JPS6128652B2 - - Google Patents
Info
- Publication number
- JPS6128652B2 JPS6128652B2 JP8829878A JP8829878A JPS6128652B2 JP S6128652 B2 JPS6128652 B2 JP S6128652B2 JP 8829878 A JP8829878 A JP 8829878A JP 8829878 A JP8829878 A JP 8829878A JP S6128652 B2 JPS6128652 B2 JP S6128652B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- group
- metal fluoride
- acid ester
- hexafluoropropylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- -1 heptafluoroisobutyric acid ester Chemical class 0.000 claims description 19
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 15
- 150000004675 formic acid derivatives Chemical class 0.000 claims description 10
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- UHSVAZDWZVBXSM-UHFFFAOYSA-N iodo formate Chemical compound IOC=O UHSVAZDWZVBXSM-UHFFFAOYSA-N 0.000 claims description 3
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 claims description 2
- ZYSAVXVGWOCMMF-UHFFFAOYSA-N bromo formate Chemical compound BrOC=O ZYSAVXVGWOCMMF-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 16
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- BPQPBEVHMFRECG-UHFFFAOYSA-N fluoro formate Chemical compound FOC=O BPQPBEVHMFRECG-UHFFFAOYSA-N 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical class OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- YJDMCDWHXOSSHI-UHFFFAOYSA-N 2,3,3,3-tetrafluoro-2-(trifluoromethyl)propanoic acid Chemical compound OC(=O)C(F)(C(F)(F)F)C(F)(F)F YJDMCDWHXOSSHI-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N alpha-methyl toluene Natural products CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- OEERIBPGRSLGEK-UHFFFAOYSA-N carbon dioxide;methanol Chemical compound OC.O=C=O OEERIBPGRSLGEK-UHFFFAOYSA-N 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000005323 thioketone group Chemical group 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明はヘプタフルオロイソ酪酸エステルの製
造方法に関する。
従来高度にフツ素化された化合物は種々知られ
ていて、熱的に非常に安定であることに加えて低
表面エネルギー特性を有しているため種々の用途
に使用される。例えば熱交換媒体、溶剤、潤活
剤、表面処理剤、耐熱および耐薬品性の樹脂配合
剤などに広く使用されている。パーフルオロカル
ボン酸エステルに限つても、例えば米国特許第
2567011号明細書に見られる如く、上述の表面特
性を有していることは明らかであり、該明細書に
も種々の用途例が記述されている。
従来パーフルオロカルボン酸エステルは主に二
つの方法で合成されるのが一般的であつた。
すなわち、カルボン酸ならびにその誘導体など
の電解フツ素化により合成され得るパーフルオロ
カルボン酸フルオリドにアルコールを反応させて
得る方法、およびパーフルオロオレフインの酸化
などで得られるパーフルオロカルボン酸を濃硫酸
触媒存在下にアルコールを用いてエステル化して
