changes periodically,
A periodically changing alternating voltage signal is extracted from the light receiving section 2 . Therefore, by measuring the number of cycles of this alternating voltage signal, the amount of relative movement between the transparent body 10 and the transparent body 20 can be determined. Note that "2" is for detecting the linear movement distance, but for detecting the rotation angle, the transparent body 10 and the transparent body 2 are used to detect the rotation angle.
The only difference is that one or both of the 0's are formed around the disk, and there are no other differences.

ところで、この種のものの検出分解能は、透光部11,
11.・・・と透光部21,2L・・・のピッチにより
決定されることになり、結局、高分解能のものを形成す
るには、それだけピッチを小さくしなければならず、製
作および価格のいずれの面でも制約がある。
By the way, the detection resolution of this kind of thing is as follows:
11. ... and the pitch of the transparent parts 21, 2L..., and in the end, in order to form a high-resolution one, the pitch must be made that much smaller, which leads to problems in production and price. There are also restrictions in terms of

倉明が解決しようとする問題点 本発明は、高分解能の充電式透過型エンコーダを実現す
るに際してピッチの微小化を解決しようとするものであ
る。
Problems to be Solved by Kuraaki The present invention attempts to solve the problem of miniaturization of the pitch when realizing a high-resolution rechargeable transmission encoder.

問題点を解決するための手段 本発明は、所定ピッチごとに透光部が形成された第1.
第2の透光体を挟んで投光部と受光部を配設し、第1.
第2の透光体の相対移動量を光電的に検出するようにし
た充電式透過型エンコーダにおいて、第2の透光体を挟
んで第1の透光体の反対側に第1の透光体と一体化した
第3の透光体を設け、第2の透光体の透光部はそのピッ
チの50%より小とし、投光部の投光は散乱光にしたら
のである。
Means for Solving the Problems The present invention provides a first...
A light projecting section and a light receiving section are arranged with a second transparent body in between, and the first.
In a rechargeable transmission type encoder that photoelectrically detects the amount of relative movement of a second transparent body, a first transparent body is placed on the opposite side of the first transparent body with the second transparent body in between. A third light transmitting body is provided which is integrated with the body, the light transmitting parts of the second light transmitting body are made smaller than 50% of the pitch, and the light emitted by the light projecting part is scattered light.

負りW 投光部からは散乱光がf51の透光体上に放射され、そ
の透光部を通過した光が第2の透光体」二に放射され、
その透光部を通過し、続いて第3の透光体上に達し最後
にその透光部を通貨した光が受光部に導入される。した
がって、散乱光の入射角とl−第3の透光体の透光部を
結ぶ空間が大きいほど透過光景は大となり、その光路中
にいずれかの非透過部が位置した場合にはそこで遮光さ
れることになる。このようにして最終的に受光部に達す
る光量の大きさは、第1.第3の透光体の透光部と第2
の透光体の透光部との対向位置関係に応じて変わり、両
者の透光部の完全対向状態およびその配列ピッチの17
2ずれた状態で最大、配列ピッチの1/4、および3/
4ずれた状態で最小となり、その最大、最小間は単調に
変化する。この結果、受光部には、第1.第3の透光体
と第2の透光体が相対的に1ピツチ移動するごとに2周
期の周期的変化を生ずる交番電圧が発生する。
Negative W Scattered light is emitted from the light projecting part onto the transparent body f51, and the light that has passed through the transparent part is emitted to the second transparent body.
The light that passes through the light-transmitting portion, then reaches the third light-transmitting body, and finally passes through the light-transmitting portion is introduced into the light-receiving portion. Therefore, the larger the space connecting the incident angle of the scattered light and the transparent part of the third transparent body, the larger the transmitted scene becomes.If any non-transparent part is located in the optical path, the light will be blocked there. will be done. In this way, the amount of light that finally reaches the light receiving section is determined by the first. The transparent part of the third transparent body and the second
It varies depending on the facing positional relationship between the transparent body and the transparent part, and the completely facing state of both transparent parts and the arrangement pitch of 17
Maximum when shifted by 2, 1/4 of the array pitch, and 3/
It reaches a minimum when it is shifted by 4, and changes monotonically between the maximum and minimum. As a result, the light receiving section has the first. Every time the third light-transmitting body and the second light-transmitting body move relative to each other by one pitch, an alternating voltage that causes a periodic change of two periods is generated.

