JPS61256701A - Oxide resistor - Google Patents

Oxide resistor

Info

Publication number
JPS61256701A
JPS61256701A JP60097805A JP9780585A JPS61256701A JP S61256701 A JPS61256701 A JP S61256701A JP 60097805 A JP60097805 A JP 60097805A JP 9780585 A JP9780585 A JP 9780585A JP S61256701 A JPS61256701 A JP S61256701A
Authority
JP
Japan
Prior art keywords
oxide
resistor
resistance
sintered body
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60097805A
Other languages
Japanese (ja)
Other versions
JPH06101401B2 (en
Inventor
山崎 武夫
荻原 覚
小杉 哲夫
白川 晋吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60097805A priority Critical patent/JPH06101401B2/en
Priority to EP85304428A priority patent/EP0165821B1/en
Priority to DE8585304428T priority patent/DE3566184D1/en
Priority to CA000484856A priority patent/CA1329477C/en
Priority to US06/748,166 priority patent/US4736183A/en
Priority to CN85105495.1A priority patent/CN1006498B/en
Publication of JPS61256701A publication Critical patent/JPS61256701A/en
Priority to US07/168,136 priority patent/US4943795A/en
Publication of JPH06101401B2 publication Critical patent/JPH06101401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な酸化物抵抗体に係り、特に遮断器等の開
閉サージ吸収に好適な酸化物抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a novel oxide resistor, and particularly to an oxide resistor suitable for absorbing switching surges in circuit breakers and the like.

〔発明の背景〕[Background of the invention]

従来、遮断器用抵抗体は、酸化アルミニウムー粘土−炭
素系の組成物が知られており、抵抗値が約400Ω口で
、遮断器の開閉サージ耐量が500ジユ一ル/cm” 
 (以下、J/cm3 と略記する)、抵抗温度係数が
一9X10””/C(20〜250C)、最高使用温度
200Cの特性をもつ抵抗体が得られている。
Conventionally, aluminum oxide-clay-carbon compositions have been known as resistors for circuit breakers, with a resistance value of approximately 400 Ω and a circuit breaker switching surge resistance of 500 J/cm.
(hereinafter abbreviated as J/cm3), a resistance temperature coefficient of 19×10''/C (20 to 250C), and a maximum operating temperature of 200C.

最近、送電電圧の高圧化に伴い遮断器用直線抵抗体に対
して小型、軽量化が強く要望されていることから、抵抗
体としては(1)開閉サージ耐量を大きくすること。(
2)開閉サージを注入すれば温度上昇するが、高い温度
にさらしても抵抗値に変動が小さいこと。(3)抵抗温
度係数が正であること。(4)電圧−電流特性が直線的
に変化すること、などの材料が要求される。ここでの電
圧−電流特性の直線性は近似的に I(電流)=K(定数1xV(IIE圧1’で表わされ
、αが1.3以下であることが望まれる。
Recently, as power transmission voltages have become higher, there has been a strong demand for linear resistors for circuit breakers to be smaller and lighter, so resistors should (1) have increased switching surge resistance; (
2) Although the temperature will rise if a switching surge is injected, the resistance value should have little variation even when exposed to high temperatures. (3) The temperature coefficient of resistance is positive. (4) Materials whose voltage-current characteristics change linearly are required. The linearity of the voltage-current characteristic here is approximately expressed as I (current) = K (constant 1 x V (IIE voltage 1'), and it is desired that α is 1.3 or less.

従来、遮断器の抵抗体に使用されている炭素粉分散型の
セラミックス抵抗体は、炭素の燃焼を防ぐために不活性
ガス雰囲気中で焼結され、抵抗値は炭素粉の混合量で制
御される。この抵抗体は(1)4000以上の温度にさ
らされると炭素が酸化され抵抗値が変ること。(2)抵
抗温度係数が負で一9Xi O”/l:’  (20〜
250C)と大きいために温度上昇すると抵抗が低下し
、電圧が一定の場合には電流の急激な増加により一層発
熱し暴走状態におちいるなどの欠点がある。
Conventionally, carbon powder-dispersed ceramic resistors used in circuit breaker resistors are sintered in an inert gas atmosphere to prevent carbon combustion, and the resistance value is controlled by the amount of carbon powder mixed. . (1) When this resistor is exposed to temperatures of 4,000 degrees or higher, the carbon is oxidized and its resistance value changes. (2) The temperature coefficient of resistance is negative and -9Xi O"/l:' (20~
250C), the resistance decreases as the temperature rises, and when the voltage is constant, a sudden increase in current generates even more heat, leading to a runaway condition.

そこで、抵抗体とし7ては、燃焼をおこさない酸化物系
である酸化亜鉛を基本成分としたセラミック抵抗体が特
開昭55−57219号公報等で公知である。本発明者
らは従来の酸化亜鉛を主体くした酸化物抵抗体は前述し
た要求される特性を十分に満足するものでないことを見
い出し、本発明に到ったのである。
Therefore, as the resistor 7, a ceramic resistor whose basic component is zinc oxide, which is an oxide that does not cause combustion, is known from Japanese Patent Application Laid-Open No. 55-57219. The present inventors have discovered that conventional oxide resistors mainly composed of zinc oxide do not fully satisfy the above-mentioned required characteristics, and have arrived at the present invention.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、抵抗が40〜4000Ωαの値を有し
、かつ電圧−電流特性の直線性が良く、遮断器の開閉サ
ージ耐量が犬きく、500C以上の高温にさらしても抵
抗値に変動が少なく、抵抗温度係数が−I X 10”
3/Cから+4 X 1 o−”/Cの範囲を有する酸
化物抵抗体を提供することにある。
The purpose of the present invention is to have a resistance value of 40 to 4000 Ωα, good linearity of voltage-current characteristics, excellent switching surge resistance of the circuit breaker, and resistance value that does not change even when exposed to high temperatures of 500C or higher. is low, and the temperature coefficient of resistance is -I x 10"
An object of the present invention is to provide an oxide resistor having a range of 3/C to +4 X 1 o-''/C.

