JPS61199557A - Device for controlling flow rate of molten steel in mold for continuous casting - Google Patents

Device for controlling flow rate of molten steel in mold for continuous casting

Info

Publication number
JPS61199557A
JPS61199557A JP3934385A JP3934385A JPS61199557A JP S61199557 A JPS61199557 A JP S61199557A JP 3934385 A JP3934385 A JP 3934385A JP 3934385 A JP3934385 A JP 3934385A JP S61199557 A JPS61199557 A JP S61199557A
Authority
JP
Japan
Prior art keywords
mold
molten steel
coil
flow
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3934385A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Hideaki Mizukami
秀昭 水上
Akiya Ozeki
尾関 昭矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3934385A priority Critical patent/JPS61199557A/en
Publication of JPS61199557A publication Critical patent/JPS61199557A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To brake the molten steel flow over the entire region in a mold for continuous casting and to obtain an ingot having excellent quality by supplying DC current to a coil which is disposed on the outside of the mold in such a position where the axial center thereof is perpendicular. CONSTITUTION:A conductive pipe 31 is wound around the mold 21 by which the coil 30 having the perpendicular axial direction is formed on the outside of the mold 21. A DC power source 32 is connected to the coil 30 and electricity is conducted from the power source 32 to the coil 30. The discharge flow of the molten steel from a discharge port 25 of an immersion nozzle 24 flows diagonally downward in the device constituted in the above-mentioned manner. The speed components in the horizontal direction out of the speed components in the horizontal direction and vertical direction of the molten steel flow receives the influence of a magnetic field and the braking force is horizontally applied on the molten steel flow. The braking force can be controlled by changing the intensity of the magnetic field. The non-metallic inclusions in the ingot are decreased in the above-mentioned manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続鋳造用鋳型内において浸漬ノズル等か
ら吐出される溶鋼の流速を制御することができる連続鋳
造の鋳型内溶鋼流速制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an in-mold molten steel flow rate control device for continuous casting, which is capable of controlling the flow rate of molten steel discharged from a submerged nozzle or the like in a continuous casting mold. .

〔従来の技術及びその問題点〕[Conventional technology and its problems]

鋼の連続鋳造においては、第4図に示すように)タンデ
ィッシSl内の溶鋼が浸漬ノズル2を介して鋳型3内に
注入される。鋳型3は各1対の短辺壁3&及び長辺壁3
bを有する角筒状をなし、溶鋼は鋳型3によシ冷却され
凝固殻を形成する。この内部に未凝固溶鋼を有する鋳片
は鋳型3から連続的に引き抜かれ、二次冷却帯で更に冷
却を受ける。
In continuous casting of steel, molten steel in a tundish S1 is injected into a mold 3 through a submerged nozzle 2 (as shown in FIG. 4). The mold 3 has a pair of short side walls 3 & and long side walls 3.
The molten steel is cooled by the mold 3 to form a solidified shell. The slab containing unsolidified molten steel inside is continuously pulled out from the mold 3 and further cooled in a secondary cooling zone.

この場合に、溶鋼は浸漬ノズル2の吐出口5から図中矢
印にて示すように流出し、短辺壁3aに衝突して下降流
4aとこの下降流から分岐する分流4bとが鋳型3内に
形成される。下降流41は、図示の如く、鋳型内に深く
侵入する。
In this case, the molten steel flows out from the discharge port 5 of the immersion nozzle 2 as shown by the arrow in the figure, collides with the short side wall 3a, and forms a downward flow 4a and a branch flow 4b branching from this downward flow into the mold 3. is formed. The downward flow 41 penetrates deeply into the mold, as shown.

而して、連続鋳造の鋳造速度が速くなると、単位時間当
シの溶鋼注入量が多くなシ、吐出口5の径が一定であれ
ば溶鋼の吐出流速が速くなる。そうすると、短辺壁3a
に衝突する高温の溶鋼流が高速且つ大量になり、凝固殻
の再溶解が生じて結局この溶鋼流が衝突する部分の凝固
殻の成長が遅れる。このようにして部分的に凝固殻が薄
くなると冷却の不均一が発生し、この冷却不拘−又は凝
固時の体積収縮によシ生ずる熱応力等に起因して凝固殻
が破断し、ブレークアウトという重大事故が発生する虞
れがある。
As the casting speed of continuous casting increases, the amount of molten steel injected per unit time increases, and if the diameter of the discharge port 5 is constant, the discharge flow rate of molten steel increases. Then, the short side wall 3a
The high-temperature molten steel flow that collides with the steel flows at high speed and in large quantities, causing re-melting of the solidified shell, which ultimately retards the growth of the solidified shell in the area where the molten steel flow collides. When the solidified shell becomes partially thin in this way, non-uniform cooling occurs, and the solidified shell ruptures due to thermal stress caused by this cooling inconsistency or volumetric contraction during solidification, which is called a breakout. There is a risk of a serious accident occurring.

