JPS61186259A - Manufacture of fused silica base sintered body - Google Patents

Manufacture of fused silica base sintered body

Info

Publication number
JPS61186259A
JPS61186259A JP2806285A JP2806285A JPS61186259A JP S61186259 A JPS61186259 A JP S61186259A JP 2806285 A JP2806285 A JP 2806285A JP 2806285 A JP2806285 A JP 2806285A JP S61186259 A JPS61186259 A JP S61186259A
Authority
JP
Japan
Prior art keywords
fused silica
sintered body
steam
firing
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2806285A
Other languages
Japanese (ja)
Other versions
JPH0154301B2 (en
Inventor
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP2806285A priority Critical patent/JPS61186259A/en
Publication of JPS61186259A publication Critical patent/JPS61186259A/en
Publication of JPH0154301B2 publication Critical patent/JPH0154301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、緻密質の溶融シリカ焼結体を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a dense fused silica sintered body.

(従来の技術) 溶融シリカ焼結体の製造において、焼成温度は一般に1
250℃以下である。これは、1250℃を超えるとク
リストバライトの生成で組織強度が低下するためである
(Prior art) In the production of fused silica sintered bodies, the firing temperature is generally 1
The temperature is 250°C or less. This is because when the temperature exceeds 1250°C, the tissue strength decreases due to the formation of cristobalite.

そこで、例えば特公昭49−27083号公報に、短時
間で焼成することによって、1250〜1450℃の焼
成温度でもクリストバライトの生成を少量に押えること
の発明が提案されている。
Therefore, for example, Japanese Patent Publication No. 49-27083 proposes an invention for suppressing the formation of cristobalite to a small amount even at a firing temperature of 1250 to 1450°C by firing for a short time.

また、物質の合成および結晶育成法として、水熱合成が
ある。石英の焼結には高圧水蒸気が有効であり、水熱合
成による水晶の合成は特に有名である。
Additionally, hydrothermal synthesis is a method for synthesizing substances and growing crystals. High-pressure steam is effective for sintering quartz, and synthesis of quartz by hydrothermal synthesis is particularly famous.

(発明が解決しようとする問題点) しかし、焼成において短時間で焼成品内部まで温度均一
にすることは容易でなく、また急加熱により熱衝撃を受
けてキレツを生じやすい。したがって、特公昭49−2
7083号公報の発明では、比較的小型の焼成品に限ら
れる。
(Problems to be Solved by the Invention) However, during firing, it is not easy to make the temperature uniform inside the fired product in a short time, and rapid heating tends to cause thermal shock and cracks. Therefore,
The invention disclosed in Publication No. 7083 is limited to relatively small fired products.

大きさの限定、非能率、コスト高などを招き、工業的生
産性に劣っている。
This results in limited size, inefficiency, and high costs, resulting in poor industrial productivity.

(問題点を解決するための手段) 本発明者は、緻密質の溶融シリカ焼結体を得るために種
々検討を重ねてきた。その結果、上記従来の欠点のない
方法として、水蒸気焼結法の適用が好ましいことを見出
した。
(Means for Solving the Problems) The present inventor has conducted various studies in order to obtain a dense fused silica sintered body. As a result, it has been found that the steam sintering method is preferable as a method free from the above-mentioned conventional drawbacks.

UO2を水蒸気焼結させることは、既に知られている。Steam sintering of UO2 is already known.

この方法は、UO2のプレス成形品を、水素ガスと水蒸
気の併用の雰囲気下で行なわれるものであるが、気孔率
2%以下の焼結体を得ることはできない。また、透明石
英ガラスの場合は、水の存在下ではクリストバライト化
を促進し、失透するといわれており、水蒸気焼結法はl
fましくない。これらの理由により、セラミックの製造
において水蒸係焼結法は一般に行なわれていないのが実
状である。
In this method, a press-molded UO2 product is formed in an atmosphere of a combination of hydrogen gas and water vapor, but it is not possible to obtain a sintered body with a porosity of 2% or less. In addition, in the case of transparent quartz glass, it is said that the presence of water promotes cristobalite formation and devitrification, and the steam sintering method is
It's not f. For these reasons, the reality is that the steam sintering method is generally not used in the production of ceramics.

