JPS61264005A - Recovery of polymer from polymer latex - Google Patents
Recovery of polymer from polymer latexInfo
- Publication number
- JPS61264005A JPS61264005A JP10478285A JP10478285A JPS61264005A JP S61264005 A JPS61264005 A JP S61264005A JP 10478285 A JP10478285 A JP 10478285A JP 10478285 A JP10478285 A JP 10478285A JP S61264005 A JPS61264005 A JP S61264005A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- organic solvent
- solution
- latex
- polymer latex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明ir1、樹脂製造業などにおいて、特に乳化重合
法などによって得られた、重合体ラテックスから重合体
を効率良く分離、回収する方法に関するものであり、さ
らに詳り、 <は、重合体ラテックスと有機溶媒とを混
合し、重合体を有機溶媒の溶液と1.7で回収する方法
及び、該重合体溶液ををらにベント付押出機に供給し、
重合体をベレット状態で回収する方法に関するものであ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention ir1 relates to a method for efficiently separating and recovering a polymer from polymer latex obtained by emulsion polymerization, etc., in the resin manufacturing industry, etc. In more detail, < is a method of mixing a polymer latex and an organic solvent, and recovering the polymer with a solution of the organic solvent in 1.7; supply to,
This invention relates to a method for recovering a polymer in pellet form.
〔従来の技術]
重合体ラテックスから重合体台・回収する方法について
は、従来から多くの検討が々されている。[Prior Art] Many studies have been made in the past regarding methods for collecting and recovering polymers from polymer latex.
まず従来技術として、重合体ラテックスに凝固剤を加λ
て、1合体を凝析させ、加熱固化17て湿潤粉体状で重
合体分外Mした後に乾燥する方法がある。装置的には、
2・−3台のグラスツイニング又はステンレス製のタン
クで凝析、固化、洗浄を行い、遠心脱水機、気流乾燥機
、流動層式乾燥機などで脱水、洗浄、乾燥を行うのが一
般的になっている。First, as a conventional technique, a coagulant is added to polymer latex.
There is a method of coagulating the first coalescence, heat solidifying (17), removing the polymer in a wet powder form, and then drying. In terms of equipment,
Generally, coagulation, solidification, and washing are performed in 2-3 glass twining or stainless steel tanks, followed by dehydration, washing, and drying in a centrifugal dehydrator, flash dryer, fluidized bed dryer, etc. It has become.
このような複雑な工程を簡略化【7、前合体ラテックス
から不純物の少ない重合体を連続的に回収する方法が特
公昭50−17227号公報に提案されている。同公報
でP:L1m固、脱水、ρfWi化ケ同時に行なうこと
ので藤る装置に重合体ラテックスと凝固剤を連続的に供
給し、重合体を凝固分離した後、加熱可塑化してベレッ
ト状重合体を得ることを特徴と17ている。To simplify such a complicated process [7] Japanese Patent Publication No. 17227/1983 proposes a method for continuously recovering a polymer with few impurities from the pre-coallocated latex. In the same publication, since P:L1m solidification, dehydration, and ρfWi conversion are performed at the same time, the polymer latex and coagulant are continuously supplied to the Fujiru apparatus, and after the polymer is coagulated and separated, it is heated and plasticized to form a pellet-shaped polymer. It is characterized by obtaining 17.
[発明が解決しようとしている間鵜点]従来技術でし1
、工程が複雑であり、さらに凝固剤を使用するために回
収した重合体中に凝固剤などが桟り、゛まfc乾操中に
空気中のゴミなどが混入し易いため、回収1.た重合体
を・成形、特にフィルムなどV(成形1.に場合にいわ
ゆる1フイツシユアイ1などが兄生し、フィルム外観に
契止L (h:い影曽をIj−オー4゜一方、特公昭5
0−17227け公報で提案されている方法r1、W4
略な手段により不純物及び残留水分の少ない重合体を連
続的に回収することができるものの、押出機型の電合体
回収装置II(供給されるウデツクスの凝固剤は、塩化
カルシウム、塩化アルミニウムの如き電N’1mm塩類
、硫酸などの無機酸、乳酸などの有機酸などであるため
、これら凝固剤がVリンダ−やスクリュ・一部などケ腐
蝕するという難点がある。[While the invention is trying to solve the problem] Prior art 1
However, the process is complicated, the coagulant is mixed into the recovered polymer, and dust in the air is likely to get mixed in during the fc drying process, so recovery 1. Molding of polymers, especially films, etc. (In the case of molding 1., the so-called 1 film 1, etc.) has developed, and the appearance of the film has changed L (h: 5
Methods r1 and W4 proposed in Publication No. 0-17227
Although polymers with low impurities and residual moisture can be continuously recovered by short-circuit means, extruder-type electropolymer recovery equipment II (the coagulant of Udex supplied is electrolyte such as calcium chloride or aluminum chloride) Since these coagulants are N'1 mm salts, inorganic acids such as sulfuric acid, organic acids such as lactic acid, etc., there is a problem that these coagulants corrode V cylinders, screws, etc.
