JPS6125015A - Characteristics correcting apparatus for sensor - Google Patents

Characteristics correcting apparatus for sensor

Info

Publication number
JPS6125015A
JPS6125015A JP14654884A JP14654884A JPS6125015A JP S6125015 A JPS6125015 A JP S6125015A JP 14654884 A JP14654884 A JP 14654884A JP 14654884 A JP14654884 A JP 14654884A JP S6125015 A JPS6125015 A JP S6125015A
Authority
JP
Japan
Prior art keywords
circuit
output
detection circuit
control
converts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14654884A
Other languages
Japanese (ja)
Inventor
Hideo Sato
秀夫 佐藤
Kazuo Kato
和男 加藤
Hiroji Kawakami
寛児 川上
Kazuji Yamada
一二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14654884A priority Critical patent/JPS6125015A/en
Publication of JPS6125015A publication Critical patent/JPS6125015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To make it possible to perform high speed response without using high-speed, highly accurate A-D and D-A converters and logic operation circuits, by converting a physical quantity group other than a physical quantity to be measured into an electric signal, and correcting the characteristics of a detecting circuit by the corresponding control quantities. CONSTITUTION:The output voltage of a pressure detecting circuit 10 is outputted to the outside through an amplifier circuit 106. The output of a temperature detecting circuit 20 is inputted to a logic operation circuit 60 through a preamplifier circuit 40 and an A/D converter 50. A zero-point control quantity, a sensitivity control quantity and a non-linear-error control quantity are outputted to registers 70, 80 and 90. The outputs of the registers 70, 80 and 90 are imparted to a zero-point control circuit 76, a sensitivity control circuit and a non-linear control circuit 96. The zero point, the sensitivity and the non-linearility of the output of the pressure detecting circuit 10 are corrected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセンサの特性補正装置に係シ、特に半導体感圧
素子を用いた圧力センサなどの補正回路をディジタル化
するのに好適なセンサの特性補正装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sensor characteristic correction device, and particularly to sensor characteristics suitable for digitizing a correction circuit such as a pressure sensor using a semiconductor pressure-sensitive element. This invention relates to a correction device.

〔発明の背景〕[Background of the invention]

ディジタル化したセンサの特性補正装置としては、従来
、米国特許第4192005号や特開昭58−1141
99号公報で提案されたものがある。これらの従来例の
圧力検出装置の構成は、感圧素子を含む印加圧力を電気
信号に変換する圧力検出回路と、上記感圧素子の近傍に
設置した感温素子を含む上記感圧素子の温度を検出して
電気信号に変換する温度検出回路と、上記圧力検出回路
と温度検出回路の出力信号に対する印加圧力の関係をあ
らかじめ記憶しておく記憶回路と、上記圧力検出回路と
温度検出回路の出力信号に対する印加圧力の関係を上記
記憶回路から読み出して印加圧力を演算する論理演算回
路と、上記圧力検出回路と温度検出回路の出力信号をデ
ィジタル信号に変換するA−D変換器と、上記論理演算
回路の演算結果をアナログ信号に変換するD−A変換回
路とからなる構成としてある。
Conventionally, as a characteristic correction device for a digital sensor, there is a method disclosed in U.S. Pat.
There is one proposed in Publication No. 99. The configuration of these conventional pressure sensing devices includes a pressure sensing circuit that converts applied pressure into an electrical signal, including a pressure sensing element, and a temperature sensing circuit that includes a temperature sensing element installed near the pressure sensing element. a temperature detection circuit that detects and converts it into an electrical signal, a memory circuit that stores in advance the relationship between the applied pressure and the output signals of the pressure detection circuit and temperature detection circuit, and the outputs of the pressure detection circuit and temperature detection circuit. a logic operation circuit that reads out the relationship between applied pressure and the signal from the storage circuit and calculates the applied pressure; an A-D converter that converts the output signals of the pressure detection circuit and the temperature detection circuit into digital signals; and the logic operation circuit. The configuration includes a DA conversion circuit that converts the calculation result of the circuit into an analog signal.