〔発明の概要〕[Summary of the invention]

本発明は、酸化亜鉛を主成分とし、副成分として前記酸
化亜鉛と異なる酸化物を含む複合酸化物からなる焼結体
において、該焼結体は20〜500Cにおける抵抗温度
係数が5 X I O”’Ω/C〜−5X10”Ω/C
,20Cにおける抵抗値が100〜4000Ωcm、開
閉サージ耐量がSOO〜800 J 7cm”及び3×
lO−”〜80人/cdにおける電圧非直線係数が1.
0〜1.3であることを特徴とする酸化物抵抗体にある
The present invention provides a sintered body made of a composite oxide containing zinc oxide as a main component and an oxide different from the zinc oxide as a subcomponent, the sintered body having a temperature coefficient of resistance at 20 to 500C of 5 ”'Ω/C~-5X10”Ω/C
, resistance value at 20C is 100 to 4000 Ωcm, switching surge resistance is SOO to 800 J 7cm” and 3×
The voltage nonlinear coefficient at lO-”~80 persons/cd is 1.
0 to 1.3.

更に、本発明は、酸化亜鉛を主成分とし、酸化マグネシ
ウム1勾20 酸化ガリウム、酸化ランタン及び酸化インジウムの少な
くとも1つが単独又は合計量で0.1〜20モルチとを
含む焼結体からなり、酸化亜鉛結晶粒間に酸化亜鉛よシ
抵抗値の低い低抵抗層が形成されていることを特徴とす
る酸化物抵抗体くある。
Furthermore, the present invention comprises a sintered body mainly composed of zinc oxide and containing 1 to 20 moles of magnesium oxide and 0.1 to 20 moles of at least one of gallium oxide, lanthanum oxide, and indium oxide alone or in total, An oxide resistor is characterized in that a low resistance layer having a lower resistance value than zinc oxide is formed between zinc oxide crystal grains.

特に1モル比で、酸化亜鉛iIO〜9番チ、酸化マグネ
シウム3〜10チ及び酸化アルミニウム5化アルミニウ
ム5〜15%及び酸化珪素1〜2−からなる焼結体が好
ましい。
Particularly preferred is a sintered body consisting of iIO-9th zinc oxide, 3-10% magnesium oxide, 5-15% aluminum oxide aluminum pentide, and 1-2-2% silicon oxide in a 1 molar ratio.

酸化亜鉛から成る結晶粒と、100Ωから4x10”Ω
の電気抵抗値を示す結晶粒との複合焼結体で、酸化亜鉛
結晶粒間には酸化亜鉛粒よシも低い電気抵抗をもつ粒界
層が存在する。この焼結体は板状.柱状1円筒状のいず
れでもよく、両端面に電極が形成される。電極は端部が
若干残存した形で全面に形成され、溶射等によってAt
等の金属が膜状に形成される。
Crystal grains made of zinc oxide and 100Ω to 4x10”Ω
It is a composite sintered body with crystal grains that exhibit an electrical resistance value of , and between the zinc oxide crystal grains there is a grain boundary layer that has a lower electrical resistance than the zinc oxide grains. This sintered body is plate-shaped. It may be columnar or cylindrical, and electrodes are formed on both end faces. The electrode is formed on the entire surface with some edges remaining, and is coated with Atmium by thermal spraying etc.
Metals such as these are formed into a film.

各結晶粒間には酸化亜鉛の結晶粒と同じ電気抵抗値の粒
界層が存在しても良い。酸化亜鉛化合物及び酸化亜鉛を
除いた酸化物の結晶粒は100Ωから4X10”Ωの範
囲で酸化亜鉛よりも高抵抗であることが望ましい。酸化
亜鉛化合物及び酸化亜鉛以外の酸化物は次の化学式のも
のである。すなわち、基本成分のMgOに、一層の電圧
−電流特性の直線性を良くするためZnYxO4, Z
nGat04tZ n L a204 1 Z ” A
 t,!oa * Z n I ”*Os BMgAL
xOi r MgYsOa * MllGazOa 、
MgLa204。
A grain boundary layer having the same electrical resistance value as the zinc oxide crystal grains may exist between each crystal grain. It is desirable that the crystal grains of zinc oxide compounds and oxides other than zinc oxide have a resistance higher than that of zinc oxide in the range of 100Ω to 4×10”Ω. Zinc oxide compounds and oxides other than zinc oxide have the following chemical formula: That is, in order to further improve the linearity of voltage-current characteristics, ZnYxO4, Z is added to the basic component MgO.
nGat04tZ n L a204 1 Z ” A
T,! oa * Z n I ”*Os BMgAL
xOir MgYsOa * MllGazOa,
MgLa204.