得る方法である。
前者における合成法においては毒性が強く取り
扱い難いフツ化水素が発生する難点があり、また
後者における合成法においてもかなりの量の濃硫
酸の存在下に加熱しなければならないと言う難点
を有する。
本発明者らは長年有用な含フツ素化合物の合成
研究を続けて来たが、ヘプタフルオロイソ酪酸エ
ステルが入手しやすい原料を用い、温和な条件下
容易にしかも一段に好収率で製造できることを見
い出し、本発明を完成させ提供するに至つた。
本発明で用いる原料の1種はハロゲン化蟻酸エ
ステルである。該ハロゲン化蟻酸エステルは一般
式XCOOR(但しRは炭化水素残基)で示される
化合物で、その製法に限定されず使用できる。上
記式中のXはフツ素、塩素、シユウ素、ヨウ素を
指す。また上記式中で炭化水素残基とは炭素原子
と水素原子とから成る飽和または不飽和の炭化水
素化合物の化学式において水素原子を他の原子ま
たは原子団で置換して誘導された化合物の母体側
の基を指す。すなわち前記一般式中Rは上記の炭
化水素残基であれば特に限定されず必要に応じて
選択できるが、一般にはメチル基、エチル基、イ
ソアミル基、オクチル基、ノニル基など炭素数1
〜20好ましくは1〜12の直鎖または分枝状アルキ
ル基;ビニル基、アリル基などのアルケニル基;
シクロヘキシル基などのシクロアルキル基;フエ
ネチル基などのアラルキル基;フエニル基などが
好適である。またこれらの炭化水素残基において
水素原子の1つまたは2つ以上を他の原子または
原子団で置換して誘導された基も好適であり、該
水素原子と置換する原子または原子団は特に限定
されないが、ヘプタフルオロイソ酪酸エステルの
生成反応で不活性なものがより好ましく、たとえ
ばフツ素、塩素、シユウ素、ヨウ素などのハロゲ
ン;エステル;スルホン酸エステル;ケトン;チ
オケトン;エーテル;チオエーテル;アルデヒド
などの原子または原子団が好適である。
また本発明で用いるヘキサフルオロプロピレン
は二般式CF3CF=CF2で示される化合物で、そ
の製法に限定されず用いうる。
更にまた金属フツ化物としては公知のものが特
に制限されず用いうるが工業的にはナトリウム、
カリウム、セシウム等のアルカリ金属又はマグネ
シウム、亜鉛などのアルカリ土類金属のフツ化物
が好適に使用される。特にフツ化セシウム、フツ
化カリウムは好適である。またこれらの金属フツ
化物を混合して用いることも出来る。
本発明で得られるヘプタフルオロイソ酪酸エス
テルは一般式(CF3)2CFCOORで示されるもの
である。該一般式中のRは原料の1種である前記
ハロゲン化蟻酸エステル即ちXOOORのRによつ
て決定される。該一般式中のRの種類或いは炭素
原子数等によつてその性状が異なるが、通常常温
常圧下で液体として存在するものが多い。またそ
の沸点は他の有機化合物と同じように炭素原子数
が少ない程低くなる傾向があり、アラルキル基、
フエニル基などが結合した場合は沸点も高くなる
傾向がある。また本発明で得られるヘプタフルオ
ロイソ酪酸エステルは一般に無色でありエステル
臭を有する。またアルコール、エーテル、クロロ
ホルム、酢酸エチル、ベンゼン等の有機溶媒に可
溶であるものが一般的である。
一般式XCOORで示されるハロゲン化蟻酸エス
テルにおけるXはフツ素、塩素、シユウ素、ヨウ
素のいずれでもよいが、フツ素と他のハロゲンの
場合では反応機構が多少異なる。即ち、フルオロ
蟻酸エステルを用いる場合は、金属フツ化物が触
媒となり直接ヘキサフルオロプロピレンと反応し
て本発明の目的物であるヘプタフルオロイソ酪酸
エステルを得ることができる。
しかしながら、クロロ蟻酸エステル、プロモ蟻
酸エステルまたはヨード蟻酸エステルを用いる場
合は、金属フツ化物と先ずこれらのエステルが反
応してフルオロ蟻酸エステルが生成し、該フルオ
ロ蟻酸エステルがヘキサフルオロプロピレンと反
応する所謂2段階の反応機構を経由するものと推
定される。従つて後者の場合には詳しくは後述す
るが金属フツ化物の使用量を反応に見合うだけ多
量に使用する必要がある。
本発明におけるヘプタフルオロイソ酪酸エステ
ルの製造は通常溶媒の存在下に実施するのが一般
的である。該溶媒としては、原料と反応しない極
性非水溶媒ならば特に制限されないが、代表的な
溶媒を例示すればジグライム、トリグライム、テ
トラグライム、スルホラン、ヘキサメチルホスホ
トリアミド、ジメチルホルムアミド、ジメチルス
ルホキシド、アセトニトリル、ベンゾニトリル、
ジオキサン、N−メチルピロリドンなどが好まし
く、特にグライム系溶媒は好適である。該溶媒の
選択は生成物の沸点との差が大きい沸点を有する
溶媒を選ぶことが、単離操作上有利となる。
反応温度は一般に−80℃から200℃までの範囲
から選択できるが、一般には操作上簡便である室
温でよい。圧力は加圧、常圧、減圧下いずれでも
よいが、反応物を仕込んだ状態での自然圧で反応
を行なうのが工業的には好都合である。なお、反
応雰囲気は不活性ガスで置換しても、あるいはし
なくても良い。反応時間は特に限定されず、数分
から数日の間で選択出来るが、一般には数時間で
充分である。容器としてはガラス、金属製いずれ
でもよい。ヘキサフルオロプロピレンとハロゲン
化蟻酸エステルとの仕込みのモル比は、後者の構
