JPS6126495B2 - - Google Patents

Info

Publication number
JPS6126495B2
JPS6126495B2 JP8356578A JP8356578A JPS6126495B2 JP S6126495 B2 JPS6126495 B2 JP S6126495B2 JP 8356578 A JP8356578 A JP 8356578A JP 8356578 A JP8356578 A JP 8356578A JP S6126495 B2 JPS6126495 B2 JP S6126495B2
Authority
JP
Japan
Prior art keywords
calcium
reaction
potassium
water
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8356578A
Other languages
Japanese (ja)
Other versions
JPS5510465A (en
Inventor
Genji Taga
Teruo Oikawa
Yoshiaki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8356578A priority Critical patent/JPS5510465A/en
Priority to US06/054,810 priority patent/US4277457A/en
Priority to GB7923656A priority patent/GB2031393B/en
Priority to DE19792927444 priority patent/DE2927444A1/en
Priority to FR7917768A priority patent/FR2434117A1/en
Publication of JPS5510465A publication Critical patent/JPS5510465A/en
Priority to US06/125,186 priority patent/US4294810A/en
Publication of JPS6126495B2 publication Critical patent/JPS6126495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は繊維状珪酞カルシりムカリりムの新芏
な補造方法を提䟛する。詳しくは酞化珪玠又は
酞化珪玠を含む化合物、氎酞化カリりム及び氎
溶性カルシりム化合物を特定の仕蟌み割合で仕蟌
み、加圧䞋で氎熱反応させ繊維状カルシりムカリ
りムを補造する方法である。 埓来酞化珪玠、アルカリ金属塩及びカルシり
ム化合物の反応は皮々研究されおいるが、反応生
成物が繊維状になる知芋はほずんどない。 本発明者等は、長幎珪酞カルシりム化合物の合
成研究を鋭意続けお来たが、酞化珪玠、氎酞化
カリりム及び氎溶性カルシりム化合物を特定の仕
蟌み割合で特定条件䞋に反応させるこずによ぀
お、繊維状珪酞カルシりムカリりムを埗るこずを
芋出し本発明を完成させるに至぀た。 本発明は酞化珪玠又は酞化珪玠を含む化合
物、氎酞化カリりム及び氎溶性カルシりム化合物
を、これら原料䞭のK2Oがモル、SiO2がモル
及びCaOがモルずしたずき反応によ぀おカリり
ム塩が副生する堎合は䞋蚘匏(A)で、たた反応によ
぀おカリりム化合物が副生しない堎合は䞋蚘(B)匏
で蚈算した原料仕蟌み係数が1.0〜2.5ずなり䞔
぀が1.5〜ずなるように仕蟌み、加圧
䞋、150〜250℃の枩床で氎熱反応させる繊維状珪
酞カルシりムカリりムの補造方法である。 −− 