MgInz04t AtzOs * YxOs * G
a*031Lashs及びInaOsから選らばれるX
S類以上を含有することである。これらの化合物を形成
するためには主成分ZnO,MgOに、アルミニウム(
All、イツトリウム(Y)、ガリウム(Ga)。
MgInz04t AtzOs * YxOs * G
X selected from a*031Lashs and InaOs
It is to contain S class or higher. In order to form these compounds, aluminum (
All, yttrium (Y), gallium (Ga).

ランタン(La +及びインジウム(Inlなどの金属
あるいは半金属元素を添加することである。
Addition of metal or metalloid elements such as lanthanum (La+) and indium (Inl).

ビスマス(Bi)の使用は望ましくない。Biを使用す
ると結晶粒界相に高抵抗層が形成され易すからである。
The use of bismuth (Bi) is undesirable. This is because when Bi is used, a high resistance layer is likely to be formed in the grain boundary phase.

焼結体の原料は、酸化亜鉛(ZZIO)、酸化マグネシ
ウム(MgO)が基本成分であり、副成分としてはzn
Q、MgO以外の3価の金属、半金属酸化物の酸化アル
ミニウム(AtzOs) 、酸化イツトリウム(Y2O
3) 、酸化ガリウム(Q a2Qs l 。
The basic ingredients of the raw material for the sintered body are zinc oxide (ZZIO) and magnesium oxide (MgO), with zn as a subcomponent.
Q, trivalent metals other than MgO, metalloid oxides such as aluminum oxide (AtzOs), yttrium oxide (Y2O
3), gallium oxide (Q a2Qs l .

酸化ランタン(Lag’s)及び酸化インジウム(I 
n2Q3)から選ばれる。
Lanthanum oxide (Lag's) and indium oxide (I
n2Q3).

焼結体の製法として、例えば上記の酸化物原料粉末を充
分混合し、これに水及びポリビニルアルコール等の適当
なバインダを加えて造粒し、金型を用いて成型する。成
形体は電気炉を用すて大気中で1200〜1600 C
の温度で焼成される。焼成した焼結体は電極を形成する
両端面を研磨調整し、電気溶射または焼付は法によって
電極を形成する。
The sintered body is manufactured by, for example, thoroughly mixing the above-mentioned oxide raw material powder, adding water and a suitable binder such as polyvinyl alcohol, granulating the mixture, and molding the mixture using a mold. The molded body is heated at 1200 to 1600 C in the atmosphere using an electric furnace.
It is fired at a temperature of Both end faces of the fired sintered body that form electrodes are polished and adjusted, and electrodes are formed by electrospraying or baking.

得られた抵抗体は使用中での沿面放電を防止するため抵
抗体側面に高抵抗セラミックス層やガラス層を設けても
良い。なお、得られた抵抗体は概ね直線性を示すが、非
直線性を示す場合には高電圧をかけて高抵抗部分(特に
粒界層)を破壊することが有効である。
The obtained resistor may be provided with a high-resistance ceramic layer or a glass layer on the side surface of the resistor in order to prevent creeping discharge during use. Note that the obtained resistor generally exhibits linearity, but if it exhibits nonlinearity, it is effective to apply a high voltage to destroy the high resistance portion (particularly the grain boundary layer).

本発明者等は抵抗体の小屋・軽量化について種穐検討し
た結果、(1)用いる抵抗体は抵抗値が40〜4000
Ωので、かつ開閉サージ耐量が400J/cm”以上、
電圧−電流特性の非直線係数、αが1.3以下、抵抗温
度係数が−I X 10−3.Q:から+4X10−”
/l:’  (20〜500C)及び500C以上の高
温にさらした後でも抵抗値変化が±10チ以内であるこ
と。偉)抵抗体の開閉サージ耐量は抵抗体中に抵抗値の
異なる多種類の結晶粒を生成させること、及び抵抗体の
比重に影響されること、(3)得られる抵抗体の電圧−
電流特性は3価の金属・半金属酸化物を添加すると直線
性が良くなることを見出した。第1図は得られた抵抗体
の微構造の模式図、第2図は抵抗体の比重(g/備3)
と開閉サージ耐量(J /cm”  )との関係、第3
図は得られた抵抗体の電圧−電流特性を示す線図である
。抵抗体に用いる原料には焼結し易く、かつ原料同志が
反応して電気的抵抗の異なる新しい結晶粒を生成し、さ
らに得られる焼結体の比重が大きいものを選ぶことが考
えられる。そこで、酸化亜鉛、酸化マグネシウムを基本
成分とし、これに得られる酸化物抵抗体の電圧−電流特
性の直線性を良くする酸化アルミニウム、酸化イツトリ
ウム、酸化ガリウム、酸化ランタン、酸化インジウムな
どを添加した抵抗体の特性を調べた。その結果、(1)
開閉サージ耐量は800 J /cm3で従来品の約1
.6倍と著しく高くなること、(2)抵抗温度係数は基
本成分の酸化亜鉛(ZnO)に酸化マグネシウム(Mg
O)の含有量で負から正に変化して改善されること、(
3)抵抗値及び電圧−電流特性の直線性は基本成分のZ
nO,MgOに酸化アルミニウム(At20s ) *
酸化イツトリウム(YzOs ) 。
The inventors of the present invention have studied various ways to reduce the weight and weight of the resistor, and have found that (1) the resistor used has a resistance value of 40 to 4000;
Ω, and the opening/closing surge withstand capacity is 400 J/cm” or more.
The non-linear coefficient of voltage-current characteristics, α, is 1.3 or less, and the temperature coefficient of resistance is -I x 10-3. Q: from +4X10-”
/l:' (20 to 500C) and the resistance value change must be within ±10 inches even after exposure to high temperatures of 500C or higher. B) The switching surge withstand capacity of a resistor is affected by the generation of many types of crystal grains with different resistance values in the resistor and the specific gravity of the resistor; (3) the voltage of the resulting resistor;
It has been found that the linearity of current characteristics improves when trivalent metal/metalloid oxides are added. Figure 1 is a schematic diagram of the microstructure of the resistor obtained, and Figure 2 is the specific gravity (g/Bi3) of the resistor.
Relationship between and opening/closing surge withstand capacity (J/cm"), 3rd
The figure is a diagram showing the voltage-current characteristics of the obtained resistor. It is conceivable to select raw materials for use in the resistor that are easy to sinter, that react with each other to produce new crystal grains with different electrical resistance, and that the resulting sintered body has a high specific gravity. Therefore, a resistor that uses zinc oxide and magnesium oxide as basic components and adds aluminum oxide, yttrium oxide, gallium oxide, lanthanum oxide, indium oxide, etc. to improve the linearity of the voltage-current characteristics of the resulting oxide resistor. We investigated the characteristics of the body. As a result, (1)
The opening/closing surge resistance is 800 J/cm3, which is about 1 lower than that of conventional products.
.. (2) The temperature coefficient of resistance is significantly higher by 6 times.
The content of O) changes from negative to positive and is improved;
3) The linearity of the resistance value and voltage-current characteristics is determined by the basic component Z.
nO, MgO with aluminum oxide (At20s) *
Yttrium oxide (YzOs).