また、浸漬ノズルから吐出する溶鋼下降流4aが鋳型3
内に深く侵入すると、溶鋼中に含有される非金属介在物
の浮上分離が困難になる。
Further, the downward flow 4a of molten steel discharged from the immersion nozzle flows into the mold 3.
If the nonmetallic inclusions penetrate deeply into the molten steel, it becomes difficult to float and separate the nonmetallic inclusions contained in the molten steel.

その結果、非金属介在物が鋳片内に捕捉されて鋳片の品
質が劣化する。
As a result, non-metallic inclusions are trapped within the slab, deteriorating the quality of the slab.

このような問題点を解消せんとする技術として、移動磁
界発生装置(特開昭56−160862号)又は静磁場
発生装置(Iron & 5teel Eng。
Techniques that attempt to solve these problems include a moving magnetic field generator (Japanese Patent Laid-Open No. 160862/1986) or a static magnetic field generator (Iron & 5teel Eng).

May 1984.P41)を使用するものが公知であ
る。
May 1984. P41) is known.

前者においては、第4図に破線にて示すように、長辺壁
3bの外側に、溶鋼吐出流に沿う移動磁界を溶鋼中に発
生させる移動磁界発生装置10を設置する。これによシ
、溶鋼流に制動力を付与することができるが、このよう
な磁界による制動力が及ぶ領域は鋳型の壁近傍であシ、
内部の溶鋼流には制動力を付与しにくい。鋳型内部の溶
鋼流にも十分な制動力を付与せんとすると、装置のパワ
ーを大きくする必要がある。
In the former case, as shown by the broken line in FIG. 4, a moving magnetic field generating device 10 is installed outside the long side wall 3b to generate a moving magnetic field in the molten steel along the discharge flow of the molten steel. With this, it is possible to apply a braking force to the molten steel flow, but the area where the braking force due to such a magnetic field is applied is near the wall of the mold.
It is difficult to apply braking force to the internal molten steel flow. In order to apply sufficient braking force to the molten steel flow inside the mold, it is necessary to increase the power of the device.

後者においては、第5図に鋳型近傍の平面図を示すよう
に、鋳型11の長辺壁12に静磁場発生装置13を設置
する。しかし、この技術においても、溶鋼の吐出流の流
速を制御することができる領域は、静磁場発生装置13
の近傍にすぎず、前者と同様の欠点を有している。
In the latter case, as shown in a plan view near the mold in FIG. 5, a static magnetic field generator 13 is installed on the long side wall 12 of the mold 11. However, even in this technology, the area where the flow velocity of the discharge flow of molten steel can be controlled is the static magnetic field generator 13.
It is only close to the former and has the same drawbacks as the former.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明はかかる事情に鑑みてなされたものでありて、
鋳型内の溶鋼吐出流を高効率で制動することができ、流
速を低下させて、健全な凝固殻の形成と非金属介在物の
浮上促進とを図ることができる連続鋳造の鋳型内溶鋼流
速制御装置を提供することを目的とする。
This invention was made in view of such circumstances, and
Control of the flow rate of molten steel in the mold for continuous casting, which can brake the discharge flow of molten steel in the mold with high efficiency, reduce the flow velocity, and promote the formation of a healthy solidified shell and the floating of non-metallic inclusions. The purpose is to provide equipment.

この発明に係る連続鋳造の鋳型内溶鋼流速制御装置は、
連続鋳造の鋳型の外側にてこの鋳型を取り囲み、そのコ
イル軸心が実質的に鉛直になるように設置されたコイル
と、とのコイルに直流電流を供給して鋳型内情鋼に対し
実質的に鉛直方向の磁場を形成する供給装置とを有する
ことを特徴とする。
The in-mold molten steel flow rate control device for continuous casting according to the present invention includes:
A coil is installed on the outside of a continuous casting mold so that the axis of the coil is substantially vertical, and a direct current is supplied to the coil to surround the mold so that the steel inside the mold becomes substantially vertical. It is characterized by having a supply device that forms a vertical magnetic field.