1だ通常用いられている重合体ラテックスに上述L7’
i如き無機電解′にや酸類などの凝固剤を加え、重合体
を分離し、脱水、乾燥して得た重合体は、乳化剤、凝固
剤などの不純物を完全に分離してj?らず、上述したよ
うに回収重合体を特にフィルム等に成形した場合の外観
に望it、<ない影響を与える。1. The above-mentioned L7' is added to the commonly used polymer latex.
The polymer obtained by adding a coagulant such as an acid or an inorganic electrolyte to an inorganic electrolyte, separating the polymer, dehydrating it, and drying it is completely free of impurities such as an emulsifier and a coagulant. However, as mentioned above, it has an undesirable effect on the appearance of the recovered polymer, especially when it is formed into a film or the like.
〔問題点を解決するための手段]
上記の問題点を解決すべく鋭意検討した結果、特定の有
機溶媒と重合体ラテックスとを混合すると、重合体を該
有機溶媒の溶液として回収できることが見出された。さ
らに該重合体溶液をベント付き押出し機に供給し、ベン
ト部で脱溶媒した後、押出t7機ダイス部から重合体を
溶融状態で押出すことにより、不純物の少ないベレット
状重合体を得られることも見出された。[Means for solving the problem] As a result of intensive studies to solve the above problem, it was found that when a specific organic solvent and polymer latex are mixed, the polymer can be recovered as a solution of the organic solvent. It was done. Further, by supplying the polymer solution to a vented extruder, removing the solvent at the vent section, and extruding the polymer in a molten state from the die section of the extruder T7 machine, a pellet-like polymer with few impurities can be obtained. was also found.
即ち、本発明け、水への溶解度が10〜50重量−の有
機溶媒と、重合体ラテックスとを混合し、重合体を有機
溶媒側へ移行せしめ、これを静置して重合体を含む有機
f#謀相(つまり、重合体の有機溶媒溶液相)と水相を
分離し、重合体を有機溶媒溶液として回収することを特
徴1Fl)
とする重合体ラテックスから電合体を分離、回収する方
法に関するものである。That is, according to the present invention, an organic solvent having a solubility in water of 10 to 50% by weight is mixed with a polymer latex, the polymer is transferred to the organic solvent side, and the organic solvent containing the polymer is left to stand. A method for separating and recovering an electropolymer from a polymer latex, characterized by separating the phase (that is, the organic solvent solution phase of the polymer) and the aqueous phase and recovering the polymer as an organic solvent solution. It is related to.
又、本発明け、上記の方法によって分離、回収1.た重
合体の有機m媒溶液を、さらにベント付き押出機に供給
し、ベント部で脱溶媒した後、押出機ダイス部から重合
体を溶融状態で押出し、例えば溶融状態でストランドと
して押出し、切 ■断1.て重合体をベレット状で
回収することを特徴とする、重合体ラテックスから重合
体を回収する方法に関するものでもある。Further, according to the present invention, separation and recovery by the above method 1. The organic solvent solution of the polymer is further fed to an extruder with a vent, and after the solvent is removed in the vent part, the polymer is extruded in a molten state from the die part of the extruder, for example, extruded as a strand in the molten state, and cut. Cut 1. The present invention also relates to a method for recovering a polymer from a polymer latex, characterized in that the polymer is recovered in the form of a pellet.
通常、水への溶解度が10重量−以下の有機溶媒と重合
体ラテックスとを混合すると、ラテックス中の重合体は
凝固17てしまい、重合体を効率的に回収することは困
難である。また逆に水への溶解度が50重量−以上の有
機#謀を単独で使用t7た場合には、重合体の有機溶媒
溶液相と水層との分離が不完全になり、極端な場合には
、重合体の有機溶媒溶液相と水層が分離せず、重合体の
回収が困難になる。さらに分離する場合にも、水相中に
残存する有機溶媒の濃度が高く々す、ツ°ロセヌ的にみ
て望ましくない。Normally, when a polymer latex is mixed with an organic solvent having a solubility in water of 10% by weight or less, the polymer in the latex coagulates, making it difficult to efficiently recover the polymer. Conversely, if an organic compound with a solubility in water of 50% by weight or more is used alone, the separation of the organic solvent solution phase of the polymer and the aqueous layer will be incomplete, and in extreme cases, , the organic solvent solution phase of the polymer and the aqueous layer do not separate, making recovery of the polymer difficult. Furthermore, even in the case of separation, the concentration of the organic solvent remaining in the aqueous phase is often high, which is undesirable from the viewpoint of transparency.