そして、その動作は次の通りである。まず、圧力検出回
路と温度検出回路の出力信号をA−D変換器でディジタ
ル信号に変換して論理演算回路に取シ込む。論理演算回
路では、取り込んだ圧力検出回路と温度検出回路からの
信号に対応する印加圧力値の関係を記憶回路から読み出
して印加圧力を演算する。この演算によって、圧力検出
回路で発生する零点と感度の温度影響や非直線誤差を補
正する。ここで求めた印加圧力値はD −A変換器でア
ナログ信号に変換して出力する。
The operation is as follows. First, the output signals of the pressure detection circuit and the temperature detection circuit are converted into digital signals by an A-D converter and input into a logic operation circuit. The logic operation circuit reads the relationship between the applied pressure values corresponding to the input signals from the pressure detection circuit and the temperature detection circuit from the storage circuit, and calculates the applied pressure. This calculation corrects temperature effects and nonlinear errors on the zero point and sensitivity that occur in the pressure detection circuit. The applied pressure value determined here is converted into an analog signal by a DA converter and output.

以上のように、印加した圧力の信号は、圧力検出回路を
出てからA−D変換器、論理演算回路、D−A変換器を
順次通るので、圧力検出装置の応答時間、分解能、精度
等の性能は、A−D、D−A変換器や論理演算回路など
からなるディジタル信号処理部の性能に左右されていた
As described above, the applied pressure signal passes through the A-D converter, logic operation circuit, and D-A converter in sequence after exiting the pressure detection circuit, so the response time, resolution, accuracy, etc. of the pressure detection device, etc. The performance of the digital signal processor depends on the performance of the digital signal processing section, which includes AD and DA converters, logical operation circuits, and the like.

このため、従来の圧力検出装置では、圧力検出回路の温
度影響値や非直線誤差の大小にかかわらず高速、高分解
能のディジタル信号処理部が必要であった。言い換えれ
ば、許容される誤差の逆数に相当するだけのビット数、
例えば、o、isに対しては10ビツト、o、oi*に
対しては13.5〜14ビット分の処理回路が必要であ
った。
For this reason, conventional pressure detection devices require a high-speed, high-resolution digital signal processing section, regardless of the temperature influence value or nonlinear error of the pressure detection circuit. In other words, the number of bits corresponds to the reciprocal of the allowed error,
For example, processing circuits for o and is require 10 bits, and processing circuits for o and oi* require 13.5 to 14 bits.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、高速、高精度のA−D、D−A変換器や論理
演算回路を用いなくとも高速応答が可能であり、しかも
、センサの特性をディジタル的に補正することができる
センサの特性補正装置を提供することにある。
The present invention has been made in view of the above, and its purpose is to enable high-speed response without using high-speed, high-precision A-D, D-A converters or logic operation circuits, and to An object of the present invention is to provide a sensor characteristic correction device capable of digitally correcting sensor characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、センサの被測定物理量に対する感度がその他
の外乱となる物理量に対する感度よりも大きい点に着目
して、被測定物理量以外の物理量の検出信号のみをディ
ジタル的に処理して補正する構成としたもので、被測定
物理量を電気信号に変換する第1の検出回路に影響を与
える上記被測定物理量以外の物理量群を電気信号に変換
する第2の検出回路と、この第2の検出回路の出力をデ
ィジタル信号に変換するA−D変換回路と、とのA−D
変換回路からのディジタル信号を入力してそれに応じた
上記影響を与える物理量群が上記第1の検出回路の出力
特性に与える影響値を補正するのに必要な制御量に変換
して出力する論理演算回路と、この論理演算回路の出力
を入力して上記第1の検出回路の出力特性を補正する補
正手段とからなる構成としたことを特徴としている。
The present invention focuses on the fact that the sensitivity of the sensor to the physical quantity to be measured is greater than the sensitivity to other physical quantities that are disturbances, and has a configuration in which only the detection signal of the physical quantity other than the physical quantity to be measured is digitally processed and corrected. a second detection circuit that converts into electrical signals a group of physical quantities other than the physical quantities to be measured that affect the first detection circuit that converts the physical quantities to be measured into electrical signals; An A-D conversion circuit that converts the output into a digital signal;
A logical operation that inputs a digital signal from a conversion circuit and converts the group of physical quantities that have an effect according to the digital signal into a control amount necessary for correcting the influence value that it has on the output characteristics of the first detection circuit and outputs the control amount. The present invention is characterized in that it has a configuration consisting of a circuit and a correction means for correcting the output characteristics of the first detection circuit by inputting the output of the logic operation circuit.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図、第2図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 1 and 2.

