JPS6122651A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6122651A
JPS6122651A JP59135444A JP13544484A JPS6122651A JP S6122651 A JPS6122651 A JP S6122651A JP 59135444 A JP59135444 A JP 59135444A JP 13544484 A JP13544484 A JP 13544484A JP S6122651 A JPS6122651 A JP S6122651A
Authority
JP
Japan
Prior art keywords
layer
wiring
silicon
opening
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59135444A
Other languages
Japanese (ja)
Other versions
JPH0260058B2 (en
Inventor
Yoshimi Shiotani
喜美 塩谷
Yasushi Ooyama
泰 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59135444A priority Critical patent/JPS6122651A/en
Priority to DE8585303878T priority patent/DE3580192D1/en
Priority to EP85303878A priority patent/EP0164976B1/en
Priority to KR1019850003833A priority patent/KR900008387B1/en
Publication of JPS6122651A publication Critical patent/JPS6122651A/en
Priority to US07/166,832 priority patent/US4906593A/en
Publication of JPH0260058B2 publication Critical patent/JPH0260058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the step coating from deteriorating by a method wherein an Si compound layer is buried in the contact hole of the interlayer insulating layer using a sputtering method and so forth, and after that, the Si compound layer is converted to a tungsten layer. CONSTITUTION:An Al film is coated on a semiconductor substrate 1 as the first wiring layer 2, and moreover, a PSG film 3 is made to grow thereon as the insulating layer 3 using a CVD method. Then, a contact hole is formed and an Si compound layer 7 is formed in this hole. A tungsten-silicide layer can be formed instead of this layer 7. The part of the layer 7 in the opening part is left and the layer 7 on the upper part of the layer 3 is removed. The layer 7 is converted to a tungsten layer 8. Then, an Al film is coated thereon as the second wiring layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係り、多層配線の層間
接続方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for connecting layers of multilayer wiring.

半導体装置の高集積化、高密度化に伴い多層配線構造が
用いられるようになり、この場合層間接続は層間絶縁層
にコンタクト孔を開けて上下の配線層を接続することに
より行っている。
With the increasing integration and density of semiconductor devices, multilayer wiring structures have come into use, and in this case, interlayer connections are made by forming contact holes in interlayer insulating layers to connect upper and lower wiring layers.

また半導体装置を構成する素子は微細化され、コンタク
トホールの形状は開口幅に比し深さが大きくなり、配線
層被着に際し段差被覆が悪くなり半導体装置の信頼性を
著しく阻害する。
Furthermore, as elements constituting semiconductor devices become smaller, the depth of contact holes becomes larger than the width of the opening, and step coverage becomes poor when wiring layers are deposited, which significantly impairs the reliability of semiconductor devices.

従って上下の配線層の接続を完全に行って、しかも基板
表面を平坦化する方法が種々試みられている。
Therefore, various methods have been attempted to completely connect the upper and lower wiring layers and to flatten the substrate surface.

〔従来の技術〕[Conventional technology]

第2図は従来例により、第1の配線層上の絶縁層に開口
されたコンタクトホールに第2の配線層を被着した状態
を示す断面図である。
FIG. 2 is a sectional view showing a state in which a second wiring layer is applied to a contact hole opened in an insulating layer on a first wiring layer according to a conventional example.

第2図(a)において、1は半導体基板で珪素基板を用
い、基板上に被着された絶縁層を介して第1の配線層2
としてアルミニウム(A1)を被着し、さらにその上に
絶縁層3として燐珪酸ガラス(PSG)を厚さ約1μm
成長し、ここに開口されたコンタクト孔を覆って、第2
の配線層4として八1を被着した状態を示す。
In FIG. 2(a), 1 is a semiconductor substrate using a silicon substrate, and a first wiring layer 2 is connected through an insulating layer deposited on the substrate.
Aluminum (A1) is deposited on top of this as an insulating layer 3, and phosphosilicate glass (PSG) is deposited to a thickness of approximately 1 μm as an insulating layer 3.
A second layer grows and covers the contact hole opened here.
81 is shown as the wiring layer 4 of FIG.