〔実施例〕〔Example〕

以下、この発明の実施例について、第1図を参照して具
体的に説明する。タンディツシュ(図示せず)内の溶鋼
は、浸漬ノズル24を介して鋳型21内に注入される。
Embodiments of the present invention will be specifically described below with reference to FIG. Molten steel in a tundish (not shown) is injected into the mold 21 through a submerged nozzle 24.

鋳型21は各1対の短辺壁22及び長辺壁23を有する
角筒状をなす。溶鋼は鋳型21によυ冷却されて凝固殻
が形成され、内部に未凝固溶鋼を有する鋳片26は鋳型
21から引き抜かれて二次冷却帯で更に冷却を受け、完
全に凝固する。
The mold 21 has a rectangular tube shape having a pair of short side walls 22 and a long side wall 23. The molten steel is cooled by the mold 21 to form a solidified shell, and the slab 26 containing unsolidified molten steel inside is pulled out of the mold 21 and further cooled in a secondary cooling zone, where it is completely solidified.

鋳型21には通電管31が巻回されておυ、これにより
、鋳型21の外側にコイル軸方向を実質的に鉛直にした
コイル30が形成されている。コイル30の上下端の位
置は浸漬ノズル24の吐出口25に対応する位置を中心
として、上下方向にいずれも約15011だけ離隔した
位置にあシ、従って、コイル30の高さは約300關で
ある。通電管31は導電性材料でつくられておシ、内部
に冷却水を通流させて冷却するようになっている。
A current-carrying tube 31 is wound around the mold 21, thereby forming a coil 30 with the coil axis substantially vertical on the outside of the mold 21. The upper and lower ends of the coil 30 are located at a distance of about 15,011 cm in the vertical direction from the center corresponding to the discharge port 25 of the immersion nozzle 24, and therefore the height of the coil 30 is about 300 cm. be. The current-carrying pipe 31 is made of a conductive material and is cooled by allowing cooling water to flow inside.

コイル30には直流電源32が連結されておシ、直流電
源32によりコイル30に直流電流が通電されるように
なっている。
A DC power supply 32 is connected to the coil 30, and a DC current is applied to the coil 30 by the DC power supply 32.

このように構成される装置においては、浸漬ノズル24
の吐出口25から溶鋼吐出流が鋳型21の短辺壁22に
向かって斜め下方に流れる。
In the device configured in this way, the immersion nozzle 24
A discharge flow of molten steel flows obliquely downward toward the short side wall 22 of the mold 21 from the discharge port 25 of the mold 21 .

溶鋼吐出流は短辺壁22側の凝固殻に衝突して下降流と
分流とに分岐する。一方、直流電源32からコイル30
に直流電流を給電すると、鋳型21内の溶鋼にコイルの
軸方向に延びる実質的に鉛直方向の直流磁場Hが形成さ
れる。この磁場Hは、コイル30に鋳型上方からみて時
計回シに直流電流を通電すると、鉛直下方に向い、逆方
向に通電すると、鉛直上方に向う。
The molten steel discharge flow collides with the solidified shell on the short side wall 22 side and branches into a downward flow and a branch flow. On the other hand, from the DC power supply 32 to the coil 30
When a direct current is supplied to the mold 21, a substantially vertical direct current magnetic field H extending in the axial direction of the coil is formed in the molten steel in the mold 21. This magnetic field H is directed vertically downward when a direct current is applied to the coil 30 in a clockwise direction when viewed from above the mold, and is directed vertically upward when the current is applied in the opposite direction.