ところが本発明者の実験によると、溶融シリカは石莢ガ
ラスなどと異なり、水蒸気焼成に才jいてグリス1−パ
ライトの生成は認められなかった。さらに、粒度を限定
して鋳込み成形し、その後に水蒸気焼成すると、きわめ
て緻密質の溶融シリカ焼結体を得ることができた。  
  1 すなわち本発明は、粒径】0μIn以下の粒子を10w
1、%以−1−含む溶融シリカ粉を1ミ骨材とした配合
物を鋳込み成形し、得られた成形体を水蒸気雰囲気下で
焼成することを特徴とする溶融シリカ焼結体の製造方法
である。
However, according to experiments conducted by the present inventors, fused silica, unlike stone capsule glass, can be fired with steam, and no grease 1-palite was observed to be formed. Furthermore, by casting with a limited particle size and then steam-sintering, it was possible to obtain an extremely dense fused silica sintered body.
1 In other words, the present invention uses particles with a particle size of 0μIn or less at 10W.
A method for producing a fused silica sintered body, which comprises casting and molding a mixture using fused silica powder containing 1.1% or more as an aggregate, and firing the obtained molded body in a steam atmosphere. It is.

本発明で使用する溶融シリカは、珪石その他のシリカ原
料を溶融したもので、市販品からも得られる。シリカ純
度は、flowl;%以上が好ましい。Na、Oなどの
不純物が多いと、クリス1へバライI・化を促進し易い
ためである。
The fused silica used in the present invention is obtained by melting silica stone and other silica raw materials, and can also be obtained from commercial products. The silica purity is preferably flow1% or higher. This is because if there are a large amount of impurities such as Na and O, it is easy to promote the conversion of crystals into crystals.

粒度は、10μm以下の粒子をl0wt%以−1−含む
溶融シリカ粉とする。最大粒径は、焼結体の用途によっ
ても異なるが、一般には5w11以ドが好ましい、10
μrrl以Fが10wt%未満では、焼結体の緻密性が
十分でない。
The particle size of the fused silica powder is 10% by weight or more of particles with a particle size of 10 μm or less. The maximum particle size varies depending on the use of the sintered body, but generally it is preferably 5w11 or more, 10
If F is less than 10 wt%, the sintered body will not have sufficient density.

本発明は、溶融シリカ粉を主骨材とするものであるが、
焼結体の目的に応じて溶融シリカ以外の酸化物、あるい
は炭化物、窒化物、はう化物、ファイバー類などを副原
料として併用してもよい。
Although the present invention uses fused silica powder as the main aggregate,
Depending on the purpose of the sintered body, oxides other than fused silica, carbides, nitrides, ferrides, fibers, etc. may be used in combination as auxiliary raw materials.

鋳込み成形の際には、溶媒を15〜25wし%程度添加
して溶融シリカ粉を泥しよう状にする。溶媒は、高純度
の焼結体を要求される場合はアルコール類などでもよい
が、一般には人手容易で、かつ好演的な水が好まま急激
に昇温して焼成するとキレッを生じやすい。したがって
、ゆるやかな昇温の場合は、乾燥を行なわず直接、焼成
してもよい。
During cast molding, approximately 15 to 25% of a solvent is added to make the molten silica powder into a slurry-like form. The solvent may be alcohols if a highly purified sintered body is required, but water is generally easy to use and works well, but if the temperature is rapidly raised and fired, it tends to cause sharpness. Therefore, in the case of a gradual temperature rise, it may be directly fired without drying.