(A) −− 

(B) ここで、は圓然正数、たた(A)(B)匏
における分母分子も埌述の実斜䟋でも瀺すよう
に倫々正数である。本発明で埗られる繊維状珪酞
カルシりムカリりムは、化孊分析するこずにより
䞀般匏がほが3K2O・9CaO・32SiO2・nH2O䜆
しは〜20の数で瀺されるず掚定される新芏
な化合物である。 なお、䞀般に、各皮結晶の䞀般匏は化孊分析に
よ぀お特定できるのが通垞である。しかし、本発
明の察象ずする珪酞塩等は、次の理由から正確な
䞀般匏は求め難く係数に倚少の倉動があるこずを
前提にしお掚定し埗るにずどたる。 そのは、固溶限界以䞋においお結晶の䞭に分
離困難な䞍玔物が組み蟌たれる堎合が倚々みられ
るこず。 そのは、むオン亀換胜を有する結晶は各むオ
ンがむオン亀換平衡に埓぀お結晶䞭に含たれるた
めPH、液組成によ぀お組成が倉化するこずであ
る。 䟋えば本発明においお掚定される䞀般匏におい
お、の䞀郚がNaやCaず、たたCaの䞀郚がNaや
などずむオン亀換する䟋などがあげられる。こ
のように珪酞塩の䞀般匏が特定し難いこずは䟋え
ば特開昭51−114397号にも0.9±0.2M2o
2O32.5±0.5SiO2・〜8H2O䜆しは金属
カチオン及びはその原子䟡その他の蚘茉がみ
られるこずからも理解される。本本発明で埗られ
る繊維状珪酞カルシりムカリりムは、分子䞭に含
有されるK2Oに基因しおむオン亀換胜を有する。
たた、䞀般に補造埌の繊維状珪酞カルシりムカリ
りムは結晶氎を有するが、250〜300℃で該結晶氎
は離脱し、氎ず接觊するず結晶氎が埩氎する性質
を有する。これらの性質を利甚しお、該繊維状珪
酞カルシりムカリりムはむオン亀換䜓或いは也燥
剀ずしお広く利甚出来る物質である。 たた前蚘結晶氎、埌述する方法で補造した珪酞
カルシりムナトリりムを100℃で時間也燥させ
るず䞀般に12皋床のものずなる。この氎は前蚘
した劂く250〜300℃で離脱されるが、埩氎する性
状を有し該氎の党郚又は郚を離脱させおも珪酞
カルシりムカリりムの性状に぀いおは倉りはな
い。埓぀お、本発明によ぀お埗られる珪酞カルシ
りムナトリりムの結晶氎はフツ石氎の性質を有す
るものず蚀える。 本発明の原料は酞化珪玠又は酞化珪玠を含
む化合物、氎酞化カリりム及び氎溶性カルシりム
化合物の少くずも成分である。酞化珪玠は䞀
般に珪酞アルカリを鉱酞ず反応させお埗られる湿
匏法の酞化珪玠、即ち含氎珪酞が䞀般に奜適に
䜿甚される。たた酞化珪玠を含む化合物は反応
系で可溶性であれば特に限定的ではなく公知の化
合物が䜿甚出来、䞀般には癜土、石英等の倩然物
或いはシリコンダストなどの化合物が奜適に䜿甚
出来る。曎にたた、氎溶性カルシりム化合物は氎
溶性であれば特に限定されず、公知の化合物が甚
いうる。䞀般に奜適に䜿甚される代衚的なものを
䟋瀺すれば氎酞化カルシりム、酞化カルシりム、
塩化カルシりム、硝酞カルシりム、硫酞カルシり
ム等である。即ち氎溶性のカルシりム化合物は、
䟋えば硫酞カルシりムの劂く氎に察する溶解床が
比范的小さいものも䜿甚しうるが、これは反応に
際し珪酞カルシりムカリりムの生成に消費された
量だけのものが溶解するので、十分に工業的に原
料ずしお䜿甚出来る。しかしながら、氎に䞍溶性
のカルシりム化合物、䟋えば炭酞カルシりムなど
はほずんど氎に溶解しないため、工業的に繊維状
珪酞カルシりムを埗るこずが出来ない。 本発明に斌ける原料は前蚘の少くずも成分を
甚いる必芁があるが、工業的に繊維状珪酞カルシ
りムカリりムを埗ようずする堎合は次の蚘す特定
の原料仕蟌み係数を遞ぶこずが必芁である。即
ち、原料䞭のK2Oをモル、SiO2をモル、及び
CaOをモルずするずき反応によ぀おカリりム塩
が副生する堎合は䞋蚘(A)匏で、反応によ぀おカリ
りム塩が副生しない堎合は䞋蚘(B)匏で蚈算した原
料仕蟌み係数が1.0〜2.5奜たしくは1.2〜1.9の
範囲ずなり䞔぀が1.5〜ずなるように原
料を仕蟌むこずが必芁である。 −− 