第1図は本発明に係るセンサの特性補正装置を備えた物
理量検出装置の一実施例を示すブロック図で、半導体ス
トレンゲージを用いた圧力検出装置を例示してある。第
1図において、1oは圧力検出回路で、印加圧力で抵抗
値が変化する半導体ストレンゲージからなる感圧素子1
1〜14でブリッジ回路を構成してある。20は圧力検
出回路10の温度を検出する温度検出回路で、温度で抵
抗値が変化する感温素子21と抵抗22〜24とでブリ
ッジ回路を構成してある。なお、感温素子21は感圧素
子11〜14と同一半導体基板に形成するかまたは別個
に形成してあり、感圧素子11〜14の近傍に設置して
ある。30は圧力検出回路10および温度検出回路20
をはじめとする各回路の構成素子に電圧を供給する基準
電源でちる。40は温度検出回路20の出力信号を増幅
する前置増幅器、50は前置増幅器40で増幅されたア
ナログ信号をディジタル信号に変換するA−D変換器、
60はA−D変換器50からのディジタル信号を入力し
て、そのディジタル信号に対応するあらかじめ記憶回路
61に記憶してある圧力検出回路20の零点を所定の電
圧にするための零点制御量、感度を所定の値にする感度
制御量および非直線誤差を零にするための非直線誤差制
御量を読み出してそれぞれレジスタ70,80゜90へ
出力する演算増幅器である。
FIG. 1 is a block diagram showing an embodiment of a physical quantity detection device equipped with a sensor characteristic correction device according to the present invention, and illustrates a pressure detection device using a semiconductor strain gauge. In FIG. 1, 1o is a pressure detection circuit, and a pressure sensing element 1 consisting of a semiconductor strain gauge whose resistance value changes depending on the applied pressure.
1 to 14 constitute a bridge circuit. Reference numeral 20 denotes a temperature detection circuit for detecting the temperature of the pressure detection circuit 10, and a bridge circuit is formed by a temperature sensing element 21 whose resistance value changes with temperature and resistors 22 to 24. Note that the temperature sensing element 21 is formed on the same semiconductor substrate as the pressure sensing elements 11 to 14, or is formed separately, and is installed near the pressure sensing elements 11 to 14. 30 is a pressure detection circuit 10 and a temperature detection circuit 20
It is a reference power supply that supplies voltage to the components of each circuit, including the circuit. 40 is a preamplifier that amplifies the output signal of the temperature detection circuit 20; 50 is an A-D converter that converts the analog signal amplified by the preamplifier 40 into a digital signal;
60 is a zero point control amount for inputting a digital signal from the A-D converter 50 and setting the zero point of the pressure detection circuit 20 to a predetermined voltage, which is stored in advance in the storage circuit 61 and corresponds to the digital signal; This is an operational amplifier that reads out the sensitivity control amount for setting the sensitivity to a predetermined value and the nonlinear error control amount for reducing the nonlinear error to zero, and outputs them to the registers 70, 80, and 90, respectively.

71はD−A変換器、72〜75は抵抗で、これらで零
点制御回路76を構成しており、D−A変換器71の入
力データにもとづいて圧力検出回路10の零点出力電圧
を所定電圧に制御する。
71 is a D-A converter, and 72 to 75 are resistors, which constitute a zero-point control circuit 76, which adjusts the zero-point output voltage of the pressure detection circuit 10 to a predetermined voltage based on the input data of the D-A converter 71. to control.