これに反し、水への溶解度が10車hts以上かつ50
市殖−以下であるような有機溶媒を便用1.た場合には
、驚くべきことに、−重合体ラテックス中の重合体が有
機溶媒溶液に移行し、かつ−Bli合体を−含む有機溶
媒+11と水相が分離l7、容易に重合体を回収できる
ことかりつかった。On the other hand, the solubility in water is 10 hts or more and 50 hts or more.
Ichishoku - Conveniently use the following organic solvents: 1. In this case, surprisingly, the polymer in the -polymer latex migrates to the organic solvent solution, and the organic solvent +11 containing the -Bli polymer and the aqueous phase are separated, and the polymer can be easily recovered. I found it useful.
このような有機溶媒と17てrl、メチルエチルケトン
(水への溶解度が20℃において26.8重置チ、[有
機溶媒ポケットブック1発行オーム社、昭和45年版、
以下同じ)、2−ブタン−ル (225舅it チ
、 25 て〕 ) 、 酢酸 メ チ ル(24
市墓−1常温)、メチラー1(52,5重jii%、1
6℃)、ギ酸メチ)L’(24Ijfjll、常温)、
1,2プロピレンオギシド(40,5重iチ)などをあ
げることができ、これらの溶媒の中から対象とする重合
体に対する溶解能力を考慮して適当に選定すれば良い。Such an organic solvent and 17 rl, methyl ethyl ketone (solubility in water is 26.8 ml at 20°C,
(same below), 2-butanol (225
, 25 te), methyl acetate (24
City Tomb-1 normal temperature), Methylar 1 (52.5 weight jii%, 1
6°C), Methyl formate) L' (24Ijfjll, room temperature),
Examples of the solvent include 1,2 propylene oxide (40,5 ti), and an appropriate solvent may be selected from these solvents in consideration of the ability to dissolve the target polymer.
さらに、本発明の目的をよね十分に達成するためには、
用いる有機溶媒の比重は、できるだけ軽いものであるこ
とが望捷しく、25℃での比重が092以下、特に比重
が085以下のものを用いた際に、重合体の有機溶媒溶
液相と水相の分離を効率良く寮施することかできる。Furthermore, in order to fully achieve the purpose of the present invention,
It is desirable that the specific gravity of the organic solvent used be as light as possible, and when using one with a specific gravity of 092 or less at 25°C, especially 085 or less, the organic solvent solution phase of the polymer and the aqueous phase It is possible to efficiently separate dormitories.
上述のような分離、回収操作を行う場合の重合体の固形
分含臘な」、10重鎮−以上であるのが望”チ[7い。When carrying out the separation and recovery operations as described above, it is desirable that the solid content of the polymer be 10 or more.
固形分含朧が10重kkチ以下の場合には、相分離後に
水相中に残存する有機溶謀輩が多くなり、相分離効率が
低下するので好ましくない。If the solid content haze is less than 10 weight kg, it is not preferable because a large amount of organic solvent remains in the aqueous phase after phase separation and the phase separation efficiency decreases.
重合体ラテックスと有機溶媒の混合比は、体積比1゛ボ
合体ラデツクス1に対して有機溶媒(]5以上が望゛愛
しい。有機RI謀量が05以下の場合F(+:1.1合
体ラテックスからの1合体の分離、回収が不完全となり
、また重合体の有機溶媒溶液の粘度が上昇して水相と有
機溶媒相の分離速度が著しく低下し、分離が不十分とな
る。The mixing ratio of the polymer latex and the organic solvent is desirably 5 or more (volume ratio: 1: 1, organic solvent: 1: coalesced radical). Separation and recovery of one polymer from the latex becomes incomplete, and the viscosity of the organic solvent solution of the polymer increases, resulting in a marked decrease in the rate of separation of the aqueous phase and the organic solvent phase, resulting in insufficient separation.
有機溶媒蓋の上限については、特に制約はないが、回収
される重合体の、有機溶媒溶液中の重合体濃度が、有機
溶媒量の増加に伴い低下するので、実用的には、5以下
が好−ましい。There is no particular restriction on the upper limit of the organic solvent cap, but the concentration of the recovered polymer in the organic solvent solution decreases as the amount of organic solvent increases, so for practical purposes, 5 or less is recommended. Preferable.
本発明に適用されるラテックスを形成する重合体につい
ては、有機溶媒に可溶であること以外に、特に制約けな
いが、回収lまた重合体の有機溶媒溶液をさらにベント
付押出砿に供給する場合には、重合体し1加熱溶融しつ
るものであることも必要となる。Regarding the polymer forming the latex applied to the present invention, there are no particular restrictions other than that it is soluble in an organic solvent. In some cases, it is also necessary that the material is a polymer and can be melted by heating.