第2図fblにおいて、第2の配線層4の被着時に、段
差部に掻く僅かの庇カ月詩的にでも生ずると、庇は第2
の配線層4の被着の進行に従って大きく成長して、段差
部に深い亀裂を生ずるようになる。
In FIG. 2 fbl, when the second wiring layer 4 is deposited, if even a slight eave is scratched on the stepped portion, the eaves will be removed from the second wiring layer 4.
As the deposition of the wiring layer 4 progresses, it grows to a large extent, causing deep cracks at the stepped portions.

これを防止するため絶縁層3をメルトフローして開口部
の肩をなだらかにしているが、開口幅が小さくなった場
合は段差被覆が悪くなり、信頼性を劣化させる。
In order to prevent this, the insulating layer 3 is melt-flowed to make the shoulder of the opening smooth, but if the width of the opening becomes small, the step coverage becomes poor and the reliability deteriorates.

第3図は他の従来例による層間接続の状態を示す断面図
である。
FIG. 3 is a sectional view showing the state of interlayer connections according to another conventional example.

図において、第1の配線層2の上に被着した絶縁層3の
開口部の底に、モリブデン・シリサイド(MoS i2
)層5を被着し、この上にタングステン(讐)を選択成
長させてコンタクト孔を埋める。この場合にの選択成長
は成長速度が遅く、約1μmの孔を埋めることば極めて
賄しい。
In the figure, molybdenum silicide (MoS i2
) layer 5 is deposited on which tungsten is selectively grown to fill the contact hole. In this case, selective growth has a slow growth rate, and it is extremely convenient to fill holes of about 1 μm.

〔発明が解決しようとする問題点〕 半導体装置の微細化に伴い、第1の配線層上に被着され
た眉間絶縁層に形成されたコンタクト孔の形状が深さに
比し開口幅が小さくなると、第2の配、線層被着に際し
段差被覆が悪くなり半導体装置の信頼性を著しく阻害す
る。
[Problems to be Solved by the Invention] With the miniaturization of semiconductor devices, the shape of the contact hole formed in the glabella insulating layer deposited on the first wiring layer has an opening width smaller than the depth. In this case, the step coverage becomes poor when the second interconnection layer is deposited, which significantly impairs the reliability of the semiconductor device.

そのため前記コンタクト孔を低抵抗層で埋め込む方法が
試みられているが、生産工程に適用して効果的な方法が
なかった。
For this reason, attempts have been made to fill the contact hole with a low resistance layer, but there has been no effective method that can be applied to the production process.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、基板上に被着された第1の配線層
上に絶縁層を被着し、該絶縁層に開口部を設けて該第1
の配線層を表出する工程と、該開口部を覆って珪素層も
しくは珪素化合物層を被着する工程と、該珪素層もしく
は珪素化合物層の開口部内の部分を残して該絶縁層上の
部分を除去する工程と、該開口部内に残った該珪素層も
しくは珪素化合物層をタングステン層に変換し、該タン
グステン層を覆って第2の配線層を被着する工程を有す
る本発明による半導体装置の製造方法により達成される
The above problem can be solved by depositing an insulating layer on the first wiring layer deposited on the substrate, and providing an opening in the insulating layer.
a step of exposing the wiring layer, a step of depositing a silicon layer or a silicon compound layer covering the opening, and a step of exposing a portion of the silicon layer or silicon compound layer on the insulating layer, leaving a portion inside the opening. and converting the silicon layer or silicon compound layer remaining in the opening into a tungsten layer, and depositing a second wiring layer covering the tungsten layer. This is achieved by a manufacturing method.

〔作用〕[Effect]

本発明によれば、層間絶縁層のコンタクト孔内にCVD
やスパッタ等を用いて極めて容易に珪素(Si)やSi
化合物を埋め込むことができ、埋め込み後−に変換して
低抵抗化することにより、接触抵抗を増大させることな
く、段着被覆を改良して信頼性を向上することができる
According to the present invention, CVD is formed in the contact hole of the interlayer insulating layer.
Silicon (Si) and Si
By embedding a compound and converting it into a low resistance after embedding, it is possible to improve the stepped coating and improve the reliability without increasing the contact resistance.