81はD−A変換器、82〜85は抵抗器、86は演算
増幅器、87はMOSトランジスタで、これらで感度制
御回路88を構成しており、D −A変換器81の入力
データにもとづいて圧力検出回路10に流す電流を制御
し、圧力検出回路10の感度を制御する。
81 is a D-A converter, 82 to 85 are resistors, 86 is an operational amplifier, and 87 is a MOS transistor, which constitutes a sensitivity control circuit 88. Based on the input data of the D-A converter 81, The current flowing through the pressure detection circuit 10 is controlled, and the sensitivity of the pressure detection circuit 10 is controlled.

91は演算増幅器、92〜95.R,〜R,は抵抗、S
1〜S、はスイッチで、これらで非直線性制御回路96
を構成しており、レジスタ90の出力データで圧力検出
回路10の非直線誤差を制御する。
91 is an operational amplifier, 92 to 95. R, ~R, is resistance, S
1 to S are switches, which control the nonlinearity control circuit 96.
The non-linear error of the pressure detection circuit 10 is controlled by the output data of the register 90.

101は演算増幅器、102〜105は抵抗で、これら
で、圧力検出回路10の出力を増幅する増幅回路106
を構成している。
101 is an operational amplifier, 102 to 105 are resistors, and these constitute an amplifier circuit 106 that amplifies the output of the pressure detection circuit 10.
It consists of

次に、動作について説明する。まず、圧力検出回路10
の感圧素子11〜14に圧力が印加されると、感圧素子
ii、taの抵抗値は減少し、感圧素子12.14の抵
抗値は増加し、ブリッジ回路のバランスがくずれ、出力
電圧を発生する。この出力電圧は増幅回路106で増幅
され、外部に出力される。
Next, the operation will be explained. First, the pressure detection circuit 10
When pressure is applied to pressure sensitive elements 11 to 14, the resistance values of pressure sensitive elements ii and ta decrease, and the resistance values of pressure sensitive elements 12 and 14 increase, causing the bridge circuit to become unbalanced and the output voltage to decrease. occurs. This output voltage is amplified by the amplifier circuit 106 and output to the outside.

一方、温度検出回路20の感温素子21は周囲温度が変
化すると抵抗値が変化し、ブリッジ回路のバランスがく
ずれて周囲温度の変化に応じた出力電圧を発生する。こ
の出力電圧は前置増幅回路40で増幅され、A−D変換
器50でディジタル信号に変換されて論理演算回路60
に取り込まれる。論理演算回路60は上記のディジタル
信号に対応する零点を所定の電圧にするための零点制御
量、感度を所定の値にするための感度制御量、非直線誤
差を零にするための非直線誤差制御量を読み出して、こ
れらをそれぞれレジスタ70,80゜90へディジタル
信号として出力する。
On the other hand, the resistance value of the temperature sensing element 21 of the temperature detection circuit 20 changes when the ambient temperature changes, causing the bridge circuit to become unbalanced and generate an output voltage according to the change in the ambient temperature. This output voltage is amplified by a preamplifier circuit 40, converted to a digital signal by an A-D converter 50, and then sent to a logic operation circuit 60.
be taken in. The logic operation circuit 60 controls a zero point control amount to make the zero point corresponding to the digital signal a predetermined voltage, a sensitivity control amount to make the sensitivity a predetermined value, and a nonlinear error to make the nonlinear error zero. The control amount is read out and output as a digital signal to the registers 70, 80 and 90, respectively.