吐出口25から吐出される溶鋼流は吐出口25から短辺
壁22に向い斜め下方に進行するから、溶鋼流速は水平
方向の速度成分vHと鉛直方向の速度成分vvとを有す
る。一方、このような溶鋼流に対して、コイル30によ
シ形成される鉛直方向に延びる磁場Hが作用する。そう
すると、水平方向の速度成分vHと磁場Hとは直交する
から、この速度vHに比例する電圧が溶鋼流に誘起され
、溶鋼中に速度vH及び磁場Hに直交する方向に電流が
流れる。これにより、溶鋼流は速度vHの反対方向に電
磁力を受け、従って、溶鋼流には水平方向に制動力が作
用する。この制動力は、コイル30への通電電流を調整
して磁場Hの強さを調節することによシ、制御すること
ができるから、連続鋳造の鋳造速度及び使用する浸漬ノ
ズルの吐出口径等に応じて溶鋼流に付与する制動力を制
御することによシ、操業上及び鋳片品質上最適の溶鋼流
軌跡を鋳型内に形成することができる。
Since the molten steel flow discharged from the discharge port 25 advances diagonally downward from the discharge port 25 toward the short side wall 22, the molten steel flow velocity has a horizontal velocity component vH and a vertical velocity component vv. On the other hand, a vertically extending magnetic field H formed by the coil 30 acts on such a molten steel flow. Then, since the horizontal velocity component vH and the magnetic field H are perpendicular to each other, a voltage proportional to the velocity vH is induced in the molten steel flow, and a current flows in the molten steel in a direction perpendicular to the velocity vH and the magnetic field H. As a result, the molten steel flow receives an electromagnetic force in the direction opposite to the velocity vH, and therefore, a braking force acts on the molten steel flow in the horizontal direction. This braking force can be controlled by adjusting the current applied to the coil 30 and the strength of the magnetic field H, so it can be controlled by adjusting the casting speed of continuous casting and the diameter of the outlet of the submerged nozzle used. By controlling the braking force applied to the molten steel flow accordingly, it is possible to form a molten steel flow trajectory in the mold that is optimal in terms of operation and slab quality.

次に、この発明によシ鋳型内溶鋼の流速を制御し、鋳片
品質及び凝固殻厚を測定した結果について説明する。
Next, the results of measuring the slab quality and solidified shell thickness by controlling the flow rate of molten steel in the mold according to the present invention will be explained.

曲率が10.5 mである湾曲型スラブ連続鋳造機によ
り、250fl厚・1500mg幅のスラブを鋳造速度
1.8 m7分で鋳造した。鋳造鋼種は薄板用の低次ア
ルミキルド鋼であシ、鋳造後に鋳片のサルファープリン
ト試験を行って表層部の介在物指数を求めた。また、鋳
造時に、鋳型内溶鋼中に硫黄を添加し、鋳造後に鋳片を
サルファープリントして鋳型内における鋳片の短辺側の
凝固殻厚みを測定した。これらの試験は、この発明によ
シ溶鋼流の流速を制御した場合の外、溶鋼流の流速制御
を一切行わなかった場合(ケースA)、第4図に破線に
て示す移動磁場により流速制御した場合(ケースB)、
及び第5図に示す静磁場によシ流速制御した場合(ケー
スC)についても、比較のために行った。なお、本発明
、ケースB及びケースCについては、いずれも電気容量
が120kWである。
A slab with a thickness of 250 fl and a width of 1500 mg was cast at a casting speed of 1.8 m and 7 minutes using a curved continuous slab casting machine with a curvature of 10.5 m. The cast steel was a low-order aluminum killed steel for thin plates, and after casting, the slab was subjected to a sulfur print test to determine the inclusion index in the surface layer. Furthermore, during casting, sulfur was added to the molten steel in the mold, and after casting, the slab was sulfur printed and the thickness of the solidified shell on the short side of the slab in the mold was measured. These tests were conducted in cases where the flow velocity of the molten steel flow was controlled according to the present invention, in which the flow velocity of the molten steel flow was not controlled at all (case A), and in which the flow velocity was controlled by a moving magnetic field shown by the broken line in Fig. 4. If (Case B)
The case where the flow velocity was controlled by a static magnetic field (Case C) shown in FIG. 5 was also conducted for comparison. In addition, regarding the present invention, case B, and case C, the electric capacity is 120 kW.

それらの測定結果を、介在物指数について第2図に、凝
固殻厚みについて第3図に示す。第2図から明らかなよ
うに、非金属介在物の量は、流速制御した場合には流速
を制御しない場合(ケースA)に比して極めて低減され
ることは勿論のこと、本発明による場合には、従来技術
(ケースB、C)によシ流速制御した場合に比して更に
一層低下している。一方、鋳型短辺側の凝固殻の厚みも
、第3図に示すように、本発明による場合には、他のケ
ースA、B、Cによる場合に比して厚く゛、十分に厚い
凝固殻が形成されていることがわかる。このように、本
願発明においては、同一電力であるKも拘らず、従来よ
りも鋳片品質及び操業安定性を高めることができる。
The measurement results are shown in FIG. 2 for the inclusion index and in FIG. 3 for the solidified shell thickness. As is clear from FIG. 2, it goes without saying that the amount of nonmetallic inclusions is extremely reduced when the flow rate is controlled compared to when the flow rate is not controlled (Case A), and in the case of the present invention. The flow rate is even lower than that when the flow rate is controlled using the conventional technology (cases B and C). On the other hand, as shown in FIG. 3, the thickness of the solidified shell on the short side of the mold is thicker in the case of the present invention than in the other cases A, B, and C. It can be seen that a is formed. In this way, in the present invention, the slab quality and operational stability can be improved compared to the conventional method, despite the same electric power K.