(A) −− 

(B) 䜆しは圓然正数であり、たた(A)
(B)匏における分母分子も埌述の実斜䟋でも瀺す
ように倫々正数である 前蚘の反応によ぀おカリりム塩が副生する堎合
ず氎溶性カルシりム化合物が塩化カルシりム、硫
酞カルシりム等を甚いる堎合で、これらの陰むオ
ンがカリりムず化合しおカリりム塩䟋えば塩化カ
リりム、硝酞カリりム、硫酞カリりム等を副生す
る堎合である。たた前蚘の反応によ぀おカリりム
塩が副生しない堎合ずは、氎溶性カルシりム化合
物ずしお氎酞化カルシりム、酞化カルシりム等を
甚いる時が盞圓し、カリりムず反応しおカリりム
塩を生成するこずがない堎合である。 前蚘の原料仕蟌み係数が前蚘の䞋限倀より小
さい堎合は繊維状珪酞カルシりムカリりムが生成
したずしおも反応に長時間、䟋えば数日〜拟数日
を芁するので工業的に遞ぶこずが出来ない。たた
原料仕蟌み係数が前蚘の䞊限倀より倧きい堎合
は繊維状珪酞カルシりムカリりムは生成するが、
同時に結晶性のK2O・4SiO2・H2Oで瀺される珪
酞カリりムが倚量副生するこずがあり、たた繊維
状珪酞カルシりムカリりムから分離出来なくなる
堎合がある。 たた原料䞭の酞化珪玠成分及びカリりム成分
は、繊維状珪酞カルシりムカリりムの生成に必芁
な量より過剰に存圚させるのが奜たしい。䞀般に
䞊蚘の過剰量は原料䞭のK2OCaOモル比、即ち
前蚘が1.6〜奜たしくは〜の範囲ず
なる劂く遞ぶこずが必芁である。が䞊蚘の
䞋限倀より小さい堎合は、繊維状珪酞カルシりム
カリりムの生成速床がおそく工業的に䞍利になる
堎合がある。たた逆にが前蚘䞊限倀より倧
きい堎合は、目的生成物である繊維状珪酞カルシ
りムカリりムは埗られるが、未反応の珪酞カリり
ムの回収量が倚くなり装眮面でも䞍利になるので
工業的には有利ずは云えない。 前蚘に原料仕蟌み係数及び原料䞭のK2O
CaOモル比に぀き奜適な基準を説明したが、これ
らの数倀は原料の皮類、反応条件等によ぀お異な
り䞀抂に決定出来るものではない。埓぀お予め原
料の皮類、反応条件等によ぀お奜適な倀を決定し
お実斜するのがよい。 本発明に斌ける原料䞭の氎溶性カルシりム化合
物は、ほゞ100繊維状珪酞カルシりムカリりム
の生成に消化される。このこずは埌述する実斜䟋
でも明らかであるが、反応によ぀お生成した繊維
状珪酞カルシりムカリりムを濟別したあず、濟液
䞭にカルシりム成分がほずんど認められないこず
が明癜ずなる。埓぀おカルシりム成分はほゞ100
前蚘の珪酞カルシりムカリりムを圢成するもの
ず考えお、原料仕蟌みの組成を決定するこずが出
来る。 曎に具䜓的に前蚘原料仕蟌み割合の決定に぀い
お䞀䟋を挙げお説明するず次ぎのようにしお決定
すればよい。前蚘した劂く、氎溶性カルシりム化
合物はほゞ党おの量が繊維状珪酞カルシりムカリ
りムに消化されるこずが明らかであるので、該珪
酞カルシりムカリりムを埗る量を決定すれば、必
芁ずする氎溶性カルシりム化合物の量は決定す
る。即ち、原料䞭の必芁ずするCaOモル前蚘
モルが決定する。次いで、K2OCaOモル比即
ちの倀を適宜決定する。仮りにK2OCaO
モル比がずなるように蚭定すれば、必芁なK2O
モルが決定される。K2Oは原料である氎酞化カリ
りムにのみ由来するものであるから、必芁ずする
氎酞化カリりムの量が決する。次いで前蚘の原料
仕蟌み量の算出匏に応じおSiO2モルを算出出
来る。この結果より、䜿甚する酞化珪玠又は
酞化珪玠を含む化合物の䜿甚量を決めればよい。 本発明に斌ける原料の仕蟌みは前蚘した必芁の
芁件以倖は特に限定されるものではなく、各成分
の添加順序も特に限定的ではない。䞀般には氎溶
液䞭に各原料を添加しおもよく、各原料毎に氎溶
液或いはスラリヌ溶液を調敎し、これらの液を混
合しおもよい。 前蚘の少くずも成分の原料を仕蟌んだ氎溶液
は、加圧䞋で氎熱反応させるこずによ぀お繊維状
珪酞カルシりムカリりムが埗られる。氎熱䞋の反
応枩床はあたりに䜎いず反応時間が極端に長くな
る堎合があり、逆に枩床が高い堎合は熱゚ネルギ
ヌの損倱だけでなく耐圧容噚の補䜜などが高䟡に
なるので経枈的ではなくなる。䞀般には150〜250
℃の範囲で遞ぶのが最も奜適である。反応圧力は
䞀般に反応枩床に斌ける蒞気圧で実斜すれば十分
で、通垞は密封容噚䟋えばオヌトクレヌブ䞭でで
実斜するのが奜たしい。このような条件䞋での反
応であれば、通垞は10時間〜40時間皋床の反応時
間で繊維状珪酞カルシりムカリりムが埗られる。 前蚘の加圧䞋で氎熱反応させお埗た繊維状珪酞
カルシりムカリりムは濟過するこずにより分離出
来る。濟過分離された繊維状珪酞カルシりムカリ
りムは必芁に応じお氎掗埌也燥しお補品ずすれば
よい。たた繊維状珪酞カルシりムカリりムを濟別
分離した濟液は、未反応の酞化珪玠及び氎酞化
カリりムを含むのでそのたゝ又は他の副生成物を
陀去しお郚又は党郚を原料ずしお埪環䜿甚する
こずが出来る。䞀般に氎溶性カルシりム化合物ず
しお氎酞化カルシりム又は酞化カルシりムを甚い
る堎合は、副生成物が通垞生成しないのでその
たゝ埪環するこずが出来るが、氎溶性カルシりム
化合物ずしお塩化カルシりム、硝酞カルシりム、
硫酞カルシりム等を甚いるず前蚘した劂くカリり
ム塩が副生する。カリりム塩が副生する堎合は原
料ずしお濟液を埪環するに先きだちこれらのカリ
りム塩を陀去するのが奜たしい。 本発明を曎に具䜓的に説明するため以䞋実斜䟋
を挙げお説明するが本発明はこれらの実斜䟋に限
定されるものではない。 実斜䟋  1.0モルの氎酞化カリりム溶液100c.c.ず0.25
モルの消石灰スラリヌ100c.c.を混合し、この
スラリヌに含氎珪酞トクシヌルGu商品名、
SiO2含有量8517.65を加え良く撹拌した。
この堎合の前蚘(B)匏より算出された原料仕蟌み係
数は1.76であ぀た。このスラリヌを、オヌトク
レヌブに入れ密閉し、200℃の枩床䞋に20時間反
応させた。反応物は濟過しむオン亀換氎100c.c.で
回くりかえしお氎掗した埌、100℃で時間也
燥させた。この也燥物の収量は8.6であ぀た。 この生成物は、化孊分析によれば、ほが
3K2O・9CaO・32SiO2・20H2Oず掚定される組成
であ぀た。電子顕埮鏡による芳察により、長さ玄
220Ό、アスペクト比120の繊維状物であるこずが
確認された。尚、反応物を濟過した濟液にはカル
シりム分がほずんど含たれおいなか぀た。 実斜䟋  実斜䟋における原料比、反応条件を第衚に
瀺すように倉化させた意倖は、実斜䟋ず同様に
実斜した。その結果は第衚に瀺す通りである。
党䜓の仕蟌み容積は、実斜䟋ず同様200c.c.であ
る。
The present invention provides a novel method for producing fibrous calcium potassium silicate. Specifically, it is a method of preparing fibrous calcium potassium by charging silicon dioxide or a compound containing silicon dioxide, potassium hydroxide, and a water-soluble calcium compound at a specific charging ratio, and causing a hydrothermal reaction under pressure. Conventionally, various studies have been conducted on the reactions of silicon dioxide, alkali metal salts, and calcium compounds, but there is almost no knowledge that the reaction products become fibrous. The present inventors have been diligently researching the synthesis of calcium silicate compounds for many years, and found that by reacting silicon dioxide, potassium hydroxide, and a water-soluble calcium compound at a specific charging ratio under specific conditions, They discovered that fibrous calcium potassium silicate could be obtained and completed the present invention. In the present invention, silicon dioxide or a compound containing silicon dioxide, potassium hydroxide, and a water-soluble calcium compound are reacted when K 2 O in these raw materials is X moles, SiO 2 is Y moles, and CaO is Z moles. Therefore, if potassium salt is by-produced, the raw material charging coefficient T calculated by the following formula (A), and if no potassium compound is by-produced by the reaction, by the following formula (B), is 1.0 to 2.5, and X/ In this method, fibrous calcium potassium silicate is produced by charging the mixture so that Z is 1.5 to 6, and carrying out a hydrothermal reaction under pressure at a temperature of 150 to 250°C. T=9Y-32Z/9X-12Z...(A) T=9Y-32Z/9X-3Z...(B) Here, X, Y, and Z are of course positive numbers, and formulas (A) and (B) The denominator and numerator in are also positive numbers, respectively, as will be shown in the examples below. Through chemical analysis, it is estimated that the fibrous calcium potassium silicate obtained in the present invention has a general formula of approximately 3K 2 O・9CaO・32SiO 2・nH 2 O (where n is a number from 0 to 20). It is a new compound. In general, the general formula of each type of crystal can be determined by chemical analysis. However, for the silicates and the like that are the object of the present invention, it is difficult to obtain an accurate general formula for the following reasons, and it can only be estimated on the assumption that there are some fluctuations in the coefficients. The first is that impurities that are difficult to separate are often incorporated into the crystal below the solid solubility limit. The second problem is that in a crystal having ion exchange ability, each ion is contained in the crystal according to the ion exchange equilibrium, so the composition changes depending on the pH and liquid composition. For example, in the general formula estimated in the present invention, there are examples in which a part of K is ion-exchanged with Na or Ca, and a part of Ca is ion-exchanged with Na, K, or the like. The fact that the general formula of silicate is difficult to specify is explained in Japanese Patent Application Laid-Open No. 114397/1983, for example, 0.9±0.2M2/ o O:A.