上述のような分離、回収操作は、常温でも行うことがで
きるが、重合体の有機溶媒溶液の粘度を下げ、水相との
分離速度を高めるために、加温するのが望ましい。通常
は前金終了後の40〜70℃程度の重合体ラテックスと
、30〜60℃程度に加温した有機溶媒を混合するなど
して、50〜6or″、程度の温度で分離、回収操作を
行うのが好ましい。Although the above-described separation and recovery operations can be carried out at room temperature, it is desirable to heat the solution in order to lower the viscosity of the organic solvent solution of the polymer and increase the rate of separation from the aqueous phase. Usually, the polymer latex at a temperature of about 40 to 70 degrees Celsius after the prepayment is mixed with an organic solvent heated to about 30 to 60 degrees Celsius, and separation and recovery operations are performed at a temperature of about 50 to 6 degrees Celsius. It is preferable to do so.
以上述べてきた如く、水への溶解度が10〜50重量−
の有機溶媒を単独又は二種類以上混合して使用すること
により、重合体ラテックスから重合体を簡便に分離回収
することができるが、上述17た有機溶媒を非水性の溶
媒と組合せて使用することにより、さらに効率的な回収
を行うことができる。As mentioned above, the solubility in water is 10 to 50% by weight.
The polymer can be easily separated and recovered from the polymer latex by using one or more of the above organic solvents in combination with a non-aqueous solvent. This allows for more efficient collection.
即ち、水への溶解度が10〜50甫jkチの有機溶媒を
使用■7た場合にも、回収17た重合体の有機m媒溶液
中に水分が存在し、重合体の有機溶媒溶液をそのま−ま
製品とする場合はもちろん、回収17た重合体の有機溶
媒溶液を後処理する場合にも有機溶媒溶液中の水分が問
題となる場合がある。That is, even when using an organic solvent with a solubility in water of 10 to 50 degrees, water is present in the organic medium solution of the recovered polymer, and the organic solvent solution of the polymer is Moisture in the organic solvent solution may become a problem not only when it is used as a raw product but also when the organic solvent solution of the recovered polymer is post-treated.
水より沸点の低い有機溶媒を使用している場合には、回
収した前合体の有機溶媒溶液中の水分が微量であれば、
有機溶媒の沸点程度の低い温度で脱溶媒ができ、不純物
の少ない重合体を回収できる。熱劣化17易い重合体に
対しては、特に有効な回収が可能となる。When using an organic solvent with a lower boiling point than water, if there is a trace amount of water in the recovered organic solvent solution of the pre-coallocated material,
Solvent removal can be performed at a temperature as low as the boiling point of the organic solvent, and a polymer with few impurities can be recovered. Particularly effective recovery is possible for polymers that are susceptible to thermal deterioration.
さらに、重合体の溶解能力の制約から水への溶解度が5
0重量−以上の有機溶媒をある程度併用せざるを得ない
ような場合が発生する可能性もをンる。Furthermore, due to the limitation of the dissolution ability of the polymer, the solubility in water is 5.
There is also a possibility that a case may occur in which it is necessary to use an organic solvent of 0 weight or more in combination to some extent.
このような場合には、水への溶解度が10〜50市片−
の有機溶媒と非水性の有機溶媒との混合溶媒を使用する
ことにより、重合体ラテックスと該混合溶媒との混合物
が均一相になるのを防止し、さらに回収17だ重合体の
有機溶媒溶液中に含まれる水分量を、水への溶解度10
〜50w1t優の有機mD$を単独で使用する場合より
少なくすることが可能となる。非水性f#媒の混合蓋け
、使用する溶媒の種類によって異なるが、概略、重合体
溶液に対して5〜50重量%が適当である。非水性の有
機溶媒の混合比が一定限度を越えた混合有機溶媒を使用
すると、重合体ラテックス中の重合体が凝固1.て17
まい、重合体を有機溶媒溶液として回収できなくなる。In such cases, the solubility in water is between 10 and 50.
By using a mixed solvent of an organic solvent and a non-aqueous organic solvent, it is possible to prevent the mixture of the polymer latex and the mixed solvent from becoming a homogeneous phase, and furthermore, to prevent the mixture of the polymer latex and the mixed solvent from becoming a homogeneous phase, The amount of water contained in the water solubility in water is 10
It is possible to reduce the organic mD$ of ~50w1t compared to when used alone. The amount of the non-aqueous f# medium mixed varies depending on the type of solvent used, but approximately 5 to 50% by weight based on the polymer solution is suitable. If a mixed organic solvent in which the mixing ratio of non-aqueous organic solvents exceeds a certain limit is used, the polymer in the polymer latex will coagulate. te17
Otherwise, the polymer cannot be recovered as an organic solvent solution.