なお、この発明においても、溶鋼流に大きな制動力を付
与するためには、磁場Hの強度を高めることが必要であ
る。しかし、磁場Hを高めるためには大電力をコイルに
印加する必要があシ、装置が大型化するという難点があ
る。そこで、本願発明者等は、コイルに通電する電流を
種々変化させて、溶鋼流に作用させる磁場Hの強度と、
鋳片品質及び凝固殻厚みとの関係を調査した。その結果
、鋳型の中心軸上において約500エルステツドの磁場
を形成すれば、鋳片品質及び操業安定性を従来よりも高
めることができ、磁場の強度が1500エルステツドに
なると極めて優れた効果を得ることができることが判明
した。
In addition, also in this invention, in order to provide a large braking force to the molten steel flow, it is necessary to increase the strength of the magnetic field H. However, in order to increase the magnetic field H, it is necessary to apply a large amount of power to the coil, which has the disadvantage of increasing the size of the device. Therefore, the inventors of the present application variously changed the current flowing through the coil to adjust the strength of the magnetic field H that acts on the molten steel flow.
The relationship between slab quality and solidified shell thickness was investigated. As a result, by creating a magnetic field of approximately 500 oersted on the central axis of the mold, slab quality and operational stability can be improved compared to conventional methods, and when the magnetic field strength is 1500 oersted, extremely excellent effects can be obtained. It turned out that it can be done.

この発明は上記実施例に限定されるものではなく種々の
変形が可能である。特に、この発明はスラブ型連続鋳造
機に限らず、鋳型の側壁の幅寸法が略々同じであるプル
ーム又はビレット型連続鋳造機にも適用することができ
ることは勿論である。また、コイルは常電導コイル及び
超電導コイル等を使用することができるが、超電導コイ
ルによる場合は、一層小型の設備にょシ強い磁場を付与
することができることはいうまでもない。
This invention is not limited to the above embodiments, and various modifications are possible. In particular, the present invention is of course applicable not only to slab-type continuous casting machines but also to plume- or billet-type continuous casting machines in which the side walls of the molds have approximately the same width dimension. Furthermore, a normal conducting coil, a superconducting coil, or the like can be used as the coil, but it goes without saying that a superconducting coil can apply a stronger magnetic field to even smaller equipment.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、鋳型の側壁近傍の領域のみならず、
内部領域においても高効率で溶鋼流に制動力を付与する
ことができ、鋳造速度等に応じて溶鋼流速を制御するこ
とができる。これによシ、溶鋼流が鋳型内に深く侵入す
ることを防止することができ、鋳片内の非金属介在物を
減少させることができる。また、溶鋼流が凝固殻を衝突
する際のエネルギが低減し、凝固殻の再溶解が抑制され
るので、健全な凝固殻が形成され、操業が安定する。こ
のように、この発明は実用性が極めて高い。
According to this invention, not only the area near the side wall of the mold,
Braking force can be applied to the molten steel flow with high efficiency even in the internal region, and the molten steel flow speed can be controlled according to the casting speed and the like. This can prevent the molten steel flow from penetrating deeply into the mold, and can reduce non-metallic inclusions in the slab. In addition, the energy when the molten steel flow collides with the solidified shell is reduced, and remelting of the solidified shell is suppressed, so a healthy solidified shell is formed and the operation becomes stable. In this way, this invention has extremely high practicality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す模式的斜視図、第2図
及び第3図はこの発明の効果を示すグラフ図、第4図は
従来技術を示す縦断面図、第5図は従来技術を示す平面
−である。 21:鋳型、22:短辺壁、23:長辺壁、24:浸漬
ノズル、25:吐出口、30:コイル、31:通電管、
32:直流電源。 出願人代理人  弁理士 鈴 江 武 彦第2図   
第3図
Fig. 1 is a schematic perspective view showing an embodiment of the present invention, Figs. 2 and 3 are graphs showing the effects of the invention, Fig. 4 is a vertical sectional view showing the prior art, and Fig. 5 is a conventional It is a plane that shows technology. 21: mold, 22: short side wall, 23: long side wall, 24: immersion nozzle, 25: discharge port, 30: coil, 31: energizing pipe,
32: DC power supply. Applicant's agent Patent attorney Takehiko Suzue Figure 2
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造の鋳型の外側にてこの鋳型を取り囲み、そのコ
イル軸心が実質的に鉛直になるように設置されたコイル
と、このコイルに直流電流を供給して鋳型内溶鋼に対し
実質的に鉛直方向の磁場を形成する供電装置とを有する
ことを特徴とする連続鋳造の鋳型内溶鋼流速制御装置。
A coil is installed on the outside of a continuous casting mold so that the axis of the coil is substantially vertical, and a direct current is supplied to this coil to surround the mold so that the coil axis is substantially vertical to the molten steel inside the mold. 1. An in-mold molten steel flow rate control device for continuous casting, comprising a power supply device that forms a magnetic field in a direction.
JP3934385A 1985-02-28 1985-02-28 Device for controlling flow rate of molten steel in mold for continuous casting Pending JPS61199557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3934385A JPS61199557A (en) 1985-02-28 1985-02-28 Device for controlling flow rate of molten steel in mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3934385A JPS61199557A (en) 1985-02-28 1985-02-28 Device for controlling flow rate of molten steel in mold for continuous casting