焼成中における水蒸気の供給は、ボイラーなどから導い
たスチームを、焼成炉、あるいはその炉内に設置したル
ツボ、サヤなどの容器の中に連続して供給してもよいし
、また、封入してもよい。水蒸訊圧としては、特に限定
するものではないが、0.01〜IOatm(好ましく
は0.1〜+atm)の条件下が最良であった。10a
tmを超えると焼成炉をかなりの耐圧構造にせねばなら
ず、設備」−1☆fましくない。また水蒸気流量として
1ま 0.1−50 Q / m ]n  Ctjfま
しくはl−10Q/m1n)の条件下が最良であった。
Steam may be supplied during firing by continuously supplying steam led from a boiler or the like into the firing furnace or into a container such as a crucible or pod installed in the furnace, or by enclosing steam. Good too. Although the water vapor pressure is not particularly limited, conditions of 0.01 to IO atm (preferably 0.1 to +atm) were best. 10a
If the temperature exceeds tm, the kiln must have a considerable pressure-resistant structure, and the equipment is not 1☆f. Further, the best condition was a water vapor flow rate of 1 to 0.1-50 Q/m]nCtjf or 1-10Q/m1n).

水蒸気の導入は焼成はじめからでもよいし、1000℃
を超える時点でもよい。
Steam can be introduced from the beginning of firing, or at 1000°C.
It is also possible to exceed the point in time.

図は本発明を実施する装置の説明図であり、1は焼成炉
、2はサヤ、3は被焼成品、4はスチーム供給管。
The figure is an explanatory diagram of an apparatus for implementing the present invention, in which 1 is a firing furnace, 2 is a sheath, 3 is a product to be fired, and 4 is a steam supply pipe.

5はスチーム排気管、6は受棚である。受棚6は、水蒸
気を拡散させるために多数の細孔が設けである。図には
示していないがサヤ内にビーズ状耐火物粉を充填し、こ
の耐火物粉の間隙を通して水蒸気を導入させてもよい。
5 is a steam exhaust pipe, and 6 is a receiving shelf. The receiving shelf 6 is provided with a large number of pores to diffuse water vapor. Although not shown in the figure, the pod may be filled with bead-shaped refractory powder, and water vapor may be introduced through the gaps between the refractory powder.

このようにすると、被焼成品に対する加熱温度の均一・
化や、被焼成品の変形防市の効果がある。熱−例であっ
て、これに限定されるものではない。
In this way, the heating temperature for the product to be fired is uniform and
This has the effect of preventing deformation of the fired product. Heat - an example, but not a limitation.

焼成温度は1050〜1250℃が好ましい。1050
℃未満では焼結効果が不充分であり、1250℃を超え
るとグリス1〜バライ1〜の生成で組織強度が低下して
好ましくない。
The firing temperature is preferably 1050 to 1250°C. 1050
If it is less than 1250°C, the sintering effect will be insufficient, and if it exceeds 1250°C, the structure strength will decrease due to the formation of Grease 1 to Bury 1, which is not preferable.

焼成時間は通常0.5〜10時間程度、好ましくは1〜
5時間で、その範囲内で焼成温度、成形体の寸法などに
合せて決定すればよい。
Firing time is usually about 0.5 to 10 hours, preferably 1 to 10 hours.
5 hours, and it may be determined within this range depending on the firing temperature, the dimensions of the molded body, etc.

(作 用) 本発明において、緻密な溶融シリカ質焼結体が得られる
のは、以下の理由によるものを推定される。
(Function) In the present invention, the reason why a dense fused siliceous sintered body is obtained is presumed to be due to the following reasons.

まず、溶融シリカ自体が他の材料に比べて水蒸気焼結に
おける水との反応性が高いためと考えられる。
First, it is thought that this is because fused silica itself has higher reactivity with water during steam sintering than other materials.

4一 つぎに1本発明が鋳込み成形したことにある。紡込み成
形は、泥しよう中の溶媒を押出しながら配合物が充填さ
れるため、成形体に水の遠路の痕跡である微細な連続気
孔が残る。そして、焼成中に、水蒸気がこの連続気孔を
通して供給され、水蒸気焼結が促進される。
4.The first aspect of the present invention is cast molding. In spin molding, the compound is filled while extruding the solvent in the slurry, so fine continuous pores, which are traces of the long path of water, remain in the molded product. Then, during firing, steam is supplied through the continuous pores to promote steam sintering.

これに対し、鋳込み成形以外の例えばプレス成形では、
水分、結合剤などで形成される気孔はそれぞれが独立し
ており、連続気孔になっていないために、鋳込み成形に
おける前記のような作用がない。
On the other hand, in other than casting molding, such as press molding,
Since the pores formed by moisture, binder, etc. are independent and not continuous, the above-mentioned effect in casting molding does not occur.