酸化ガリウA(GazOm)を酸化ランタン(L at
 O3)+酸化インジウム(In2Q3)など’に添加
することによって改善されることを発見した。
Galium oxide (GazOm) is converted into lanthanum oxide (L at
It has been discovered that this can be improved by adding O3) + indium oxide (In2Q3), etc.

る。MgOは含有量を変えることによって抵抗温度係数
が負から正に大きく変化し、上記組成範囲より多くとも
少なくとも−I X 10−3Ω/Cから+4X10”
Ω/Cよりも大きくなる。また、MgOを上記組成範囲
よシも多くすると開閉サージ耐量が400 J/備3よ
りも小さくなり遮断器用抵抗体として好ましくなtn、
 tた、副成分のkl−gos t YxOs s G
 ados a L a203 s I ”zosの場
合には、上記組成範囲よりも多いと抵抗値が400Ω備
よりも高くなること、及び開閉サージ耐量が低下して遮
断器用抵抗体として不適当になる。しかし、AtzOs
 + YsOs 、 Gazes pLazos *I
 nzOsの添加は抵抗値が制御でき、かつ電圧−電流
特性の直線性が向上する。この原因については次のよう
に考える。すなわち、副成分のA Z 203 +Ga
zes 、 In2O3、La2.sは、(1)主に基
本成分のZnOやMgOと反応してZ n A t20
41ZnY*04. zrt()ao、 、 ZnLa
204.ZnIn20a。
Ru. The temperature coefficient of resistance of MgO changes greatly from negative to positive by changing the content, and the temperature coefficient varies from -I x 10-3Ω/C to +4X10'' at least within the above composition range.
It becomes larger than Ω/C. Furthermore, if the amount of MgO is increased beyond the above composition range, the switching surge withstand capacity becomes smaller than 400 J/3, which is preferable as a resistor for circuit breakers.
t, subcomponent kl-gos t YxOs s G
In the case of ados a L a203 s I "ZOS, if the composition exceeds the above range, the resistance value will be higher than 400Ω, and the switching surge resistance will decrease, making it unsuitable as a resistor for circuit breakers. However, , AtzOs
+ YsOs, Gazes pLazos *I
By adding nzOs, the resistance value can be controlled and the linearity of voltage-current characteristics can be improved. The reason for this is considered as follows. That is, the subcomponent A Z 203 +Ga
zes, In2O3, La2. s reacts with (1) mainly basic components ZnO and MgO to form Z n A t20
41ZnY*04. zrt()ao, , ZnLa
204. ZnIn20a.

MgkLzO< 、 Mg Y2O4、MgG az0
4゜MgL a20a e Mg I n2o4なる結
晶粒を生成し、この生成結晶粒の電気抵抗が500Ωか
ら4 XIO”Ωで基本組成ZnO−MgO系から生成
される結晶粒ZnO,MgOよりも高いこと、(2)生
成されるzno結晶粒内にAts Y、Ga、La、 
Inが拡散し、ZnO結晶粒のキャリヤ濃度を高くする
こと、などによって生じたものと思われる。
MgkLzO< , Mg Y2O4, MgG az0
4゜MgL a20a e Mg I n2o4 crystal grains are generated, and the electrical resistance of the generated crystal grains is from 500Ω to 4 (2) Ats Y, Ga, La,
This appears to be caused by diffusion of In and increasing the carrier concentration of ZnO crystal grains.