Wの変換は六弗化タングステン(WFJ を用いて、つ
ぎの化学反応によって行う。
The conversion of W is carried out by the following chemical reaction using tungsten hexafluoride (WFJ).

Wh+5i−41N−5iF4 〔実施例〕 第1図は本発明による層間接続の状態を工程順に示す断
面図である。
Wh+5i-41N-5iF4 [Example] FIG. 1 is a sectional view showing the state of interlayer connection according to the present invention in the order of steps.

第1図(alにおいて、1は半導体基板で珪素基板を用
い、基板上に被着された絶縁層を介して第1の配線層2
として厚さ約1μmのAIを被着し、さらにその上に気
相成長(CV D)法を用いて絶縁層3としてPSGを
厚さ約1μm成長する。
In FIG. 1 (al), 1 is a semiconductor substrate, and a silicon substrate is used, and a first wiring layer 2 is connected via an insulating layer deposited on the substrate.
As an insulating layer 3, AI is deposited to a thickness of about 1 μm, and then PSG is grown to a thickness of about 1 μm as an insulating layer 3 using a vapor phase epitaxy (CVD) method.

つぎに通常のりソゲラフイエ程を用いてバクーニングし
て、ドライエツチングによりコンタクト孔を形成する。
Next, a contact hole is formed by dry etching and vacuuming using a normal glue sockeye process.

第1図(blにおいて、コンタクトをとるために前もっ
て三弗化窒素(NF2)のプラズマエツチングにより第
1の配線層2の表面のアルミナ栃除去した後、珪素層も
しくは珪素化合物層7として、−コンタクト孔を覆って
基板表面が平坦になるように、四水素化珪素(S i 
H4)のプラズマCVDにより多結晶珪素層を成長する
In FIG. 1 (bl), in order to make a contact, the alumina on the surface of the first wiring layer 2 is removed by nitrogen trifluoride (NF2) plasma etching in advance, and then a silicon layer or a silicon compound layer 7 is formed as a -contact. Silicon tetrahydride (S i
A polycrystalline silicon layer is grown by plasma CVD (H4).

(スパッタにより多結晶珪素層を成長する場合も、前も
ってスバ、ツタエツチングを行って第1の配線層2の表
面のアルミナを除去する。)成長条件は周波数13.5
6M)lzのRF電力を30會加え、I Torrに排
気して5it(nを10cc/min流して、100〜
200℃で約1μm成長する。
(Even when growing a polycrystalline silicon layer by sputtering, alumina on the surface of the first wiring layer 2 is removed by performing sputter and vine etching in advance.) The growth conditions are a frequency of 13.5
Apply RF power of 6M)lz for 30 hours, exhaust to I Torr, and flow 5it(n at 10cc/min, 100~
It grows to about 1 μm at 200°C.

この工程は多結晶珪素層の代わりに、珪素化合物として
タングステン・シリサイド(WSi2)層を成長しても
よい。
In this step, a tungsten silicide (WSi2) layer may be grown as a silicon compound instead of the polycrystalline silicon layer.

この成長は減圧CVDにより、QJTorrに排気して
WF6 とS i Hgをに60に混合したガスを用い
て、300〜350℃で行う。
This growth is performed by low pressure CVD at 300 to 350° C. using a gas in which WF6 and Si Hg are mixed at 60% by evacuation to QJTorr.

第1図(C)において、珪素層もしくは珪素化合物層7
の開口部内の部分を残して、絶縁層3上の部分を除去す
る。
In FIG. 1(C), a silicon layer or a silicon compound layer 7
The portion on the insulating layer 3 is removed, leaving the portion inside the opening.