回収17た重合体の有機溶媒溶液中の水分をさらに減少
させるには、上記した混合m謀を使用する代りに、成は
混合溶媒を使用するーっの魅様として重合体ラテックス
を、先ず、水への溶解度が10〜50市量−の有機溶媒
と混合し、得られる重合体の有機溶媒溶液に、さらに非
水性の有機溶媒を混合するのも有効であり、重合体溶液
中の水分を効率的に相分離でき、該重合体溶液中の水分
を集用上問題のない程度に減少させるととができる。添
加すべき非水性溶謀敏は、使用する溶媒の種類によって
異なるが、概略、重合体溶液に対し7て5〜50重量%
が過当である。In order to further reduce the water content in the organic solvent solution of the recovered polymer, instead of using the above-mentioned mixing strategy, it is preferable to use a mixed solvent. It is also effective to mix the polymer with an organic solvent having a solubility in water of 10 to 50, and then further mix a non-aqueous organic solvent to the obtained organic solvent solution of the polymer. Efficient phase separation can be achieved, and water content in the polymer solution can be reduced to an extent that poses no problem in terms of collection. The non-aqueous solvent to be added varies depending on the type of solvent used, but is generally 5 to 50% by weight based on the polymer solution.
is unreasonable.
以上述べてへたように本発明により、重合体ラテックス
から組合体を有機溶媒溶液として簡便に分離回収するこ
とが可能であるが、さらに熱可塑性重合体ラテックスに
対17ては、上記のようにして重合体ラテックスから分
離回収した重合体の有機溶媒溶液をベント付き押出機に
供給し、ベント部で脱溶媒した後、押出機ダイス部から
重合体を溶融状態で押出すことにより、重合体を回収す
ることも可能である。この場合、重合体をストランド状
に押出し、次いでこれを切断I2てベレット状にするの
が望ましい。As described above, according to the present invention, it is possible to easily separate and recover the composite from polymer latex as an organic solvent solution. The organic solvent solution of the polymer separated and recovered from the polymer latex is fed to a vented extruder, and after the solvent is removed at the vent section, the polymer is extruded in a molten state from the extruder die section. It is also possible to collect it. In this case, it is desirable to extrude the polymer into a strand, which is then cut I2 into a pellet.
このような処理に用いるベント付き押出機としては、通
常のベント付き押出機を使用するととも可能であるが、
ベント部を2ケ所以上有す ゛るベント付き押出
機を使用するのが、べVット状重合体中の残存有機溶媒
量を低減させる意味から好ましい。As a vented extruder used for such processing, it is possible to use a normal vented extruder, but
It is preferable to use a vented extruder having two or more vent portions in order to reduce the amount of organic solvent remaining in the tapered polymer.
なお以上の説明で用いた非水性の有機溶媒とは、水への
溶解度及び水の溶解度がともに0.5−以下である有機
溶媒であり、例えばクロロベンゼン、塩化メチp1塩化
メチレン、キシレンなどを利用することができる。The non-aqueous organic solvent used in the above explanation is an organic solvent whose solubility in water is 0.5 or less, such as chlorobenzene, methylene chloride, xylene, etc. can do.
以下本発明を実施例を用いて詳細に説明する。The present invention will be explained in detail below using examples.
実施例1
特開昭57−140161(特願昭56−26553)
の実施例1(実験番号1)に記載されている方法で、メ
チルメタクリレ=トープ ′チルアクリレート共重合体
のラテックスを得た。Example 1 Japanese Patent Application Laid-Open No. 57-140161 (Patent Application No. 56-26553)
A latex of methyl methacrylate-tope methyl acrylate copolymer was obtained by the method described in Example 1 (Experiment No. 1).
得られたラテックスの粒子径は01μであった。The particle size of the obtained latex was 01 μm.
この重合体ラテックスに表1のような条件で有機溶媒を
混合したところ該重合体の有機溶媒溶液を得ることがで
きた。When an organic solvent was mixed with this polymer latex under the conditions shown in Table 1, an organic solvent solution of the polymer could be obtained.
に邂
ぺ
訪 r ? r r r
?1ト
[砂
嘱む
比較例1
実施例1と同一の重合体ラテックスに、表2のようか条
件で有機溶媒を混合しだが、重合体の有機溶媒溶液IJ
’得られなかった。Nippe visit r? r r r
? Comparative Example 1 The same polymer latex as in Example 1 was mixed with an organic solvent under the conditions shown in Table 2.
'I didn't get it.
表 2
t7 1 2 塩化メチレン 2チ
50 凝固8 1 2 塩化エチレン 09
% 50 //9 1 2 酢酸エチ
A/ 79チ 50//10121−ブクノー
ル 78 チ 50 〃11
1 2 )/し エ ン
005 チ 50 〃実施例2
実施例1と同一の重合体ラテックス1(容積)に対し、
メチルエチルケトン95部とクロロベンゼン5部の混合
溶媒2(容積)を混合したところ実施例1の実験番号1
と同程度の状態で重合体を回収できた。なお、重合体溶
液相中に残存している水分は約3俤であった。Table 2 t7 1 2 methylene chloride 2t
50 Coagulation 8 1 2 Ethylene chloride 09
% 50 //9 1 2 Ethyl acetate A/ 79 50 // 10121-bukunol 78 50 〃11
1 2) / Shien
005 Chi 50 Example 2 For the same polymer latex 1 (volume) as in Example 1,
When mixed solvent 2 (volume) of 95 parts of methyl ethyl ketone and 5 parts of chlorobenzene was mixed, Experiment No. 1 of Example 1 was obtained.