次に、零点制御回路76の動作について説明する。レジ
スタ70の内容が変化し、D−A変換器71の出力電圧
が変化すると、抵抗72と出力点Aからみた圧力検出回
路10の出力抵抗との分圧によって出力点Aの電圧が変
化する。このため、レジスタ70にセットされたデータ
によって、圧力零のときの圧力検出装置の出力OUTが
制御される。ここで、抵抗73〜750回路は、出力O
UTを制御するときの基準電圧を決めるだめのものであ
る。抵抗73の抵抗値は抵抗72のそれと等しくしてあ
り、抵抗74と75との接続点の電圧とD−A変換器7
1の出力電圧とが等しいとき、出力点AとBとは対称な
回路となるため、出力点A、Hの電圧変化が等しくなり
、出力OUTの電圧は変化しない。この結果、出力OU
’l’の零点を制御するときの基準電圧は、抵抗74と
75との接続点の電圧と々る。
Next, the operation of the zero point control circuit 76 will be explained. When the contents of the register 70 change and the output voltage of the DA converter 71 changes, the voltage at the output point A changes due to the voltage division between the resistor 72 and the output resistance of the pressure detection circuit 10 viewed from the output point A. Therefore, the data set in the register 70 controls the output OUT of the pressure detection device when the pressure is zero. Here, the resistor 73 to 750 circuit has an output of O
This is used to determine the reference voltage when controlling the UT. The resistance value of the resistor 73 is made equal to that of the resistor 72, and the voltage at the connection point between the resistors 74 and 75 and the DA converter 7
When the output voltages of output points A and B are equal, the output points A and B form a symmetrical circuit, so the voltage changes at the output points A and H are equal, and the voltage at the output OUT does not change. As a result, the output OU
The reference voltage used to control the zero point of 'l' reaches the voltage at the connection point between resistors 74 and 75.

次に、感度制御回路88の動作について説明する。レジ
スタ80の内容が変化し、D−A変換器81の出力電圧
が変化すると、演算増幅器86の(ト)入力端子の電圧
が変化する。このため、抵抗85とMOS )ランジス
タ87との接続点の電圧が変化し、圧力検出回路10を
構成するブリッジ回路に流れる電流が変化する。このブ
リッジ回路の出力は印加する電圧または電流に比例する
ので、レジスタ80にセットされたデータによって圧力
検出装置の感度が制御される。
Next, the operation of the sensitivity control circuit 88 will be explained. When the contents of the register 80 change and the output voltage of the DA converter 81 changes, the voltage at the (g) input terminal of the operational amplifier 86 changes. Therefore, the voltage at the connection point between the resistor 85 and the MOS transistor 87 changes, and the current flowing through the bridge circuit forming the pressure detection circuit 10 changes. Since the output of this bridge circuit is proportional to the applied voltage or current, the data set in register 80 controls the sensitivity of the pressure sensing device.

次に、非直線性制御回路96の動作について説明する。Next, the operation of the nonlinearity control circuit 96 will be explained.

演算増幅器91、抵抗92〜94、R1−R111、ス
イッチS、−S、は、レジスタ90の内容で増幅率が変
化する反転増幅器を構成している。ここで、出力OUT
の電圧が増加すると、反転増幅器の出力点Cの電圧が減
少し、圧力検出回路10の電流が増加する。これにより
、圧力検出装置の出力電圧の増加とともに感度が上がり
、増幅に非直線性をもたせることができる。このため、
レジスタ90の内容が変わると、反転増幅器の感度が変
わるので、レジスタ90にセットされたデータによって
非直線性が制御される。
The operational amplifier 91, the resistors 92 to 94, R1 to R111, and the switches S and -S constitute an inverting amplifier whose amplification factor changes depending on the contents of the register 90. Here, the output OUT
When the voltage at the output point C of the inverting amplifier increases, the voltage at the output point C of the inverting amplifier decreases, and the current in the pressure detection circuit 10 increases. As a result, the sensitivity increases as the output voltage of the pressure detection device increases, and nonlinearity can be imparted to the amplification. For this reason,
Nonlinearity is controlled by the data set in register 90 since changing the contents of register 90 changes the sensitivity of the inverting amplifier.