造、反応性に応じて好適な範囲を選定すればよい
が、通常はヘキサフルオロプロピレンの方を多く
用いる方が単離操作上好都合である。
触媒として金属フツ化物の使用量は、前述した
ようにハロゲン化蟻酸エステルの種類によつて異
なる。即ちフルオロ蟻酸エステルを用いる場合
は、金属フツ化物をフルオロ蟻酸エステルに対し
0.1〜100モル%の間で用いれば好ましい。またハ
ロゲン化蟻酸エステルとしてクロロー、プロモー
又はヨード蟻酸エステルを用いる場合は、金属フ
ツ化物がこれらのハロゲン化蟻酸エステルと反応
してフルオロ蟻酸エステルを生成するので、この
反応に見合うだけの余剰の金属フツ化物を用いる
必要がある。この場合一般に金属フツ化物の量は
ハロゲン化蟻酸エステルに対し1モル以上使用す
るのが一般的である。ハロゲン化蟻酸エステルの
種類の如何にかかわらず、反応時に金属フツ化物
を均一に分散させる手段として撹拌することは好
ましい態様である。
本発明を更に具体的に説明するために以下に実
施例を示すが、本発明はこれらの実施例に限定さ
れるものではない。なお実施例における反応収率
は原料に用いたハロゲン化蟻酸エステルの重量に
対し、反応混合物から蒸留により単離された対応
するヘプタフルオロイソ酪酸エステルの重量をも
つて算出した。
実施例 1
300mlのガラスオートクレープにフツ化セシウ
ム(2.2g)、フルオロ蟻酸ノニル(6.58g)、テ
トラグライム(20ml)を入れ、ドライアイスーメ
タノール浴で−78℃に冷却した。次いでヘキサフ
ルオロプロピレン(20ml)を加え、撹拌しながら
約20分かけて徐々に室温(23℃)まで温めた。室
温下に6時間撹拌しながら反応させた。得られた
反応混合物物を100mlナス型フラスコに移して減
圧下に分留し、沸点82〜84℃/6mmHgを有する
目的物を得た。その収量は6.24g(反応収率53.0
%)であつた。この生成物は下記の種々の測定に
より構造を決定した。
(イ) 赤外吸収スペクトル(ir)
2950、2910、2840cm-1にCHの吸収、1790と
1770cm-1にエステル基のカルボニル(C=O)
の吸収、1400〜1000cm-1にCFの吸収が認めら
れる。
(ロ) 19フツ素核磁気共鳴スペクトル(19F−
nmr)(CFCl3基準、δppm)
−7.51ppmにCF3 に基づくピークが結合定数J
=7.4Hzで2重線となつて現われ、−181.0ppm
にCFに基づくピークが結合定数J=7.4Hzで
7重線となつて現われることによりヘプタフル
オロイソプロピル基〔(CF3)2CF〕の存在が確
認される。
(ハ) 13炭素核磁気共鳴スペクトル(13C−nmr)
(テトラメチルシラン基準、δppm、1Hおよび
19F−デカツプリング)119.7ppmにCF3、
88.9ppmにCF、158ppmにC=O、68.9ppm
にOCH2、13.8ppmにCH3の各炭素に基づく
ピークの他に、32.5,29.9,29.7,29.6,
28.8,26.0および23.1ppmにCH2の炭素に基づ
く7個のピークを示し、(CF3)2CF基、C−O
基ならびにノニル基〔CH2(CH2)7CH3〕の存在
が確認された。
(ニ) 質量分析(m/e値)
20eVで測定した結果、次のようなピークが
認められた。
255(C3F7COOCH2CH2CH2)、197
(C3F7CO)、169(C3F7)。
(ホ) 元素分析値
H5.45%、C45.50%、F39.38%なる値を示
し、C13H19F7O2(340.29)に対する理論値
H5.63%、C45.88%、F39.08%によく一致し
た。
以上の種々の測定結果から、前記反応で得られ
た目的物の構造が(CF3)2CFCOOCH2
(CH2)7CH3であることが確認できた。
実施例 2
実施例1のフルオロ蟻酸ノニルの代わりに表1
に示すハロゲン化蟻酸エステルをフツ化セシウム
の代りに表1に示すフツ化金属を用い、表1に示
す反応条件とした以外は実施例1と同様に実施
し、生成物であるヘプタフルオロイソ酪酸エステ
ルの構造決定も実施例1と同様の手法で決定し
た。単離したヘプタフルオロイソ酪酸エステルの
収率および沸点は表1に示す通りであつた。
The present invention relates to a method for producing heptafluoroisobutyric acid ester. Various highly fluorinated compounds have been known and are used for various purposes because they are very thermally stable and have low surface energy properties. For example, it is widely used in heat exchange media, solvents, lubricants, surface treatment agents, heat-resistant and chemical-resistant resin compounding agents, etc. Regarding perfluorocarboxylic acid esters, for example, U.S. Patent No.