The polymer was recovered in a state comparable to that of the previous one. Note that the amount of water remaining in the polymer solution phase was about 3 tons.
一方、実施例1の実験番号1では、重合体溶液相中に残
存している水分は約10−であった。On the other hand, in Experiment No. 1 of Example 1, the water remaining in the polymer solution phase was about 10-.
比較例2
実施例1と同一の重合体ラテックス1(容積)に対し、
メチルエチルケトン90部とクロロベンゼン10部の混
合溶媒2(容積)を混合したところ、重合体ラテックス
中の重合体Vt凝固し−Cl−まい、前合体を有機溶媒
溶液として回収することはできなかった。Comparative Example 2 For the same polymer latex 1 (volume) as in Example 1,
When 2 (volume) of a mixed solvent of 90 parts of methyl ethyl ketone and 10 parts of chlorobenzene was mixed, the polymer Vt in the polymer latex coagulated -Cl- and it was not possible to recover the prepolymer as an organic solvent solution.
実施例6
実施例1の実験番号1で得られた前合体のメチルエチル
ケ「ン溶液にクロロベンゼンを容積比で(1,5加えた
ところ、重合体浴液相中に残存【、7ていた約10%水
分が、溶液相中から排出され、m 蔽+目中の残存水分
は1チ以下になった。Example 6 When chlorobenzene was added at a volume ratio of 1.5 to the methyl ethyl carbonate solution of the prepolymer obtained in Experiment No. 1 of Example 1, approximately % water was expelled from the solution phase, leaving less than 1% water remaining in the solution phase.
実施例4
実施例1の実験番号1で得られた重合体のメチルエチル
ケトン溶液を、図面に示すような2ベント付押出機に供
給してストランドとして溶融押出1〜、次いでペレット
化を行なった。押出機の主な運転条件は表5の通りであ
る。得られたベレット中の残存メチルエチルケトン臘は
約100 ppm以下であった。Example 4 A methyl ethyl ketone solution of the polymer obtained in Experiment No. 1 of Example 1 was supplied to a two-vented extruder as shown in the drawing, and melt-extruded as strands (1 to 1) and then pelletized. The main operating conditions of the extruder are shown in Table 5. The residual methyl ethyl ketone content in the obtained pellet was about 100 ppm or less.
表 5
押出機サイズ φ30IIL/m
L/D 50
ベント数 2
供給部温度 150℃
第1ベント部〃 250℃
第2ベント部〃 220℃
計量部 〃 220℃
なお、図面に示された押出機及びペレタイザーにおいて
、(1)は重合体の有機溶媒溶液貯槽、(2)はギヤポ
ンプ、(3)は2ベント付押出機、(4)はストランド
冷却槽、(5)はストランドカッター、(6)は重合体
の有機溶媒溶液供給口、(7)はv11ベント部、(8
)は第2ベント部、(9)はストランドである。Table 5 Extruder size φ30IIL/m L/D 50 Number of vents 2 Supply section temperature 150℃ 1st vent section〃 250℃ 2nd vent section〃 220℃ Measuring section〃 220℃ Note that the extruder and pelletizer shown in the drawing , (1) is a polymer organic solvent solution storage tank, (2) is a gear pump, (3) is an extruder with two vents, (4) is a strand cooling tank, (5) is a strand cutter, and (6) is a heavy Combined organic solvent solution supply port, (7) is v11 vent part, (8
) is the second vent part, and (9) is the strand.
[発明の効果]
本発明によりげ重合体ラテックスから重合体を効果的に
回収することが出来る。[Effects of the Invention] According to the present invention, a polymer can be effectively recovered from a dried polymer latex.
図面は本発明の一実施態様に使用するペンF付押出機及
びペレタイザーの概略的な説明図である。
図中の符号の中、主要なものは次の通りである。
(a) : 2ベント式押出機
(5):ストランドカッター
(6):重合体の有機溶媒溶液供給口
(7)及び(8):ベント部
(9):ストランドThe drawing is a schematic explanatory diagram of an extruder with pen F and a pelletizer used in one embodiment of the present invention. The main symbols in the figure are as follows. (a): Two-vent extruder (5): Strand cutter (6): Polymer organic solvent solution supply ports (7) and (8): Vent part (9): Strand
Claims (4)
以上、50重量%以下の有機溶媒とを混合し、重合体を
有機溶媒相へ移行せしめて相分離し、重合体を有機溶媒
の溶液として回収することを特徴とする重合体ラテック
スから重合体を回収する方法。(1) Polymer latex and water solubility of 10% by weight
As described above, a polymer is obtained from a polymer latex characterized by mixing 50% by weight or less of an organic solvent, transferring the polymer to an organic solvent phase, performing phase separation, and recovering the polymer as a solution of the organic solvent. How to collect.