上記したように、本発明の実施例によれば、圧力検出回
路10の特性補正量をディジタル的に制御するが、増幅
はアナログ信号を増幅するようにしてあるので、高速応
答が可能である。また、特性補正の制御範囲は圧力検出
回路10の誤差分だけでよいので、ディジタル信号処理
に必要なビット数は少なくてすむ。また、特性補正の制
御は温度変化にのみ搏応答すればよいので、高速応答の
回路が不用となる。
As described above, according to the embodiment of the present invention, the amount of characteristic correction of the pressure detection circuit 10 is digitally controlled, but since the amplification is performed by amplifying an analog signal, high-speed response is possible. Further, since the control range for characteristic correction is limited to the error of the pressure detection circuit 10, the number of bits required for digital signal processing can be reduced. Furthermore, since characteristic correction control only needs to respond to temperature changes, a high-speed response circuit is not required.

第2図は本発明の他の実施例を示す第1図に相当するブ
ロック図で、第1図と同一部分は同じ符号で示し、ここ
では説明を省略する。第1図と異なるところは、感度制
御回路88と非直線性制御回路96の構成である。
FIG. 2 is a block diagram corresponding to FIG. 1 showing another embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals, and the explanation thereof will be omitted here. The difference from FIG. 1 is the configuration of the sensitivity control circuit 88 and the nonlinearity control circuit 96.

感度制御回路88は、レジスタ80の出力データでスイ
ッチP1〜P1を制御して抵抗Z1〜Z、。
The sensitivity control circuit 88 controls the switches P1 to P1 using the output data of the register 80 to control the resistors Z1 to Z.

を切シ換え、MOSトランジスタ87のソースに接続す
る抵抗を切り換えることで圧力検出回路10に流す電流
を変えて感度を制御するようにしてある。
By switching the resistance connected to the source of the MOS transistor 87, the current flowing through the pressure detection circuit 10 is changed to control the sensitivity.

また、非直線性制御回路96は、レジスタ90の出力デ
ータでスイッチS、〜S、を制御し、出力fF′OUT
から感度制御回路88に帰還する帰還抵抗の値を変えて
非直線誤差を制御するようにしてある。
Further, the nonlinearity control circuit 96 controls the switches S, ~S, with the output data of the register 90, and outputs fF'OUT.
The value of the feedback resistor fed back to the sensitivity control circuit 88 is changed to control the non-linear error.

第2図に示す実施例によれば、第1図と同様の効果があ
るほか、非直線性制御回路96の帰還点の電圧が感度制
御回路88の制御量によって変化しないので、非直線性
制御回路96と感度制御口路88との間の相互干渉がな
くなるという新らたな効果がある。
According to the embodiment shown in FIG. 2, in addition to the same effect as in FIG. 1, the voltage at the feedback point of the nonlinearity control circuit 96 does not change depending on the control amount of the sensitivity control circuit 88, so An additional advantage is that there is no mutual interference between circuit 96 and sensitivity control port 88.

なお、上記した各実施例においては、圧力検出回路10
を4つ↓感圧素子からなるブリッジ回路で構成してある
が、ブリッジ回路が1つ以上の感圧素子を含む構成であ
れば、圧力変化を電圧信号に変換することができる。
Note that in each of the embodiments described above, the pressure detection circuit 10
Although the bridge circuit is composed of four pressure-sensitive elements, if the bridge circuit includes one or more pressure-sensitive elements, pressure changes can be converted into voltage signals.

また、温度検出回路20として温度によって抵抗値が変
化する感温素子21を用いたものを示してあるが、PN
ジャンクションの順方向電圧の温度依存性を利用した感
温素子を用いるようにしてもよい。
In addition, although the temperature detection circuit 20 is shown using a temperature sensing element 21 whose resistance value changes depending on the temperature, PN
A temperature sensing element that utilizes the temperature dependence of the forward voltage of a junction may be used.

また、圧力検出回路10を定電流駆動としてあるが、定
電圧駆動であってもよいことはいうまでもない。
Further, although the pressure detection circuit 10 is driven by constant current, it goes without saying that it may be driven by constant voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高速。 As explained above, according to the present invention, high speed.