この除去は周波数13.56MHzのRF電力を200
會加え、0.3Torrに排気して四弗化炭素(CF4
)と酸素(0□)を10:1に混合したガスを用いてプ
ラズマ・エツチングすることにより行う。
This removal reduces the RF power at a frequency of 13.56 MHz by 200 MHz.
Add carbon tetrafluoride (CF4) and exhaust to 0.3 Torr.
) and oxygen (0□) at a ratio of 10:1.

この場合Siまたは−SixとPSGとのエツチングの
選択比は十分とることができるが、PSG3と珪素層も
しくは珪素化合物N7の間にレジストを介在させてリフ
トオフにより、PSGa上の珪素層もしくは珪素化合物
層7を容易に除去することもできる。
In this case, it is possible to obtain a sufficient etching selectivity between Si or -Six and PSG. 7 can also be easily removed.

第1図(d+において、開口部に残った珪素層もしくは
珪素化合物層7を一層8に変換する。
In FIG. 1 (d+), the silicon layer or silicon compound layer 7 remaining in the opening is converted into a single layer 8.

この変換は0.2Torrに排気して、WFbと希釈ガ
スとして窒素(N2)を1=80に混合したガスを用い
て行う。
This conversion is performed by evacuation to 0.2 Torr and using a gas mixture of WFb and nitrogen (N2) as a diluent gas at a ratio of 1=80.

希釈ガスとしてN2の他にヘリウム(lie)、アルゴ
ン(^r)等を用いてもよい。
In addition to N2, helium (lie), argon (^r), or the like may be used as the diluent gas.

つぎに変換された一層8を覆って第2の配線層4として
厚さ約1μmのAIを被着する。
Next, AI having a thickness of about 1 μm is deposited as a second wiring layer 4 covering the converted layer 8.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、半導体装置
の微細化に伴い、第1の配線層上に被着された層間絶縁
層に形成されたコンタクト孔の形状が深さに比し開口幅
が小さくなっても、インタフi・孔内に低抵抗のWを埋
め込−むことにより、配線抵抗を増大することなく、か
つ第2の配線層被着に際しての段差被覆が良く半導体装
置の信頼性を向」二することができる。
As explained in detail above, according to the present invention, as semiconductor devices become smaller, the shape of the contact hole formed in the interlayer insulating layer deposited on the first wiring layer becomes smaller than the depth. Even if the width becomes smaller, by embedding low-resistance W in the interface i/hole, the wiring resistance will not increase and the step coverage when depositing the second wiring layer will be good, making it possible to improve the performance of the semiconductor device. Reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Ca+乃至(d+は本発明による眉間接続の状態
を工程順に示す断面図、 第2図[a)、 [blは従来例により、第1の配線層
上の絶縁層に開口されたコンタクトホールに第2の配線
層を被着した状態を示す断面図、 第3図は他の従来例による眉間接続の状態を示す断面図
である。 図において、 1は半導体基板、    2は第1の配線層、3は配線
層、      4は第2の配線層、5はMo5i2層
、     6は一層、7はSiまたはSi誓2層、 
 8は一層を示す。  −
Fig. 1 Ca+ to (d+ are cross-sectional views showing the state of the glabella connection according to the present invention in the order of steps; Fig. 2 [a) and [bl are contacts opened in the insulating layer on the first wiring layer according to the conventional example. FIG. 3 is a cross-sectional view showing a state in which the second wiring layer is applied to the hole, and FIG. 3 is a cross-sectional view showing a state of glabella connection according to another conventional example. In the figure, 1 is a semiconductor substrate, 2 is a first wiring layer, 3 is a wiring layer, 4 is a second wiring layer, 5 is a Mo5i layer, 6 is a single layer, 7 is a Si or Si layer,
8 indicates one layer. −

Claims (1)