As seen in the specification of No. 2567011, it is clear that it has the above-mentioned surface properties, and various examples of applications are also described in the specification. Conventionally, perfluorocarboxylic acid esters have generally been synthesized mainly by two methods. Namely, there is a method in which perfluorocarboxylic acid fluoride, which can be synthesized by electrolytic fluorination of carboxylic acids and their derivatives, is reacted with alcohol, and a method in which perfluorocarboxylic acid obtained by oxidation of perfluoroolefins is obtained in the presence of a concentrated sulfuric acid catalyst. This method involves esterification using an alcohol. The former synthesis method has the disadvantage of generating hydrogen fluoride, which is highly toxic and difficult to handle, and the latter synthesis method also has the disadvantage of requiring heating in the presence of a considerable amount of concentrated sulfuric acid. The present inventors have been conducting research on the synthesis of useful fluorine-containing compounds for many years, and found that heptafluoroisobutyric acid ester can be produced easily under mild conditions and with even better yields using readily available raw materials. We have now completed and provided the present invention. One type of raw material used in the present invention is a halogenated formate. The halogenated formate is a compound represented by the general formula XCOOR (where R is a hydrocarbon residue), and can be used without being limited to its production method. X in the above formula refers to fluorine, chlorine, fluorine, or iodine. In the above formula, the term "hydrocarbon residue" refers to the base side of a compound derived by replacing the hydrogen atom with another atom or atomic group in the chemical formula of a saturated or unsaturated hydrocarbon compound consisting of carbon atoms and hydrogen atoms. refers to the base of That is, in the general formula, R is not particularly limited as long as it is the above-mentioned hydrocarbon residue and can be selected as necessary, but generally it is a group having 1 carbon number such as a methyl group, ethyl group, isoamyl group, octyl group, or nonyl group.