実施例 第1図は本発明の直線移動距離検出用のものについての
実施例であり、前記第2図と同番号を付した透光体10
は、第2図と同様のものであり、同じ幅の透光部11.
I L・・と非透光部12が交互に形成されている。そ
の第1の透光体10と対向して配設されたのが第2の透
光体20′であり、反射部21゜21、・・・と非透光
部22’ 、22’ 、・・とが交互に形成され、その
透光部21′、・・・の配列ピッチは前記透光体10の
透光部11、・・・のピッチと等しく、その巾は非透光
部22・・の中より小となり、図では透光部21′はピ
ッチの50%より小さい例えば25%に形成されている
。そのfi′S2の透光体20′の反対側の面と対向し
て配設されたのが第1の透光体10と全く同一構造の@
3の透光体30であり、透光部31と非透光部32が等
間隔で交互に形成されている。そして、第1.第3の透
光体10.30の外側には散乱光を発光する投光部1′
と受光部2が配設され両者は対向している。
Embodiment FIG. 1 is an embodiment of the present invention for detecting linear movement distance, and the transparent body 10 with the same number as in FIG.
are similar to those shown in FIG. 2, and have the same width as the transparent portion 11.
IL... and non-transparent parts 12 are formed alternately. A second transparent body 20' is arranged opposite to the first transparent body 10, and includes reflective parts 21, 21, . . . and non-transparent parts 22', 22', . The arrangement pitch of the transparent parts 21', . . . is equal to the pitch of the transparent parts 11, . In the figure, the transparent portion 21' is formed to have a pitch smaller than 50%, for example, 25%. The one disposed opposite the surface opposite to the light transmitting body 20' of fi'S2 has the same structure as the first light transmitting body 10.
3, in which transparent parts 31 and non-transparent parts 32 are alternately formed at equal intervals. And the first. On the outside of the third transparent body 10.30 is a light projecting section 1' that emits scattered light.
and a light-receiving section 2 are arranged, and both are facing each other.

以上のものにおいては、投光器1′から放射された散乱
光は第1の透光体10に達し、そのうち透光部11.l
’l、・・を通過した光が第2の透光体20′上に放射
され、続いてその透光部21’、21’  ・・・を通
過した光が第3の透光体30に放射され、最後にその透
光部31,31.・・・を通過した光が受光部2に達す
る。このとき、受光部2に達する光量は、第1.第3の
透光体10.30の透光部11..11.・・・、31
,31.・・・と第2の透光体20′の透光部21’、
21’  ・・・との対向位置関係に応じ変化する。
In the above structure, the scattered light emitted from the projector 1' reaches the first transparent body 10, and among them, the transparent part 11. l
The light that has passed through 'l, . The light is emitted, and finally the transparent parts 31, 31 . The light that has passed through reaches the light receiving section 2. At this time, the amount of light reaching the light receiving section 2 is the first. Transparent portion 11 of third transparent body 10.30. .. 11. ..., 31
, 31. ... and the transparent portion 21' of the second transparent body 20',
21'... changes depending on the opposing positional relationship.

第3〜6図は、上記の透光部11,11.・・31.3
1.・・・と透光部21’、21’+・・・どの対向位
置関係とそのときに一つの透光部11を通過した光のう
ち何%が受光部2に達するかを投光点を横軸にモデル化
して示したものであり、ここには投光部1′と第1の透
光体10問および受光部2と第3の透光部30間、の各
間隔をそれぞれ透光部21′。
3 to 6 show the above-mentioned light-transmitting parts 11, 11.・31.3
1. . . . and the transparent parts 21', 21'+... The light emitting point is determined to determine which opposing positional relationship and what percentage of the light that passes through one transparent part 11 reaches the light receiving part 2. It is modeled and shown on the horizontal axis, and each interval between the light transmitting part 1' and the first transparent body 10 and between the light receiving part 2 and the third transparent part 30 is shown as a light transmitting body. Part 21'.