本発明の抵抗体の特に望ましい組成はZnOモル 一チ、Inz030.02〜5#−4%、Lag’s0
.1〜10+神チの少なくとも一種添加することである
A particularly desirable composition of the resistor of the present invention is ZnO mole, Inz030.02~5#-4%, Lag's0
.. At least one of 1 to 10 + divine chi is added.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 基本成分Zn03420g (84(−ル%)、MgO
iolg(5モルチ)に対し、副成分としてAt203
510g(10モルcs)、Ga20347g(0,5
モル%)及びIn*03369g(0,5モルチ)を正
確に秤量し、ボールミルで15時時間式で混合する。混
合粉は乾燥した後5慢ポリビニール・アルコール水溶液
を乾燥原料粉に対して5重量%加えて造粒する。造粒粉
は金型を用い成形圧力450に9/−で35mφ×20
1に成型する。成形体を大気中で1350tZ’、3時
間保持して焼成した。このときの昇・降温速度け70C
/hである。得られた焼結体中に生成された結晶粒の眠
気抵抗は各々約10〜50ΩのZnO結晶、約70〜1
00ΩのZnAt204結晶、約400ΩのM g O
結晶、約700〜4xlO”ΩのZnGaz、04.Z
nLa204.ZnYzO4゜Z n I nz 03
 、 Mg At204 、 MgY2O4,MgGa
z04゜MgY2O4,Mg Inz03. Atz 
Os 、 Ga2O3。
(Example 1) Basic component Zn03420g (84(-le%), MgO
iolg (5 molti), At203 as a subcomponent
510g (10mol cs), Ga20347g (0,5
mol %) and In*03369g (0.5 mole) were accurately weighed and mixed in a ball mill for 15 hours. After the mixed powder is dried, 5% by weight of polyvinyl alcohol aqueous solution is added to the dry raw material powder and granulated. The granulated powder is made using a mold with a molding pressure of 450 and 9/- 35 mφ x 20
Mold into 1. The molded body was fired in the atmosphere at 1350 tZ' for 3 hours. The rate of temperature rise and fall at this time is 70C
/h. The drowsiness resistance of the crystal grains produced in the obtained sintered body is about 10 to 50 Ω for ZnO crystals, and about 70 to 1 for ZnO crystals, respectively.
00Ω ZnAt204 crystal, approximately 400Ω M g O
Crystal, ZnGaz of about 700-4xlO"Ω, 04.Z
nLa204. ZnYzO4゜Z n I nz 03
, MgAt204, MgY2O4, MgGa
z04゜MgY2O4, Mg Inz03. Atz
Os, Ga2O3.

La2O5、I nz Osであった。La2O5, InzOs.

別に、低融点結晶化ガラスで旭硝子展ASF−1400
ガラX(ZnOSing  B2O5系)粉をエチルセ
ルローズ・ブチルカルピトール溶液に懸濁しておき、こ
れを焼成した焼結体の側面に厚150〜300μmにな
るように筆で塗布した。
Separately, Asahi Glass Exhibition ASF-1400 with low melting point crystallized glass
GALA

−・2れを大気中で750C130分間熱処理してガラ
スを焼付けた。ガラスを被覆した焼結体はその両端面を
ラップマスタで約α5鱈ずつ研磨し、トリクロルエチレ
ンで洗浄した。洗浄した焼結体にAt電極を溶射によっ
て形成して抵抗体とした。
-.2 was heat-treated at 750C for 130 minutes in the atmosphere to bake the glass. Both end faces of the glass-covered sintered body were polished by approximately α5 using a lap master and washed with trichlorethylene. An At electrode was formed on the cleaned sintered body by thermal spraying to obtain a resistor.

この本発明品と従来品(炭素分散型セラミック抵抗体)
との開閉サージ耐量、抵抗温度係数、大気中5ooc熱
処理後の抵抗値変化率及び電圧−電流特性の非直線係数
αを比較して第1表に示す。
This invention product and conventional product (carbon dispersed ceramic resistor)
Table 1 shows a comparison of the switching surge withstand capacity, temperature coefficient of resistance, rate of change in resistance value after 5 o'clock heat treatment in the atmosphere, and non-linear coefficient α of voltage-current characteristics.

本発明品は従来品よりも開閉サージ耐量が極めて犬きく
、かつ電圧非直線係数αが小さくすぐれていることがわ
かる。本発明の抵抗温度係数が正で、100μsにおけ
るAC耐量が20A以上、V−I特性におけるβが0.
9〜1.0である。
It can be seen that the product of the present invention has an extremely better switching surge resistance and a smaller voltage nonlinear coefficient α than the conventional product. The temperature coefficient of resistance of the present invention is positive, the AC withstand capacity at 100 μs is 20 A or more, and β in the VI characteristic is 0.
It is 9-1.0.

結晶粒の電気抵抗の測定は、焼結体を鏡面研磨し、走査
型電子顕微鏡で分析後各結晶粒表面に微細電極を形成し
て電流及び電圧から測定した。
The electrical resistance of the crystal grains was measured by mirror polishing the sintered body, analyzing it with a scanning electron microscope, forming fine electrodes on the surface of each crystal grain, and measuring from the current and voltage.

本発明の酸化物抵抗体の断面構造の一例を第4図及び第
5図に示す。第4図において、1は焼結体、2は電極、
3は結晶化ガラスまたはセラミックス材の膜である。こ
こで、焼結体の側面に結晶化ガラスまたはセラミックス
材の膜をもうけたのは、使用中での沿面放電を防とする
ためである。
An example of the cross-sectional structure of the oxide resistor of the present invention is shown in FIGS. 4 and 5. In FIG. 4, 1 is a sintered body, 2 is an electrode,
3 is a film of crystallized glass or ceramic material. Here, the reason why a film of crystallized glass or a ceramic material is provided on the side surface of the sintered body is to prevent creeping discharge during use.