2 O 3 :2.5±0.5SiO 2 .0 to 8H 2 O (where M is a metal cation and n is its valence) This is also understood from the other descriptions. The fibrous calcium potassium silicate obtained in the present invention has ion exchange ability due to K 2 O contained in the molecule.
Furthermore, although fibrous calcium potassium silicate generally has water of crystallization after production, the water of crystallization separates at 250 to 300°C, and has the property of condensing when it comes into contact with water. Utilizing these properties, the fibrous calcium potassium silicate is a substance that can be widely used as an ion exchanger or a desiccant. Further, when the crystallization water is dried at 100° C. for 8 hours, the crystallization water generally becomes about 12%. As mentioned above, this water is separated at 250 to 300°C, but since it has the property of condensing, the properties of calcium potassium silicate remain unchanged even if all or part of the water is removed. Therefore, it can be said that the crystallization water of calcium sodium silicate obtained by the present invention has the properties of fluorite water. The raw materials of the present invention are at least three components: silicon dioxide or a compound containing silicon dioxide, potassium hydroxide, and a water-soluble calcium compound. As the silicon dioxide, wet-processed silicon dioxide obtained by reacting an alkali silicate with a mineral acid, that is, hydrated silicic acid, is generally preferably used. Further, the compound containing silicon dioxide is not particularly limited as long as it is soluble in the reaction system, and any known compound can be used, and in general, natural substances such as clay and quartz, or compounds such as silicon dust can be suitably used. Furthermore, the water-soluble calcium compound is not particularly limited as long as it is water-soluble, and any known compound can be used. Typical examples that are commonly used are calcium hydroxide, calcium oxide,
These include calcium chloride, calcium nitrate, and calcium sulfate. That is, water-soluble calcium compounds are
For example, calcium sulfate, which has a relatively low solubility in water, can be used, but only the amount consumed to produce calcium potassium silicate during the reaction dissolves, so it can be used as a raw material for industrial purposes. . However, since water-insoluble calcium compounds such as calcium carbonate hardly dissolve in water, fibrous calcium silicate cannot be obtained industrially. It is necessary to use at least the above-mentioned three components as raw materials in the present invention, but when attempting to obtain fibrous calcium potassium silicate industrially, it is necessary to select the following specific raw material charging coefficients. . That is, K 2 O in the raw material is X mol, SiO 2 is Y mol, and
When CaO is Z moles, if potassium salt is by-produced by the reaction, use the formula (A) below, and if potassium salt is not by-produced by the reaction, calculate the raw material charging coefficient T by the formula (B) below. It is necessary to charge the raw materials so that the ratio is in the range of 1.0 to 2.5, preferably 1.2 to 1.9, and X/Z is in the range of 1.5 to 6. T=9Y-32Z/9X-12Z...(A) T=9Y-32Z/9X-3Z...(B) (However, X, Y, and Z are of course positive numbers, and (A),
(The denominator and numerator in formula (B) are also positive numbers, respectively, as shown in the examples below.) When potassium salt is produced as a by-product by the above reaction, and when the water-soluble calcium compound is calcium chloride, calcium sulfate, etc. In some cases, these anions combine with potassium to produce potassium salts such as potassium chloride, potassium nitrate, potassium sulfate, etc. as by-products. In addition, the case where potassium salt is not produced as a by-product in the above reaction corresponds to the case where calcium hydroxide, calcium oxide, etc. are used as the water-soluble calcium compound, and the case where potassium salt is not produced by reacting with potassium. It is. When the raw material charging coefficient T is smaller than the lower limit value, even if fibrous calcium potassium silicate is produced, the reaction requires a long time, for example, several days to a few days, so it cannot be selected industrially. Moreover, when the raw material preparation coefficient T is larger than the above upper limit value, fibrous calcium potassium silicate is produced, but
At the same time, a large amount of potassium silicate represented by crystalline K 2 O.4SiO 2.H 2 O may be produced as a by-product, and it may not be possible to separate it from the fibrous calcium potassium silicate. Further, it is preferable that the silicon dioxide component and the potassium component in the raw materials are present in excess of the amount necessary for producing fibrous calcium potassium silicate. Generally, it is necessary to select the above-mentioned excess amount so that the molar ratio of K 2 O/CaO in the raw material, ie, the above-mentioned X/Z, is in the range of 1.6 to 6, preferably 2 to 4. If X/Z is smaller than the above lower limit, the production rate of fibrous calcium potassium silicate may be slow, which may be industrially disadvantageous. On the other hand, if X/Z is larger than the above upper limit, the desired product, fibrous calcium potassium silicate, can be obtained, but the amount of unreacted potassium silicate recovered will be large, which will be disadvantageous in terms of equipment, so it is not suitable for industrial use. It cannot be said that it is advantageous. In the above, the raw material preparation coefficient T and K 2 O in the raw material /