~20 preferably 1 to 12 straight chain or branched alkyl groups; alkenyl groups such as vinyl groups and allyl groups;
Preferred are cycloalkyl groups such as cyclohexyl; aralkyl groups such as phenethyl; and phenyl. Also suitable are groups derived by substituting one or more of the hydrogen atoms in these hydrocarbon residues with other atoms or atomic groups, and the atoms or atomic groups that replace the hydrogen atoms are not particularly limited. However, those that are inert in the reaction for producing heptafluoroisobutyric acid ester are more preferable, such as halogens such as fluorine, chlorine, fluorine, and iodine; esters; sulfonic acid esters; ketones; thioketones; ethers; thioethers; aldehydes, etc. atoms or atomic groups are preferred. Hexafluoropropylene used in the present invention is a compound represented by the general formula CF 3 CF=CF 2 and can be used without being limited to its production method. Furthermore, as the metal fluoride, any known metal fluoride can be used without particular limitation, but industrially sodium,
Fluorides of alkali metals such as potassium and cesium or alkaline earth metals such as magnesium and zinc are preferably used. Particularly suitable are cesium fluoride and potassium fluoride. It is also possible to use a mixture of these metal fluorides. The heptafluoroisobutyric acid ester obtained in the present invention is represented by the general formula (CF 3 ) 2 CFCOOR. R in the general formula is determined by R of the halogenated formate, ie, XOOOR, which is one of the raw materials. Although its properties vary depending on the type of R in the general formula, the number of carbon atoms, etc., many of them usually exist as a liquid at room temperature and pressure. Also, like other organic compounds, the boiling point tends to decrease as the number of carbon atoms decreases.
When a phenyl group or the like is bonded, the boiling point also tends to increase. Furthermore, the heptafluoroisobutyric acid ester obtained in the present invention is generally colorless and has an ester odor. Additionally, those that are soluble in organic solvents such as alcohol, ether, chloroform, ethyl acetate, and benzene are generally used. X in the halogenated formate ester represented by the general formula XCOOR may be fluorine, chlorine, silium, or iodine, but the reaction mechanism is somewhat different between fluorine and other halogens. That is, when a fluoroformate is used, the metal fluoride acts as a catalyst and reacts directly with hexafluoropropylene to obtain the heptafluoroisobutyrate, which is the object of the present invention. However, when using a chloroformate, a promoformate, or an iodoformate, these esters first react with a metal fluoride to form a fluoroformate, and then the fluoroformate reacts with hexafluoropropylene. It is presumed that the reaction occurs through a step reaction mechanism. Therefore, in the latter case, as will be described in detail later, it is necessary to use a large amount of metal fluoride commensurate with the reaction. The production of heptafluoroisobutyric acid ester in the present invention is generally carried out in the presence of a solvent. The solvent is not particularly limited as long as it is a polar nonaqueous solvent that does not react with the raw materials, but typical examples include diglyme, triglyme, tetraglyme, sulfolane, hexamethylphosphotriamide, dimethylformamide, dimethylsulfoxide, and acetonitrile. , benzonitrile,
Dioxane, N-methylpyrrolidone, etc. are preferred, and glyme-based solvents are particularly preferred. When selecting the solvent, it is advantageous for the isolation operation to select a solvent that has a boiling point that is significantly different from the boiling point of the product. The reaction temperature can generally be selected from the range of -80°C to 200°C, but generally room temperature may be used as it is convenient for operation. Although the pressure may be increased, normal pressure, or reduced pressure, it is industrially convenient to carry out the reaction under natural pressure with the reactants charged. Note that the reaction atmosphere may or may not be replaced with an inert gas. The reaction time is not particularly limited and can be selected from several minutes to several days, but generally several hours is sufficient. The container may be made of glass or metal. The molar ratio of hexafluoropropylene and halogenated formate may be selected within a suitable range depending on the structure and reactivity of the latter, but it is usually better to use more hexafluoropropylene during the isolation process. This is very convenient. As mentioned above, the amount of metal fluoride used as a catalyst varies depending on the type of halogenated formate. That is, when using a fluoroformate, the metal fluoride is