C実施例2) を0.05〜20モルチに変え、かつ副成分としてk1
403. YzOs 、 L azos 、 I nx
os 、 Gazes化させ、その配合量を正確に秤量
した。秤量した原料粉は実施例1と同様に大気中130
0〜1600Cの温度で3時間保持して焼成した。得ら
れた焼結体の密度は各々理論密度の95〜98チであっ
た。焼成した焼結体は両端面をラップマスタ約0、5 
wx fつ研磨し、トリクロルエチレンで超音波洗浄し
た。洗浄した焼結体はAt溶射電極を形成して抵抗体と
した。得られた抵抗体の抵抗値、開閉サージ耐量、抵抗
温度係数及び電圧非直線係数αを第2表に示す。
C Example 2) was changed to 0.05 to 20 molt, and k1 was added as a subcomponent.
403. YzOs, Lazos, Inx
os and Gazes, and the blended amount was accurately weighed. The weighed raw material powder was exposed to 130% in the atmosphere as in Example 1.
It was fired by holding at a temperature of 0 to 1600C for 3 hours. The densities of the obtained sintered bodies were each 95 to 98 inches of the theoretical density. Both ends of the fired sintered body are wrapped with a lap master of approx.
It was polished wxf and ultrasonically cleaned with trichlorethylene. The cleaned sintered body was used as a resistor by forming an At sprayed electrode. Table 2 shows the resistance value, switching surge resistance, resistance temperature coefficient, and voltage nonlinear coefficient α of the obtained resistor.

第2表から、組成番号10〜121組成番号16〜18
9組成番号21〜231組成番号27〜299組成番号
32〜36、すなわち基本成分80〜929モルチのZ
nOに、5〜15モル%のMgOを含有させ、さらに副
成分としてAl!osを5〜15#孝チ、Y2O2を0
,5〜5学→チ、La103を0.3〜1 零斗% 、
G a zOsを0.5〜5モル P4−4、I n2o3を0.1〜5孝→チから選ばれ
た1成分以上を添加した抵抗体の特性は抵抗率が110
〜3500Ωcm、開閉サージ耐量がSOO〜780 
J/ar1’ %抵抗温度係数が−5X 10−’Ω/
C以下、+4.3×10−’Ω/C以下かつ電圧非直線
係数αが1.02〜1.3であり、遮断器用抵抗体とし
て優れていることがわかる。
From Table 2, composition numbers 10-121 composition numbers 16-18
9 Composition numbers 21-231 Composition numbers 27-299 Composition numbers 32-36, i.e. Z with basic components 80-929 molti
nO contains 5 to 15 mol% MgO, and further contains Al as a subcomponent! os 5-15# Takashi, Y2O2 0
, 5-5 studies → Chi, La103 0.3-1 Zeroto%,
The characteristics of a resistor to which one or more components selected from 0.5 to 5 moles of G azOs and 0.1 to 5 moles of In2O3 are added have a resistivity of 110.
~3500Ωcm, opening/closing surge resistance is SOO~780
J/ar1'% resistance temperature coefficient is -5X 10-'Ω/
C or less, +4.3×10 −'Ω/C or less, and the voltage nonlinear coefficient α is 1.02 to 1.3, which indicates that it is excellent as a resistor for a circuit breaker.

また、wc2表から開閉サージ耐量は基本成分のZnO
にMgOを添加することで改善されることがわかる。し
かし、MgOを20モル%(47)と含有させすぎると
300 J /cm”で、従来品の500J/lyn”
 よシも低くなってしまう。また、MgOの含有量を変
えることで抵抗温度係数が負から正に変化し、MgOの
添加量を選定すれば−xxxo−”/l:’以下、+4
X10−”/C以下に小さくできることがわかる。また
、抵抗値は基本成分のMgOの含有量を増加させても4
3〜500Ω備程度で大きな変化を示さないが、副成分
のktzos * YzOs 、 L ados 、 
G axis及びInzOsは副成分のAttOs +
 YxOs * Law’s 、 Ga5es +In
zOsなどの最適添加量を選定することによって1.0
2〜1.2と著しく改善できること、しかし副成分のA
ttOs * YzOn 、 Law’s 、 Ga*
03゜I n*osの添加量を増加しすぎると開閉サー
ジ耐量が低下することがわかる。
Also, from the wc2 table, the opening/closing surge resistance is determined by the basic component ZnO.
It can be seen that this can be improved by adding MgO to . However, if MgO is contained too much (20 mol%) (47), the power consumption is 300 J/cm", compared to 500 J/lyn" of the conventional product.
Yoshi also becomes low. In addition, by changing the content of MgO, the temperature coefficient of resistance changes from negative to positive, and if the amount of MgO added is -xxxo-"/l:' or less, +4
It can be seen that the resistance value can be reduced to less than
Although it does not show a large change in the range of 3 to 500Ω, the subcomponents ktzos*YzOs, Lados,
G axis and InzOs are subcomponents AttOs +
YxOs * Law's, Ga5es +In
1.0 by selecting the optimal addition amount of zOs etc.
2 to 1.2, which can be significantly improved, but the subcomponent A
ttOs * YzOn , Law's , Ga *
It can be seen that if the amount of 03°I n*os added is increased too much, the opening/closing surge resistance decreases.