Although suitable criteria for the CaO molar ratio have been explained, these values vary depending on the type of raw materials, reaction conditions, etc., and cannot be determined unconditionally. Therefore, it is preferable to determine a suitable value in advance depending on the type of raw materials, reaction conditions, etc. before carrying out the reaction. The water-soluble calcium compounds in the raw materials in the present invention are digested to produce nearly 100% fibrous calcium potassium silicate. This will be clear from the examples described below, but after filtering off the fibrous calcium potassium silicate produced by the reaction, it becomes clear that almost no calcium component is observed in the filtrate. Therefore, the calcium content is approximately 100
% The composition of the raw material charge can be determined by considering that the above-mentioned calcium potassium silicate is formed. More specifically, the determination of the raw material charging ratio can be explained by citing an example as follows. As mentioned above, it is clear that almost all of the water-soluble calcium compound is digested into fibrous calcium potassium silicate, so once the amount of calcium potassium silicate to be obtained is determined, the amount of water-soluble calcium compound required can be determined. The amount of is determined. That is, the required CaO mole in the raw material (the above Z
mole) is determined. Next, the K 2 O/CaO molar ratio, ie, the value of X/Z, is determined as appropriate. If K 2 O/CaO
If the molar ratio is set to 3, the necessary K 2 O
The moles are determined. Since K 2 O is derived only from the raw material potassium hydroxide, the amount of potassium hydroxide required is determined. Next, 2 moles of SiO 2 can be calculated according to the formula for calculating the amount T of raw material charged. From this result, the silicon dioxide or 2
The amount of the compound containing silicon oxide to be used may be determined. The preparation of raw materials in the present invention is not particularly limited except for the necessary requirements described above, and the order of addition of each component is also not particularly limited. Generally, each raw material may be added to an aqueous solution, or an aqueous solution or slurry solution may be prepared for each raw material, and these liquids may be mixed. Fibrous calcium potassium silicate can be obtained by subjecting the aqueous solution containing the above-mentioned at least three raw materials to a hydrothermal reaction under pressure. If the reaction temperature under hydrothermal conditions is too low, the reaction time may become extremely long; on the other hand, if the temperature is high, not only is there a loss of thermal energy, but the production of a pressure-resistant container becomes expensive, making it uneconomical. Generally 150-250
It is most preferable to select the temperature within the range of ℃. It is generally sufficient to carry out the reaction at a vapor pressure at the reaction temperature, and it is usually preferable to carry out the reaction in a sealed container, such as an autoclave. If the reaction is carried out under such conditions, fibrous calcium potassium silicate can usually be obtained in a reaction time of about 10 to 40 hours. The fibrous calcium potassium silicate obtained by the hydrothermal reaction under pressure can be separated by filtration. The fibrous calcium potassium silicate separated by filtration may be washed with water and dried as required to obtain a product. In addition, the filtrate obtained by separating the fibrous calcium potassium silicate by filtration contains unreacted silicon dioxide and potassium hydroxide, so it can be recycled as it is or after removing other by-products, part or all can be recycled as a raw material. I can do it. In general, when calcium hydroxide or calcium oxide is used as a water-soluble calcium compound, no by-products are usually generated and it can be recycled as is.However, as a water-soluble calcium compound, calcium chloride, calcium nitrate,
When calcium sulfate or the like is used, potassium salt is produced as a by-product as described above. If potassium salts are produced as a by-product, it is preferable to remove these potassium salts before circulating the filtrate as a raw material. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 1.0 mol/potassium hydroxide solution 100 c.c. and 0.25
Mix 100 c.c. of slaked lime slurry and add hydrated silicate Toxil Gu (trade name) to this slurry.
17.65 g (SiO 2 content: 85%) was added and stirred well.
In this case, the raw material charging coefficient T calculated from the above formula (B) was 1.76. This slurry was placed in an autoclave, sealed, and reacted at a temperature of 200° C. for 20 hours. The reaction product was filtered, washed three times with 100 c.c. of ion-exchanged water, and then dried at 100°C for 8 hours. The yield of this dried product was 8.6 g. According to chemical analysis, this product is approximately
The composition was estimated to be 3K 2 O・9CaO・32SiO 2・20H 2 O. Observation using an electron microscope reveals that the length is approx.
It was confirmed that it was a fibrous material with a diameter of 220Ό and an aspect ratio of 120. Incidentally, the filtrate obtained by filtering the reaction product contained almost no calcium. Example 2 The same procedure as in Example 1 was carried out except that the raw material ratio and reaction conditions in Example 1 were changed as shown in Table 1. The results are shown in Table 1.
The total charging volume was 200 c.c. as in Example 1.