に供給し、ベント部で脱溶媒した後、押出機ダイス部か
ら重合体を溶融状態で押出すことを特徴とする特許請求
の範囲第(1)項記載の重合体ラテックスから重合体を
回収する方法。(2) The organic solvent solution of the polymer is further supplied to an extruder with a vent, and after the solvent is removed in the vent section, the polymer is extruded in a molten state from the die section of the extruder. A method for recovering a polymer from a polymer latex according to item (1).
以上、50重量%以下の有機溶媒と非水性有機溶媒との
混合溶媒と混合し、重合体を有機溶媒相へ移行せしめて
相分離し、重合体を有機溶媒の溶液として回収すること
を特徴とする重合体ラテックスから重合体を回収する方
法。(3) The solubility of the polymer latex in water is 10% by weight.
The above method is characterized in that the polymer is mixed with a mixed solvent of 50% by weight or less of an organic solvent and a non-aqueous organic solvent, the polymer is transferred to the organic solvent phase and phase separated, and the polymer is recovered as a solution of the organic solvent. A method for recovering polymers from polymer latex.
に供給し、ベント部で脱溶媒した後、押出機ダイス部か
ら重合体を溶融状態で押出すことを特徴とする特許請求
の範囲第(3)項記載の重合体ラテックスから重合体を
回収する方法。(4) The organic solvent solution of the polymer is further supplied to an extruder with a vent, and after the solvent is removed in the vent section, the polymer is extruded in a molten state from the die section of the extruder. A method for recovering a polymer from a polymer latex according to item (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10478285A JPS61264005A (en) | 1985-05-16 | 1985-05-16 | Recovery of polymer from polymer latex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10478285A JPS61264005A (en) | 1985-05-16 | 1985-05-16 | Recovery of polymer from polymer latex |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61264005A true JPS61264005A (en) | 1986-11-21 |
Family
ID=14390038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10478285A Pending JPS61264005A (en) | 1985-05-16 | 1985-05-16 | Recovery of polymer from polymer latex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61264005A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009541574A (en) * | 2006-06-23 | 2009-11-26 | エクソンモービル・ケミカル・パテンツ・インク | Phase separation method using hydrofluorocarbon |
JP2011516716A (en) * | 2008-04-14 | 2011-05-26 | 株式会社ブリヂストン | Method for recovering rubber from natural rubber latex |
US9315589B2 (en) | 2012-03-06 | 2016-04-19 | Bridgestone Corporation | Processes for the removal of rubber from non-hevea plants |
US9562720B2 (en) | 2012-06-18 | 2017-02-07 | Bridgestone Corporation | Methods for desolventization of bagasse |
US9567457B2 (en) | 2013-09-11 | 2017-02-14 | Bridgestone Corporation | Processes for the removal of rubber from TKS plant matter |
US10023660B2 (en) | 2012-05-16 | 2018-07-17 | Bridgestone Corporation | Compositions containing purified non-hevea rubber and related purification methods |
US10138304B2 (en) | 2012-06-18 | 2018-11-27 | Bridgestone Corporation | Methods for increasing the extractable rubber content of non-Hevea plant matter |
US10471473B2 (en) | 2012-06-18 | 2019-11-12 | Bridgestone Corporation | Systems and methods for the management of waste associated with processing guayule shrubs to extract rubber |
US10775105B2 (en) | 2018-11-19 | 2020-09-15 | Bridgestone Corporation | Methods for the desolventization of bagasse |
JP2023042087A (en) * | 2021-09-14 | 2023-03-27 | 木村化工機株式会社 | Solvent recovery system |
-
1985
- 1985-05-16 JP JP10478285A patent/JPS61264005A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009541574A (en) * | 2006-06-23 | 2009-11-26 | エクソンモービル・ケミカル・パテンツ・インク | Phase separation method using hydrofluorocarbon |
JP2011516716A (en) * | 2008-04-14 | 2011-05-26 | 株式会社ブリヂストン | Method for recovering rubber from natural rubber latex |
US8815965B2 (en) | 2008-04-14 | 2014-08-26 | Bridgestone Corporation | Processes for recovering rubber from natural rubber latex |
US10113011B2 (en) | 2008-04-14 | 2018-10-30 | Bridgestone Corporation | Process for recovering rubber from natural rubber latex |
US9546224B2 (en) | 2008-04-14 | 2017-01-17 | Bridgestone Corporation | Processes for recovering rubber from natural rubber latex |
US9315589B2 (en) | 2012-03-06 | 2016-04-19 | Bridgestone Corporation | Processes for the removal of rubber from non-hevea plants |
US11028188B2 (en) | 2012-03-06 | 2021-06-08 | Bridgestone Corporation | Processes for recovering rubber from aged briquettes |
US9611334B2 (en) | 2012-03-06 | 2017-04-04 | Bridgestone Corporation | Processes for the removal of rubber from non-Hevea plants |