これらのことから、遮断器用抵抗体として特に望ましい
組成は基本成分がZnOにMgOを5〜15モルチ含有
させた混合物に対し、副成分としネル #−+% 、L a gosを0.3〜1 鴬遼%、G
azesをネル 0、5〜5−116、InzOsを0.1〜5−5ep
−4%添加するのが良い。
For these reasons, a particularly desirable composition for a resistor for a circuit breaker is a mixture in which the basic component is ZnO containing 5 to 15 moles of MgO, and the subcomponents are 0.3 to 1% of Nell #-+% and La gos. Uryo%, G
azes Nell 0, 5~5-116, InzOs 0.1~5-5ep
It is better to add -4%.

(実施例3) 第6図及び第7図は本発明の酸化物抵抗体を各各GCB
投入抵抗用及びSFaガス絶縁中性点接地(NGR)用
に用いた応用例を示したものである。第6図及び第7図
で用いられた抵抗体5は第5図に示す円筒形状のものが
使用されている。
(Example 3) Figures 6 and 7 show the oxide resistor of the present invention in each GCB.
This shows an example of application for use in making resistance and SFa gas insulated neutral point grounding (NGR). The resistor 5 used in FIGS. 6 and 7 has a cylindrical shape as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り1本発明によれば開閉サージ耐量が極
めて大きく、電圧−電流特性の電圧非直線係数が小さく
、抵抗温度係数が正でしかも小さく、かつ500C熱処
理後の抵抗温度変化も小さいという優れた酸化物抵抗体
が得られるという効果がある。
As explained above, 1. According to the present invention, the switching surge resistance is extremely high, the voltage nonlinear coefficient of the voltage-current characteristic is small, the resistance temperature coefficient is positive and small, and the resistance temperature change after heat treatment at 500C is small. This has the effect that a high-quality oxide resistor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例に係る酸化物抵抗体の断面構造を
示す模式図、第2図は酸化物抵抗体の比重と遮断器の開
閉サージ耐量との関係、第3図は酸化物抵抗体の電圧−
@売時性、第4図及び第5図は本発明の実施例に係る酸
化物抵抗体の断面図、第6図はGCB投入抵抗用抵抗器
の構成図及び第7図は8Fa ガス絶縁中性点接地(N
GR)の構成図である。 1.5・・・酸化物抵抗体、2・・・電極、3・・・ガ
ラス等、4・・・円筒内部、6・・・ブッシング、7・
・・タンク、8・・・コンデンサ、9・・・遮断部、1
0・・・油ダツシユポット、11・・・開閉操作用ピス
トン、12・・・空気タンク。
Figure 1 is a schematic diagram showing the cross-sectional structure of an oxide resistor according to an example of the present invention, Figure 2 is the relationship between the specific gravity of the oxide resistor and the switching surge withstand capacity of the circuit breaker, and Figure 3 is the oxide resistance Body voltage-
@Sales availability, Figures 4 and 5 are cross-sectional views of oxide resistors according to embodiments of the present invention, Figure 6 is a configuration diagram of a GCB closing resistor, and Figure 7 is an 8Fa gas insulated resistor. Sex point grounding (N
GR) is a configuration diagram. 1.5...Oxide resistor, 2...Electrode, 3...Glass etc., 4...Cylinder interior, 6...Bushing, 7...
...Tank, 8...Capacitor, 9...Shutoff part, 1
0... Oil dash pot, 11... Piston for opening/closing operation, 12... Air tank.

Claims (1)