Publications (1)

Publication Number Publication Date
JPS61199557A true JPS61199557A (en) 1986-09-04

Family

ID=12550437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3934385A Pending JPS61199557A (en) 1985-02-28 1985-02-28 Device for controlling flow rate of molten steel in mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS61199557A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230258A (en) * 1986-10-13 1988-09-26 Kawasaki Steel Corp Method and apparatus for continuously casting steel by using static magnetic field
JPS6483356A (en) * 1987-09-25 1989-03-29 Nippon Kokan Kk Method for controlling metal flow in continuous casting mold
EP0401504A2 (en) * 1989-04-27 1990-12-12 Kawasaki Steel Corporation Apparatus and method for continuous casting
US5222545A (en) * 1992-04-21 1993-06-29 Aluminum Company Of America Method and apparatus for casting a plurality of closely-spaced ingots in a static magnetic field
US5246060A (en) * 1991-11-13 1993-09-21 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
EP0489202B1 (en) * 1989-06-09 1994-09-14 Nippon Steel Corporation Method of controlling flow of molten steel in mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230258A (en) * 1986-10-13 1988-09-26 Kawasaki Steel Corp Method and apparatus for continuously casting steel by using static magnetic field
JPS6483356A (en) * 1987-09-25 1989-03-29 Nippon Kokan Kk Method for controlling metal flow in continuous casting mold
JPH0642982B2 (en) * 1987-09-25 1994-06-08 日本鋼管株式会社 Metal flow control method in continuous casting mold
EP0401504A2 (en) * 1989-04-27 1990-12-12 Kawasaki Steel Corporation Apparatus and method for continuous casting
EP0489202B1 (en) * 1989-06-09 1994-09-14 Nippon Steel Corporation Method of controlling flow of molten steel in mold
US5246060A (en) * 1991-11-13 1993-09-21 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
US5375647A (en) * 1991-11-13 1994-12-27 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
US5222545A (en) * 1992-04-21 1993-06-29 Aluminum Company Of America Method and apparatus for casting a plurality of closely-spaced ingots in a static magnetic field

Similar Documents

Publication Publication Date Title
US4178979A (en) Method of and apparatus for electromagnetic mixing of metal during continuous casting
KR960015335B1 (en) Sidewall containment of liquid metal with horizontal alternating magnetic fields
EP2682201A1 (en) Method and apparatus for the continuous casting of aluminium alloys
US4030534A (en) Apparatus for continuous casting using linear magnetic field for core agitation
US4645534A (en) Process for control of continuous casting conditions
KR100641618B1 (en) Method and device for control of metal flow during continuous casting using electromagnetic fields
RU2296034C2 (en) Method for treating melt metals by means of moving electric arc
GB1454052A (en) Continuous casting method and apparatus therefor
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPS6363300B2 (en)
JPS6339343B2 (en)
US5137077A (en) Method of controlling flow of molten steel in mold
JP7295380B2 (en) tundish
JPH0131976B2 (en)
US3746074A (en) Apparatus for regulating the solidification of the liquid core in a continuous casting
JPH048134B2 (en)
JP2671336B2 (en) Continuous casting of steel
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
US6006822A (en) Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JPS6015426B2 (en) Electromagnetic stirring device in continuous slab casting
US4516627A (en) Multi-turn coils of controlled pitch for electromagnetic casting
JP3718481B2 (en) Method for continuous casting of molten metal
JPS58224043A (en) Continuous casting method of thin metallic sheet