【特許請求の範囲】[Claims] 基板上に被着された第1の配線層上に絶縁層を被着し、
該絶縁層に開口部を設けて該第1の配線層を表出する工
程と、該開口部を覆って珪素層もしくは珪素化合物層を
被着する工程と、該珪素層もしくは珪素化合物層の開口
部内の部分を残して該絶縁層上の部分を除去する工程と
、該開口部内に残った該珪素層もしくは珪素化合物層を
タングステン層に変換し、該タングステン層を覆って第
2の配線層を被着する工程を有することを特徴とする半
導体装置の製造方法。
depositing an insulating layer on the first wiring layer deposited on the substrate;
a step of providing an opening in the insulating layer to expose the first wiring layer; a step of covering the opening with a silicon layer or a silicon compound layer; and an opening in the silicon layer or silicon compound layer. a step of removing a portion on the insulating layer while leaving a portion inside the opening, converting the silicon layer or silicon compound layer remaining in the opening into a tungsten layer, and forming a second wiring layer covering the tungsten layer; 1. A method of manufacturing a semiconductor device, comprising a step of adhering.
JP59135444A 1984-06-02 1984-06-29 Manufacture of semiconductor device Granted JPS6122651A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59135444A JPS6122651A (en) 1984-06-29 1984-06-29 Manufacture of semiconductor device
DE8585303878T DE3580192D1 (en) 1984-06-02 1985-05-31 METHOD FOR PRODUCING A CONTACT FOR A SEMICONDUCTOR ARRANGEMENT.
EP85303878A EP0164976B1 (en) 1984-06-02 1985-05-31 Method of producing a contact for a semiconductor device
KR1019850003833A KR900008387B1 (en) 1984-06-02 1985-06-01 Method of producing a contact for a semiconductor device
US07/166,832 US4906593A (en) 1984-06-02 1988-03-04 Method of producing a contact plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135444A JPS6122651A (en) 1984-06-29 1984-06-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6122651A true JPS6122651A (en) 1986-01-31
JPH0260058B2 JPH0260058B2 (en) 1990-12-14

Family

ID=15151860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135444A Granted JPS6122651A (en) 1984-06-02 1984-06-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6122651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328970A2 (en) * 1988-02-18 1989-08-23 International Business Machines Corporation Method of depositing tungsten on silicon in a non-self-limiting CVD process and semi-conductor device manufactured thereby
JPH04152631A (en) * 1990-10-17 1992-05-26 Mitsubishi Electric Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328970A2 (en) * 1988-02-18 1989-08-23 International Business Machines Corporation Method of depositing tungsten on silicon in a non-self-limiting CVD process and semi-conductor device manufactured thereby
JPH04152631A (en) * 1990-10-17 1992-05-26 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0260058B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
JP3179212B2 (en) Method for manufacturing semiconductor device
JP2978748B2 (en) Method for manufacturing semiconductor device
US5607880A (en) Method of fabricating multilevel interconnections in a semiconductor integrated circuit
EP0164976B1 (en) Method of producing a contact for a semiconductor device
EP0740336B1 (en) Method for fabricating semiconductor device having buried contact structure
JP2000306997A (en) Semiconductor device having barrier metal layer and fabrication thereof
JPH08288390A (en) Semiconductor device and manufacture thereof
JPS6122651A (en) Manufacture of semiconductor device
JPS6390838A (en) Manufacture of electrical mutual connection
JPS63147347A (en) Semiconductor device
JP2000058643A (en) Formation method for plug
JP2616134B2 (en) SOI transistor stacked semiconductor device and method of manufacturing the same
JPS6355932A (en) Manufacture of semiconductor device
JPH053170A (en) Forming method of blanket tungsten plug
JP2000223477A (en) Fabrication of semiconductor device
JPS6286818A (en) Manufacture of semiconductor device
JPH0529316A (en) Manufacture of semiconductor device
JPH01214137A (en) Manufacture of integrated circuit
JPH0529478A (en) Manufacture of semiconductor device
JPH0661228A (en) Semiconductor device and manufacture thereof
JPH03191520A (en) Vapor deposition process
JPH05129227A (en) Manufacture of semiconductor device
JPH03280545A (en) Wiring forming method of semiconductor device
JP2808998B2 (en) Method for manufacturing semiconductor device
KR100332131B1 (en) Method for forming metal film in semiconductor device