【衚】 No.7は、少量のK2O・4SiO2・H2Oが混入しお
いるこずが確認されたが、䞻成分は珪酞カルシり
ムカリりムであるこずが線回析、化孊分析によ
り確認された。No.7以倖は、殆んど䞍玔物のな
い珪酞カルシりムカリりムであるこずが確認でき
た。 実斜䟋  氎酞化カリりム溶液、前蚘の含氎珪酞及び塩化
カルシりム溶液を党䜓の仕蟌容積を200c.c.ずなる
ように第衚に瀺すように混合し、匷く撹拌した
埌オヌトクレヌブに入れ密閉し、200℃で20時間
反応させた、尚、仕蟌み条件及び結果は第衚に
瀺す通りであ぀た。いずれの結果もほゞ100の
珪酞カルシりムカリりム繊維であるこずが確認さ
れた。
[Table] Although it was confirmed that No. 7 contained a small amount of K 2 O・4SiO 2・H 2 O, X-ray diffraction and chemical analysis showed that the main component was calcium potassium silicate. confirmed. It was confirmed that all samples other than No. 7 were calcium potassium silicate with almost no impurities. Example 3 Potassium hydroxide solution, the above-mentioned hydrated silicic acid, and calcium chloride solution were mixed as shown in Table 2 so that the total volume was 200 c.c., and after stirring strongly, the mixture was placed in an autoclave and sealed. The reaction was carried out at 200° C. for 20 hours. The charging conditions and results were as shown in Table 2. In all cases, it was confirmed that the fibers were almost 100% calcium potassium silicate fibers.