高精度のA−D、D−A変換器や論理演算回路を用いな
くとも高速応答が可能であり、しかも、センサの特性を
ディジタル的に補正することができ、(1’J) また、ディジタル信号処理に必要なピット数を少なくで
きるという効果がある。
High-speed response is possible without using high-precision A-D, D-A converters or logical operation circuits, and sensor characteristics can be digitally corrected (1'J). This has the effect of reducing the number of pits required for signal processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るセンサの特性補正装置を備えた物
理量検出装置の一実施例を示すブロック図、第2図は本
発明の他の実施例を示す第1図に相当するブロック図で
ある。 10・・・圧力検出回路、20・・・温度検出回路、4
0・・・前置増幅器、50・・・A−D変換器、60・
・・論理演算回路、61・・・記憶回路、70,80.
90・・・レジスタ、76・・・零点制御回路、88・
・・感度制御回路、96・・・非直線性制御回路、10
6・・・増幅回路。
FIG. 1 is a block diagram showing one embodiment of a physical quantity detection device equipped with a sensor characteristic correction device according to the present invention, and FIG. 2 is a block diagram corresponding to FIG. 1 showing another embodiment of the present invention. be. 10...Pressure detection circuit, 20...Temperature detection circuit, 4
0... Preamplifier, 50... A-D converter, 60...
. . . logical operation circuit, 61 . . . memory circuit, 70, 80.
90...Register, 76...Zero point control circuit, 88...
...Sensitivity control circuit, 96...Nonlinearity control circuit, 10
6...Amplification circuit.

Claims (1)

【特許請求の範囲】 1、被測定物理量を電気信号に変換する第1の検出回路
を備えた物理量検出装置において、前記第1の検出回路
に影響を与える前記被測定物理量以外の物理量群を電気
信号に変換する第2の検出回路と、該第2の検出回路の
出力をディジタル信号に変換するA−D変換回路と、該
A−D変換回路からのディジタル信号を入力して、それ
に応じた前記影響を与える物理量群が前記第1の検出回
路の出力特性に与える影響値を補正するのに必要な制御
量に変換して出力する論理演算回路と、該論理演算回路
の出力を入力して前記第1の検出回路の出力特性を補正
する補正手段とからなることを特徴とするセンサの特性
補正装置。 2、前記制御量は、前記第1の検出回路の出力の零点を
所定の電圧にするための零点制御量、感度を所定の値に
するための感度制御量および非直線誤差を零にするため
の非直線誤差制御量であって、前記補正手段は、前記各
制御量に対応したディジタル信号をそれぞれ入力してオ
フセット電圧、増幅率および非直線性を制御するように
構成してある特許請求の範囲第1項記載のセンサの特性
補正装置。 3、前記第1の検出回路は、被測定物理量の変化を抵抗
変化に変換する素子を用いたブリッジ回路からなり、前
記補正手段は、前記第1の検出回路からの出力を増幅す
る増幅回路と、前記論理演算回路からの制御量に対応し
たディジタル信号によって前記ブリッジ回路に印加する
電流または電圧を制御する制御回路と、前記増幅回路の
出力を前記ブリッジ回路に印加する電流または電圧に帰
還する帰還量制御回路とからなる特許請求の範囲第1項
または第2項記載のセンサの特性補正装置。
[Claims] 1. In a physical quantity detection device equipped with a first detection circuit that converts a physical quantity to be measured into an electrical signal, a group of physical quantities other than the physical quantity to be measured that affects the first detection circuit is a second detection circuit that converts the output into a signal; an A-D conversion circuit that converts the output of the second detection circuit into a digital signal; a logic operation circuit that converts and outputs a control amount necessary for correcting the influence value that the group of influencing physical quantities has on the output characteristic of the first detection circuit; and an output of the logic operation circuit that inputs the output. A sensor characteristic correction device comprising: a correction means for correcting an output characteristic of the first detection circuit. 2. The control amount is a zero point control amount to make the zero point of the output of the first detection circuit a predetermined voltage, a sensitivity control amount to make the sensitivity a predetermined value, and a nonlinear error to zero. Non-linear error control amount, wherein the correction means is configured to control offset voltage, amplification factor and non-linearity by inputting digital signals corresponding to each of the control amounts, respectively. A sensor characteristic correction device according to scope 1. 3. The first detection circuit includes a bridge circuit using an element that converts a change in the physical quantity to be measured into a resistance change, and the correction means includes an amplifier circuit that amplifies the output from the first detection circuit. , a control circuit that controls the current or voltage applied to the bridge circuit by a digital signal corresponding to a control amount from the logic operation circuit; and a feedback circuit that feeds back the output of the amplifier circuit to the current or voltage applied to the bridge circuit. A sensor characteristic correction device according to claim 1 or 2, comprising a quantity control circuit.
JP14654884A 1984-07-13 1984-07-13 Characteristics correcting apparatus for sensor Pending JPS6125015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14654884A JPS6125015A (en) 1984-07-13 1984-07-13 Characteristics correcting apparatus for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14654884A JPS6125015A (en) 1984-07-13 1984-07-13 Characteristics correcting apparatus for sensor