21′、・・・(透光部11.IL・・・)の配列ピッ
チと同じとし、第1.第2.第3の透光体10.20”
 、30の各間隔を1/2ピツチとしである。第3図の
状態は透光部11゜11、・・と透光部21’、21’
、・・・が1/2ピツチずれ、第4図は第3図の状態か
ら透光体20′が1/4ピツチ分左方にずれ、第5図は
第3図の状態から透光体20′が左方に1/2ピツチず
れて透光部11,1 ]、・・・と透光部21″が完全
に対向し、第6図は第3図の状態から透光体20′が左
方に3/4ピツチずれた状態を示している。そして矢印
付の線により囲まれた面積は投光体1′のある1点から
の散乱光のうち透光体10の中央部の−っの透光部j1
を通過する光線を示し、その中のハツチング部分は第2
.第3の透光部21’、3]を通過する光量を示し、各
図の下側は、上記透光部11を通過する全光量に対し、
受光部2に達した光量の割合を百分率で示したものであ
る。
21', . . . (transparent portions 11.IL . Second. Third transparent body 10.20”
, 30, each interval is 1/2 pitch. In the state shown in Fig. 3, the transparent parts 11°11, . . . and the transparent parts 21', 21'
, . 20' is shifted by 1/2 pitch to the left so that the transparent parts 11,1], . . . and the transparent parts 21'' completely oppose each other, and FIG. is shifted by 3/4 pitch to the left.The area surrounded by the arrowed line is the area in which the central part of the light transmitting body 10 out of the scattered light from a certain point of the light projecting body 1' is shown. -translucent part j1
The hatched part is the second
.. The amount of light passing through the third transparent section 21', 3] is shown, and the lower part of each figure shows the amount of light passing through the third transparent section 11,
The ratio of the amount of light reaching the light receiving section 2 is expressed as a percentage.

上記のいずれも、透光部11を通り、第2の透光体20
′に放射される光量は同じであるが、透光体11と透光
B21′の対向位置関係に応じて透光部21′を通過す
る光量およびその通過光量のうち第3の透光体30の非
透光部32により遮光される量が異なり、受光部2に達
する光量は、第3,5図の状態、すなわち透光部11と
透光部21′の完全重合状態および1/2ピツチずれた
状態において最大、第4.6図状態、すなわち、両透光
部11.21′がそれぞれ1/4.3/4ピツチずれた
状態で最小となり、その最大と最小、最小と最大の開は
単調に変化する。
In any of the above, the light passes through the light transmitting part 11 and passes through the second light transmitting body 20.
Although the amount of light emitted to the third transparent body 30 is the same, the amount of light that passes through the transparent part 21' and the amount of light that passes through the third transparent body 30 depend on the opposing positional relationship between the transparent body 11 and the transparent body 21'. The amount of light blocked by the non-light-transmitting portion 32 differs, and the amount of light reaching the light-receiving portion 2 differs depending on the state shown in FIGS. In the state shown in Fig. 4.6, the maximum and the minimum, and the minimum and maximum openings are the maximum and the minimum when the transparent parts 11 and 21' are respectively shifted by 1/4 and 3/4 pitches. changes monotonically.

以上は、特定の一つの透光部を通過する光量に注目した
ものであるが、他の透光部を通過する光量に対しても透
光部を通過した光量に対する受光部に戻る光量の割合を
示すパターンは同一(但し、位相はずれる)であり上記
の最大、最小の関係は変わらない。したがって、受光部
2からは、導入される光量に対応した電圧信号、すなわ
ち第1.第3の透光体10゜30と第2の透光体20′
とが相対的に172ピツチ移動するごとに周期的に変化
する交番電圧信号が発生することになり、結局、従来技
術のものに比べて2倍の分解能を有する交番電圧信号と
なる。
The above focuses on the amount of light passing through one specific light-transmitting part, but the ratio of the amount of light returning to the light-receiving part to the amount of light passing through the light-transmitting part also applies to the amount of light passing through other light-transmitting parts. The patterns showing are the same (however, the phase is shifted), and the above relationship between maximum and minimum does not change. Therefore, from the light receiving section 2, a voltage signal corresponding to the amount of light introduced, that is, the first . Third transparent body 10°30 and second transparent body 20'
An alternating voltage signal that changes periodically every time the two move by 172 pitches relative to each other is generated, resulting in an alternating voltage signal having twice the resolution as that of the prior art.