It is preferable to use between 0.1 and 100 mol%. Furthermore, when chloro, promo, or iodoformate is used as the halogenated formate, the metal fluoride reacts with these halogenated formates to produce fluoroformate, so an excess of metal fluoride is needed to compensate for this reaction. It is necessary to use a compound. In this case, the metal fluoride is generally used in an amount of 1 mole or more based on the halogenated formate. Regardless of the type of halogenated formate, it is a preferred embodiment to use stirring as a means of uniformly dispersing the metal fluoride during the reaction. EXAMPLES Examples are shown below to explain the present invention more specifically, but the present invention is not limited to these Examples. In addition, the reaction yield in the examples was calculated based on the weight of the corresponding heptafluoroisobutyric acid ester isolated by distillation from the reaction mixture with respect to the weight of the halogenated formic acid ester used as the raw material. Example 1 Cesium fluoride (2.2 g), nonyl fluoroformate (6.58 g), and tetraglyme (20 ml) were placed in a 300 ml glass autoclave and cooled to -78°C in a dry ice-methanol bath. Next, hexafluoropropylene (20 ml) was added, and the mixture was gradually warmed to room temperature (23°C) over about 20 minutes while stirring. The reaction was allowed to proceed at room temperature for 6 hours with stirring. The obtained reaction mixture was transferred to a 100 ml eggplant-shaped flask and subjected to fractional distillation under reduced pressure to obtain the target product having a boiling point of 82-84°C/6 mmHg. The yield was 6.24g (reaction yield 53.0
%). The structure of this product was determined by various measurements described below. (a) Infrared absorption spectrum (IR) CH absorption at 2950, 2910, and 2840 cm -1 , and 1790 and
Carbonyl of ester group (C=O) at 1770cm -1
absorption and CF absorption between 1400 and 1000 cm -1 . (b) 19F- nuclear magnetic resonance spectrum ( 19F−
nmr) (CFCl 3 standard, δppm) The peak based on CF 3 at −7.51 ppm is the coupling constant J
Appears as a double line at =7.4Hz, -181.0ppm
The presence of the heptafluoroisopropyl group [(CF 3 ) 2 CF] is confirmed by the appearance of a heptafluoroisopropyl group [(CF 3 ) 2 CF] at a coupling constant J of 7.4 Hz. (c) 13 carbon nuclear magnetic resonance spectrum ( 13 C−nmr)
(tetramethylsilane standard, δppm, 1H and
19 F-Dekatu Spring) C F 3 to 119.7 ppm,
CF at 88.9ppm, C =O at 158ppm, 68.9ppm
In addition to the peaks based on each carbon, O C H 2 at 13.8 ppm and C H 3 at 13.8 ppm, 32.5, 29.9, 29.7, 29.6,
It shows seven peaks based on C H 2 carbon at 28.8, 26.0 and 23.1 ppm, (CF 3 ) 2 CF group, C-O
The presence of a group and a nonyl group [CH 2 (CH 2 ) 7 CH 3 ] was confirmed. (d) Mass spectrometry (m/e value) As a result of measurement at 20 eV, the following peaks were observed. 255 ( C3F7COOCH2CH2CH2 ) , 197
( C3F7CO ), 169 ( C3F7 ) . (E) Elemental analysis values H5.45%, C45.50%, F39.38%, theoretical values for C 13 H 19 F 7 O 2 (340.29)
It matched well with H5.63%, C45.88%, and F39.08%. From the above various measurement results, the structure of the target product obtained in the above reaction is (CF 3 ) 2 CFCOOCH 2
It was confirmed that it was (CH 2 ) 7 CH 3 . Example 2 Table 1 was used instead of nonyl fluoroformate in Example 1.
The reaction was carried out in the same manner as in Example 1, except that the metal fluoride shown in Table 1 was used instead of cesium fluoride and the reaction conditions were changed as shown in Table 1, and the product heptafluoroisobutyric acid was The structure of the ester was also determined in the same manner as in Example 1. The yield and boiling point of the isolated heptafluoroisobutyric acid ester were as shown in Table 1.