Publications (1)

Publication Number Publication Date
JPS6125015A true JPS6125015A (en) 1986-02-03

Family

ID=15410148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14654884A Pending JPS6125015A (en) 1984-07-13 1984-07-13 Characteristics correcting apparatus for sensor

Country Status (1)

Country Link
JP (1) JPS6125015A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258554A (en) * 1975-11-10 1977-05-14 Mitsubishi Heavy Ind Ltd Thermocouple emf-temperature signal converter
JPS53149353A (en) * 1977-06-02 1978-12-26 Toshiba Corp Pressure transmitter
JPS5529763A (en) * 1978-08-24 1980-03-03 Chino Works Ltd Linearizer
JPS57201996A (en) * 1981-06-08 1982-12-10 Anritsu Electric Co Ltd Gain drift correction circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258554A (en) * 1975-11-10 1977-05-14 Mitsubishi Heavy Ind Ltd Thermocouple emf-temperature signal converter
JPS53149353A (en) * 1977-06-02 1978-12-26 Toshiba Corp Pressure transmitter
JPS5529763A (en) * 1978-08-24 1980-03-03 Chino Works Ltd Linearizer
JPS57201996A (en) * 1981-06-08 1982-12-10 Anritsu Electric Co Ltd Gain drift correction circuit

Similar Documents

Publication Publication Date Title
US4315254A (en) Self-compensating A-D converter
US6198296B1 (en) Bridge sensor linearization circuit and method
JPH03261869A (en) Apparatus for correcting output signal of hall element
US4201088A (en) Differential measuring system
JP4617545B2 (en) Sensor abnormality detection circuit and physical quantity detection device
CN114383773B (en) Nonlinear correction system for bridge sensor
CN114577378B (en) Non-ideal factor correction system for bridge sensor
JPS6125015A (en) Characteristics correcting apparatus for sensor
JP2863758B2 (en) Input offset voltage compensator
JP3352006B2 (en) Sensor temperature compensation circuit
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPH11118617A (en) Temperature controller
JPS5942249B2 (en) Radiation thermometer compensation circuit
JPH04155233A (en) Correction of temperature characteristic for pressure sensor
JPH06294664A (en) Nonlinear circuit
JPS61209331A (en) Input apparatus of temperature measuring resistor
JP2594722B2 (en) Analog input method
JPH09105680A (en) Temperature measuring circuit
JP2000241202A (en) Sensor device
JPH07139985A (en) Thermal air flow measuring instrument
JPH0831751B2 (en) Amplifier
JP2000146620A (en) Sensor device
KR100335136B1 (en) Apparatus of signal transformation
JPH0527828B2 (en)
CN118190228A (en) Temperature compensation hardware circuit of water pressure sensor and control method thereof