尚、上記実施例においては、投・受光部1′2と透光体
10.30の間、透光体1(1゜20’、30の各間隔
をそれぞれ透光部ピッチと同じおよび172倍とした場
合であるが、これに限定されるものではなく、適宜に選
定しても同様であり、また、第2の透光体の透光部21
′、21’  ・・・のピッチに占める割合も50%よ
I)小さい適宜の割合としてよ本発明は、第1.第3の
透光体の間に位置させた第2の透光体の透光部をそのピ
ッチの50%より小とし、かつ投光部の光源を散乱光源
とすることにより従来技術の2倍の分解能を有する出力
を取り出すようにしたものであり、高分解能化が制作面
、経済面のいずれの面でも容易となり、高分解能な回動
角、距離の検出が容易に実現される。
In the above embodiment, the distance between the light emitting/receiving part 1'2 and the light transmitting body 10.30, the distance between the light transmitting body 1 (1°20', 30') is the same as the pitch of the light transmitting part and 172 times the pitch of the light transmitting part, respectively. However, the case is not limited to this, and the same can be done even if an appropriate selection is made, and the transparent part 21 of the second transparent body
', 21' . . . occupy 50% of the pitch. By making the light-transmitting parts of the second light-transmitting body located between the third light-transmitting bodies smaller than 50% of the pitch thereof, and using the light source of the light projecting part as a scattering light source, the light transmission area is doubled compared to the conventional technology. It is designed to output an output with a resolution of , which makes it easy to achieve high resolution both in terms of production and economy, and to easily realize high-resolution detection of rotation angles and distances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す正面図、第2図は従来技
術を示す正面図、第3〜6図は本発明の動作説明図であ
る。 1′:投光部  2:受光部 10.20,30:透光体 11.21’、31:透光部
FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a front view showing a conventional technique, and FIGS. 3 to 6 are explanatory diagrams of the operation of the present invention. 1': Light projecting part 2: Light receiving part 10.20, 30: Transparent body 11.21', 31: Transparent part

Claims (1)

【特許請求の範囲】[Claims] 1、所定ピッチごとに透光部の形成された第1、第2の
透光体を挟んで投光部と受光部を配設し、第1、第2の
透光体の相対移動量を光電的に検出するようにした光電
式透過型エンコーダにおいて、第2の透光体を挟んで第
1の透光体の反対側に第1の透光体と一体化した第3の
透光体を設け、第2の透光体の透光部はそのピッチの5
0%より小とし、投光部の投光は散乱光としたところの
光電式透過型エンコーダ。
1. A light emitting part and a light receiving part are arranged sandwiching the first and second light transmitting bodies each having a light transmitting part formed at a predetermined pitch, and the relative movement amount of the first and second light transmitting bodies is determined. In a photoelectric transmission type encoder that performs photoelectric detection, a third transparent body is integrated with the first transparent body on the opposite side of the first transparent body with the second transparent body in between. , and the transparent part of the second transparent body has a pitch of 5
This is a photoelectric transmission type encoder in which the light emitted from the light emitting section is set to be smaller than 0%, and the light emitted from the light emitting part is scattered light.
JP15106884A 1984-07-20 1984-07-20 Photoelectric transmission type encoder Granted JPS6129718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106884A JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106884A JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Publications (2)

Publication Number Publication Date
JPS6129718A true JPS6129718A (en) 1986-02-10
JPH0253728B2 JPH0253728B2 (en) 1990-11-19

Family

ID=15510601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106884A Granted JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Country Status (1)

Country Link
JP (1) JPS6129718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426162A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Position detector
EP0683231A1 (en) 1994-05-20 1995-11-22 Nippon Shokubai Co., Ltd. Process for production of L-aspartic acid
US5783428A (en) * 1994-07-19 1998-07-21 Mitsubishi Chemical Corporation Method of producing fumaric acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426162A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Position detector
EP0683231A1 (en) 1994-05-20 1995-11-22 Nippon Shokubai Co., Ltd. Process for production of L-aspartic acid
US5783428A (en) * 1994-07-19 1998-07-21 Mitsubishi Chemical Corporation Method of producing fumaric acid

Also Published As

Publication number Publication date
JPH0253728B2 (en) 1990-11-19

Similar Documents

Publication Publication Date Title
US4465373A (en) Encoder
US6359691B2 (en) Device for measuring translation, rotation or velocity via light beam interference
US8124928B2 (en) Optical encoder comprising two pattern arrays and several bell shaped light guides
JPH0245126B2 (en)
JP4266834B2 (en) Optical encoder
JPH0248928B2 (en)
JP3170902B2 (en) Signal processing method and encoder using the same
JP2004191087A (en) Optical encoder
JPH087082B2 (en) Optical encoder
JPH04157319A (en) Encoder utilizing silhouette pattern
US3244895A (en) Shaft encoders
JPS6023282B2 (en) Relative displacement measuring device
JPS6129718A (en) Photoelectric transmission type encoder
US6759647B2 (en) Projection encoder
JP2001201369A (en) Photoelectron system
JPH08233608A (en) Optical encoder
JPH0237963B2 (en)
JPS5828615A (en) Measuring device for extent of shift
JPH09243336A (en) Angle detecting device, and on-head image display device
JP2004029019A (en) Optical position sensing device
JPH11118422A (en) Dimension measuring device using moire fringe
JP2000227346A (en) Optical encoder
JPS6129717A (en) Photoelectric reflection type encoder
JP4343350B2 (en) Optical encoder
JPH0411807B2 (en)