【衚】 実斜䟋  実斜䟋のNo.2の原料を倉えた以倖は、同様
の仕蟌み条件、同様の凊理をしお第衚の様な結
果を埗た。いずれも収率よく珪酞カルシりムカリ
りム繊維が合成できたこずを確認した。
[Table] Example 4 The same preparation conditions and the same treatment were carried out except that the No. 2 raw material of Example 3 was changed, and the results shown in Table 3 were obtained. It was confirmed that calcium-potassium silicate fibers could be synthesized with good yield in both cases.

【衚】 尚、含氎珪酞は前蚘のもの、癜土は別府癜土で
SiO2含有量90、325メツシナ党通のもの、石英
はSiO2含有量99.1で325メツシナ党通のものを
䜿甚した。 実斜䟋  1.4の酞化カルシりムを100メツシナ党通に粉
砕しお100c.c.の氎に投入する。このスラリヌを1.0
モルの氎酞化カリりム溶液100c.c.ずを混合す
る。このスラリヌに曎に含氎珪酞トクシヌルGu
商品名、SiO2含有量8517.65を加え良く撹
拌した。この堎合の前蚘(B)匏より算出された原料
仕蟌係数は1.76であ぀た。このスラリヌを実斜
䟋ず同様に凊理した。この堎合の生成物は、化
孊分析の結果珪酞カルシりムカリりムであり、顕
埮鏡によるず長さ200Όの繊維であるこずが確認
された。収量は8.6であ぀た。
[Table] The hydrated silicic acid is the one mentioned above, and the white clay is Beppu white clay.
The quartz used had a SiO 2 content of 90% and a 325-mesh structure, and the quartz had a SiO 2 content of 99.1% and a 325-mesh structure. Example 5 1.4 g of calcium oxide was ground into 100 meshes and poured into 100 c.c. of water. This slurry is 1.0
Mix with 100 c.c. of mol/potassium hydroxide solution. This slurry is further added with hydrated silicate Toxil Gu.
(Product name, SiO 2 content 85%) 17.65 g was added and stirred well. In this case, the raw material charging coefficient T calculated from the above formula (B) was 1.76. This slurry was treated in the same manner as in Example 1. The product in this case was found to be calcium potassium silicate as a result of chemical analysis, and was confirmed to be fibers with a length of 200 ÎŒm using a microscope. The yield was 8.6g.

Claims (1)

【特蚱請求の範囲】  酞化珪玠又は酞化珪玠を含む化合物、氎
酞化カリりム及び氎溶性カルシりム化合物を、こ
れらの原料䞭のK2Oがモル、SiO2がモル及び
CaOがモルずしたずき反応によ぀おカリりム塩
が副生する堎合は䞋蚘(A)匏で、たた反応によ぀お
カリりム塩が副生しない堎合は䞋蚘(B)匏で蚈算し
た原料仕蟌み係数が1.0〜2.5ずなり、䞔぀
が1.5〜ずなるように仕蟌み、加圧䞋、150〜
250℃の枩床で反応させるこずを特城ずする繊維
状珪酞カルシりムカリりムの補造方法 −− 