【表】【table】
Claims (1)
ステルを金属フツ化物の存在下に反応させること
を特徴とするヘプタフルオロイソ酪酸エステルの
製造方法。 2 ヘキサフルオロプロピレン、クロロ蟻酸
エステル、ブロモ蟻酸エステル及びヨード蟻酸エ
ステルよりなる群から選ばれた少くとも1種のハ
ロゲン化蟻酸エステル及び金属フツ化物を反応
させることを特徴とするヘプタフルオロイソ酪酸
エステルの製造方法。[Scope of Claims] 1. A method for producing heptafluoroisobutyric acid ester, which comprises reacting hexafluoropropylene and fluoroformic acid ester in the presence of a metal fluoride. 2 Heptafluoroisobutyrate ester characterized by reacting at least one halogenated formate selected from the group consisting of hexafluoropropylene, chloroformate, bromoformate and iodoformate and a metal fluoride. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8829878A JPS5515447A (en) | 1978-07-21 | 1978-07-21 | Preparation of heptafluoroisobutyric acid ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8829878A JPS5515447A (en) | 1978-07-21 | 1978-07-21 | Preparation of heptafluoroisobutyric acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5515447A JPS5515447A (en) | 1980-02-02 |
JPS6128652B2 true JPS6128652B2 (en) | 1986-07-01 |
Family
ID=13939007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8829878A Granted JPS5515447A (en) | 1978-07-21 | 1978-07-21 | Preparation of heptafluoroisobutyric acid ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5515447A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636852U (en) * | 1986-06-30 | 1988-01-18 | ||
JPS6318259U (en) * | 1986-07-22 | 1988-02-06 |
-
1978
- 1978-07-21 JP JP8829878A patent/JPS5515447A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636852U (en) * | 1986-06-30 | 1988-01-18 | ||
JPS6318259U (en) * | 1986-07-22 | 1988-02-06 |
Also Published As
Publication number | Publication date |
---|---|
JPS5515447A (en) | 1980-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5466877A (en) | Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones | |
US4357282A (en) | Preparation of fluorocarbonyl compounds | |
JP4934940B2 (en) | Method for producing fluorine-containing ester compound | |
US6388139B1 (en) | Production of perfluoro (alkyl vinyl) ethers | |
JPS6145972B2 (en) | ||
EP0260773B1 (en) | Process for the preparation of fluoroalkyl perfluorovinyl ethers | |
EP0396974A1 (en) | Process for preparing fluoroalkyl vinyl compound | |
EP0090498B1 (en) | Fluorinated polyether and derivatives thereof | |
US4719052A (en) | 2,2-difluoropropionic acid derivatives | |
England | Catalytic conversion of fluoroalkyl alkyl ethers to carbonyl compounds | |
JP2667720B2 (en) | Method for producing difluorobenzene containing electron withdrawing substituent | |
EP0472422A2 (en) | Oligohexafluoropropylene compounds and methods of making them | |
JP2004043465A (en) | Method for producing acyl fluoride | |
EP1323704B1 (en) | Process for producing fluorinated polyvalent carbonyl compound | |
JPS6128652B2 (en) | ||
JPH06192154A (en) | Production of fluorine-containing ether compound | |
EP0151885B1 (en) | Process and intermediates for fluorinated vinyl ether monomer | |
US4935558A (en) | Reductive dechlorination of 1,1,1,2-tetrafluoro-2-chloroethane | |
EP0748318B1 (en) | Process for preparing polyfluorooxetanes | |
JPS626701B2 (en) | ||
JPS6112896B2 (en) | ||
US5117055A (en) | Method for direct conversion of fluorocarbonyl group into halogenides | |
JPS6112897B2 (en) | ||
JP4231999B2 (en) | Process for producing ω-iodinated fluorine-containing alkyl vinyl ether | |
EP0472423A2 (en) | Preparation of perfluorooligoether iodides |