【特許請求の範囲】 1、酸化亜鉛を主成分とし、副成分として前記酸化亜鉛
と異なる酸化物を含む複合酸化物からなる焼結体におい
て、該焼結体は20〜500℃における抵抗温度係数が
5×10^−^4l/℃〜−5×10^−^4l/℃、
20℃における抵抗値が100〜4000Ωcm、開閉
サージ耐量が500〜800J/cm^3及び3×10
^−^3〜80A/cm^3における電圧非直線係数が
1.0〜1.3であることを特徴とする酸化物抵抗体。 2、酸化亜鉛を主成分とし、酸化マグネシウム0.1〜
10モル%と酸化アルミニウム、酸化ガリウム、酸化ラ
ンタン及び酸化インジウムの少なくとも1つが単独又は
合計量で0.1〜20モル%とを含む焼結体からなり、
酸化亜鉛結晶粒間に酸化亜鉛より抵抗値の低い低抵抗層
が形成されていることを特徴とする酸化物抵抗体。 3、モル比で酸化亜鉛70〜92%、酸化マグネシウム
3〜10%及び酸化アルミニウム5〜15%からなる焼
結体である特許請求の範囲第2項に記載の酸化物抵抗体
。 4、モル比で、酸化亜鉛68〜90%、酸化マグネシウ
ム3〜10%、酸化アルミニウム5〜15%及び酸化珪
素1〜2%からなる焼結体である特許請求の範囲第2項
に記載の酸化物抵抗体。
[Claims] 1. A sintered body made of a composite oxide containing zinc oxide as a main component and an oxide different from the zinc oxide as a subcomponent, the sintered body having a temperature coefficient of resistance at 20 to 500°C. is 5×10^-^4l/℃~-5×10^-^4l/℃,
Resistance value at 20℃ is 100-4000Ωcm, switching surge resistance is 500-800J/cm^3 and 3×10
An oxide resistor characterized by having a voltage nonlinear coefficient of 1.0 to 1.3 at 3 to 80 A/cm3. 2. Zinc oxide is the main component, magnesium oxide is 0.1~
consisting of a sintered body containing 10 mol% and 0.1 to 20 mol% of at least one of aluminum oxide, gallium oxide, lanthanum oxide, and indium oxide alone or in total amount,
An oxide resistor characterized in that a low resistance layer having a resistance value lower than that of zinc oxide is formed between zinc oxide crystal grains. 3. The oxide resistor according to claim 2, which is a sintered body consisting of 70 to 92% zinc oxide, 3 to 10% magnesium oxide, and 5 to 15% aluminum oxide in molar ratio. 4. The sintered body according to claim 2, which is a sintered body consisting of 68 to 90% zinc oxide, 3 to 10% magnesium oxide, 5 to 15% aluminum oxide, and 1 to 2% silicon oxide in molar ratio. Oxide resistor.
JP60097805A 1984-06-22 1985-05-10 Linear resistor Expired - Lifetime JPH06101401B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60097805A JPH06101401B2 (en) 1985-05-10 1985-05-10 Linear resistor
EP85304428A EP0165821B1 (en) 1984-06-22 1985-06-20 Oxide resistor
DE8585304428T DE3566184D1 (en) 1984-06-22 1985-06-20 Oxide resistor
CA000484856A CA1329477C (en) 1984-06-22 1985-06-21 Oxide resistor
US06/748,166 US4736183A (en) 1984-06-22 1985-06-24 Oxide resistor
CN85105495.1A CN1006498B (en) 1985-05-10 1985-07-18 Oxidate electric resistance
US07/168,136 US4943795A (en) 1984-06-22 1988-03-14 Oxide resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097805A JPH06101401B2 (en) 1985-05-10 1985-05-10 Linear resistor

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP3279169A Division JPH0696909A (en) 1991-10-25 1991-10-25 Transformer
JP4054776A Division JP2786367B2 (en) 1992-03-13 1992-03-13 Gas insulated circuit breaker
JP4054775A Division JP2777009B2 (en) 1992-03-13 1992-03-13 Neutral grounding resistor

Publications (2)

Publication Number Publication Date
JPS61256701A true JPS61256701A (en) 1986-11-14
JPH06101401B2 JPH06101401B2 (en) 1994-12-12

Family

ID=14201990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097805A Expired - Lifetime JPH06101401B2 (en) 1984-06-22 1985-05-10 Linear resistor

Country Status (2)

Country Link
JP (1) JPH06101401B2 (en)
CN (1) CN1006498B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200501A (en) * 1987-02-17 1988-08-18 株式会社日立製作所 Oxide resistance element and manufacture of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584207A (en) * 2012-02-09 2012-07-18 江苏大学 Negative resistance temperature coefficient zinc oxide linear resistance ceramic material and preparation method
CN102584209B (en) * 2012-02-23 2013-10-23 江苏大学 ZnO-Pr6O11-base linear resistance material and preparation method thereof
CN112811895A (en) * 2020-07-31 2021-05-18 北京七一八友晟电子有限公司 Tin oxide ceramic resistor and preparation method thereof
CN112048209A (en) * 2020-09-21 2020-12-08 广东电网有限责任公司电力科学研究院 Filler, grounding grid anticorrosive paint and preparation method thereof
CN114477994A (en) * 2022-01-25 2022-05-13 广东爱晟电子科技有限公司 High-power ceramic chip resistor and material and preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126902A (en) * 1980-03-10 1981-10-05 Marukon Denshi Kk Ceramic varistor and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126902A (en) * 1980-03-10 1981-10-05 Marukon Denshi Kk Ceramic varistor and method of producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200501A (en) * 1987-02-17 1988-08-18 株式会社日立製作所 Oxide resistance element and manufacture of the same

Also Published As

Publication number Publication date
CN1006498B (en) 1990-01-17
JPH06101401B2 (en) 1994-12-12
CN85105495A (en) 1987-01-21

Similar Documents

Publication Publication Date Title
JP2001516142A (en) Nanocrystallite powder based varistor formed by mechanical grinding
JPH11340009A (en) Nonlinear resistor
JPS61256701A (en) Oxide resistor
US5000876A (en) Voltage non-linear type resistors
CA1331508C (en) Voltage non-linear type resistors
JP2005145809A (en) Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JP2777009B2 (en) Neutral grounding resistor
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP2786367B2 (en) Gas insulated circuit breaker
JPS62136802A (en) Oxide resistor
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JP3423751B2 (en) Ceramic linear resistor and neutral grounding resistor using it
JPS6355904A (en) Oxide resistor
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture
JPH03297101A (en) Power resistor and manufacture thereof
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof
JP2004269341A (en) Zinc oxide-based sintered compact, its manufacturing method, and zinc oxide varistor
JPS61281501A (en) Oxide resistor
JP2679065B2 (en) Semiconductor porcelain material
JPH0310205B2 (en)
JPH07147204A (en) Metal oxide based resistor, power resistor, and power breaker
JPH06168802A (en) Ceramics linear resistor and breaker used thereof
JPH10106810A (en) Zno ceramic resistor and its manufacture
JPH03178101A (en) Voltage non-linear resistor
JPH0696909A (en) Transformer