US9637562B2 (en) | 2012-03-06 | 2017-05-02 | Bridgestone Corporation | Processes for recovering rubber from aged briquettes and aged briquettes containing plant matter from non-Hevea plants |
US9890262B2 (en) | 2012-03-06 | 2018-02-13 | Bridgestone Corporation | Processes for the removal of rubber from non-hevea plants |
US11396560B2 (en) | 2012-03-06 | 2022-07-26 | Bridgestone Corporation | Processes for the removal of rubber from non-hevea plants |
US10316110B2 (en) | 2012-03-06 | 2019-06-11 | Bridgestone Corporation | Processes for recovering rubber from aged briquettes |
US11834526B2 (en) | 2012-03-06 | 2023-12-05 | Bridgestone Corporation | Processes for the removal of rubber from non-Hevea plants |
US10626194B2 (en) | 2012-03-06 | 2020-04-21 | Bridgestone Corporation | Processes for the removal of rubber from non-hevea plants |
US10023660B2 (en) | 2012-05-16 | 2018-07-17 | Bridgestone Corporation | Compositions containing purified non-hevea rubber and related purification methods |
US11858003B2 (en) | 2012-06-18 | 2024-01-02 | Bridgestone Corporation | Systems and methods for the management of waste associated with processing guayule shrubs to extract rubber |
US10471473B2 (en) | 2012-06-18 | 2019-11-12 | Bridgestone Corporation | Systems and methods for the management of waste associated with processing guayule shrubs to extract rubber |
US10138304B2 (en) | 2012-06-18 | 2018-11-27 | Bridgestone Corporation | Methods for increasing the extractable rubber content of non-Hevea plant matter |
US10132563B2 (en) | 2012-06-18 | 2018-11-20 | Bridgestone Corporation | Methods for the desolventization of bagasse |
US9562720B2 (en) | 2012-06-18 | 2017-02-07 | Bridgestone Corporation | Methods for desolventization of bagasse |
US11267019B2 (en) | 2012-06-18 | 2022-03-08 | Bridgestone Corporation | Systems and methods for the management of waste associated with processing guayule shrubs to extract rubber |
US9567457B2 (en) | 2013-09-11 | 2017-02-14 | Bridgestone Corporation | Processes for the removal of rubber from TKS plant matter |
US10287367B2 (en) | 2013-09-11 | 2019-05-14 | Bridgestone Corporation | Process for the removal of rubber from TKS plant matter |
US10775105B2 (en) | 2018-11-19 | 2020-09-15 | Bridgestone Corporation | Methods for the desolventization of bagasse |
JP2023042087A (en) * | 2021-09-14 | 2023-03-27 | 木村化工機株式会社 | Solvent recovery system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231703B2 (en) | How to recycle plastic | |
JP3408847B2 (en) | Post-treatment method of aqueous dispersion of fluorinated thermoplastic resin | |
JP4275238B2 (en) | Recycling method for products based on vinyl chloride polymer | |
JPS61264005A (en) | Recovery of polymer from polymer latex | |
DE69316545T2 (en) | Process for the recovery of alkali metal or alkaline earth metal terephthalate and alkylene glycol from alkylene polyterephthalates | |
CN206287389U (en) | Vertical circulation dewaterer | |
CN106592000A (en) | Method for producing aramid fiber III fibrid | |
JP3947550B2 (en) | Continuous production method of ethylene-vinyl acetate copolymer and reaction system | |
JPH07504447A (en) | Acrylonitrile polymer compositions and products and their manufacturing methods | |
US4767803A (en) | Method of producing coagulated colloidal particles | |
JP2022036914A (en) | Solvent removal method from polymer solution by integrated drum drying and extrusion | |
US5962614A (en) | Dry resin made from an emulsion polymerized thermoplastic latex | |
JP2581322B2 (en) | Method for producing vinyl chloride resin for paste processing | |
JPS62236829A (en) | Closely packed spherical body of polymer latex particle | |
JP2004300115A (en) | Method for recovering valuable component from waste polyester | |
JP2007146045A (en) | Method for recovering polyvinyl chloride resin | |
JPH0457374B2 (en) | ||
EP0930016B1 (en) | Method and apparatus for forming a cellulose article including solvent recovery means | |
WO2005095077A1 (en) | A method of producing ethylene-vinyl alcohol copolymer pellet | |
KR100984614B1 (en) | Method for Recovering a Polymer | |
JPS621703A (en) | Method of recovering polymer | |
CN1065871A (en) | Method for regenerating polyethylene powder from waste polyethylene film | |
JPH0124175B2 (en) | ||
US3008940A (en) | Water removal from polymers | |
JPH0459010B2 (en) |