(A) −− 

(B) 䜆し(A)(B)匏においお分母分子
は倫々正数である。  酞化珪玠が含氎珪酞である特蚱請求の範囲
蚘茉の方法  酞化珪玠を含む化合物が癜土又は石英であ
る特蚱請求の範囲蚘茉の方法。  氎溶性カルシりム化合物が氎酞化カルシり
ム、酞化カルシりム、硝酞カルシりム及び硫酞カ
ルシりムよりなる矀から遞ばれた皮である特蚱
請求の範囲蚘茉の方法。  原料仕蟌み係数が1.2〜1.9である特蚱請求
の範囲蚘茉の方法。  反応枩床が150〜250℃である特蚱請求の範囲
蚘茉の方法。
[Scope of Claims] 1. Silicon dioxide or a compound containing silicon dioxide, potassium hydroxide, and a water-soluble calcium compound, in which K 2 O in these raw materials is X moles, SiO 2 is Y moles, and SiO 2 is Y moles,
When CaO is Z moles, if potassium salt is by-produced by the reaction, use the formula (A) below, and if potassium salt is not by-produced by the reaction, calculate the raw material charging coefficient by formula (B) below. T is 1.0 to 2.5, and X/
Prepare so that Z is 1.5~6, under pressure, 150~
A method for producing fibrous calcium potassium silicate characterized by reaction at a temperature of 250°C T=9Y-32Z/9X-12Z...(A) T=9Y-32Z/9X-3Z...(B) However ( In formulas A) and (B), X, Y, Z, denominator, and numerator are each positive numbers. 2. The method according to claim 1, wherein the silicon dioxide is hydrated silicic acid. 3. The method according to claim 1, wherein the compound containing silicon dioxide is clay or quartz. 4. The method according to claim 1, wherein the water-soluble calcium compound is one selected from the group consisting of calcium hydroxide, calcium oxide, calcium nitrate, and calcium sulfate. 5. The method according to claim 1, wherein the raw material charging coefficient T is 1.2 to 1.9. 6. The method according to claim 1, wherein the reaction temperature is 150 to 250°C.
JP8356578A 1978-07-07 1978-07-11 Production of fibrous calcium potassium silicate Granted JPS5510465A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8356578A JPS5510465A (en) 1978-07-11 1978-07-11 Production of fibrous calcium potassium silicate
US06/054,810 US4277457A (en) 1978-07-07 1979-07-05 Alkali calcium silicates and process for preparation thereof
GB7923656A GB2031393B (en) 1978-07-07 1979-07-06 Alkali calcium silicates and process for preparation thereof
DE19792927444 DE2927444A1 (en) 1978-07-07 1979-07-06 ALKALICALCIUMSILIKATE AND METHOD FOR THE PRODUCTION THEREOF
FR7917768A FR2434117A1 (en) 1978-07-07 1979-07-09 NOVEL CALCOALCALIN SILICATE AND PROCESS FOR ITS PREPARATION
US06/125,186 US4294810A (en) 1978-07-07 1980-02-27 Alkali calcium silicates and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8356578A JPS5510465A (en) 1978-07-11 1978-07-11 Production of fibrous calcium potassium silicate

Publications (2)

Publication Number Publication Date
JPS5510465A JPS5510465A (en) 1980-01-24
JPS6126495B2 true JPS6126495B2 (en) 1986-06-20

Family

ID=13806031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8356578A Granted JPS5510465A (en) 1978-07-07 1978-07-11 Production of fibrous calcium potassium silicate

Country Status (1)

Country Link
JP (1) JPS5510465A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140952U (en) * 1984-02-29 1985-09-18 倧日本印刷株匏䌚瀟 film storage container

Also Published As

Publication number Publication date
JPS5510465A (en) 1980-01-24

Similar Documents

Publication Publication Date Title
US4578258A (en) Process for the preparation of crystalline sheet-type alkali metal silicates
JPH0159977B2 (en)
JPH0481527B2 (en)
JP5424562B2 (en) Method for producing cesium hydroxide solution
JPS5973421A (en) Preparation of zeolite l
SU1118284A3 (en) Method of obtaining zeolite type lsm-5
US5002749A (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
US4749676A (en) Process for the preparation of a crystalline, swellable sheet silicate of the saponite type
US4243429A (en) Process for producing tobermorite and ettringite
JPH0653566B2 (en) Method for producing crystalline zirconium phosphate
AU735325B2 (en) Method for producing calcium borate
US4277457A (en) Alkali calcium silicates and process for preparation thereof
JP4194655B2 (en) Calcium borate and method for producing the same
US4294810A (en) Alkali calcium silicates and process for preparation thereof
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
JPH0648713A (en) Production of crystalline zirconium phosphate
JPS6126495B2 (en)
JPS59137317A (en) Manufacture of needlelike alpha-hemihydrate gypsum
JPH024534B2 (en)
JPS6126494B2 (en)
JP4638979B2 (en) Silica-containing apatite
JP3004291B2 (en) Method for producing crystalline layered phosphoric acid compound
JPH05507054A (en) A simple method for producing swellable layered silicates
JPS6112848B2 (en)
US3523764A (en) Process for the manufacture of magnesium aluminosilicate for medical uses