また、粒径10μm以下の粒子を10wt%以上に限定
したことにより、粒子に対する水蒸気の接触面積が人定
されるものではない。
Further, by limiting the amount of particles with a particle size of 10 μm or less to 10 wt% or more, the contact area of water vapor with the particles cannot be determined.

配合原料としてSin、純度99.5wt%の溶融シリ
カを使用した。この溶融シリカを粉砕によって最大粒子
径2mm以下に調整した。微粉はボールミルによる湿式
粉砕法により得たスリップとし、鋳込み成形にはこれを
そのまま使用し、プレス成形には乾燥させたものを使用
した。
Sin and fused silica with a purity of 99.5 wt% were used as blending raw materials. This fused silica was pulverized to a maximum particle size of 2 mm or less. The fine powder was a slip obtained by wet pulverization using a ball mill, and this was used as it was for casting molding, and the dried one was used for press molding.

鋳込み成形は、石膏型を使用し、振動を与えながら。Cast molding is performed using a plaster mold while applying vibration.

鋳込んだ。プレス成形は、結合材としてCMC(カルボ
キシメチルセルロース)を添加し、オイルプレス装置に
よって圧力500kg10Jで成形した。成形体の・j
′法は、いずれも1IOX40X160 mmとした。
Cast in. For press molding, CMC (carboxymethyl cellulose) was added as a binder, and molding was performed using an oil press machine at a pressure of 500 kg and 10 J. of the molded body
In both methods, the size was 1IOX40X160 mm.

焼成は、小型のtli S&炉を使用し、水蒸気焼結法
のものはこの中に、ボイラーから導いたスチームを供給
した。電λ炉の一端に水蒸気の排気1−1を設けたので
、炉内圧力は低く保たれ、安全上の問題もながった。焼
結体の試験方法は、っぎのとおり。
Firing was carried out using a small tli S& furnace, into which steam led from a boiler was supplied for the steam sintering process. Since the steam exhaust 1-1 was provided at one end of the electric lambda furnace, the pressure inside the furnace was kept low and safety problems were eliminated. The test method for sintered bodies is as shown below.

かさ比重・話掛気孔率: 、+15−R2205にもと
づくハ゛縮強さ       : 、11s−R220
61: モト−J <外  観      :肉眼によ
る観察(発明の効果) 本発明によれば、実施例の結果からも明らかなように、
従来法に比へて格段に緻密性が優れた溶融シリカ質焼結
体が得られる。
Bulk specific gravity/talk porosity: , +15-High compressive strength based on R2205: , 11s-R220
61: Moto-J <Appearance: Visual observation (effects of the invention) According to the present invention, as is clear from the results of Examples,
A fused siliceous sintered body with significantly superior density compared to conventional methods can be obtained.

本発明は、 1250℃以下の焼成で十分な緻密性が得
られるために、クリストバライトの生成もなく、組織強
度に優れた溶融シリカ質焼結体が得られる。
In the present invention, since sufficient density can be obtained by firing at 1250° C. or lower, a fused siliceous sintered body with excellent structural strength can be obtained without the formation of cristobalite.

また、本発明は炉内を特に高圧にする必要もなく、既存
の焼成炉を使用することもできるので、設備の上からも
、安全操業の一ヒからも問題な〈実施できる。
In addition, the present invention does not require particularly high pressure in the furnace and can use an existing firing furnace, so it can be carried out without any problems from the standpoint of equipment or safe operation.

本発明により得られる溶融シリカ質焼結体は、緻密質に
よる液体・気体に対しての非透過性に加え、溶融シリカ
の特性である耐熱性、化学的安定性により、その用途は
きわめて広い。例えば、製鉄産業、セメント産業、セラ
ミック産業、電気産業、航空機産業、宇宙産業などにお
ける各種部品あるいは内張り材、さらには医療器共、調
理器具、各種容器、実験器具、焼却炉、原子炉などに使
用できる。
The fused siliceous sintered body obtained by the present invention has an extremely wide range of uses due to its dense property, which makes it impermeable to liquids and gases, as well as its heat resistance and chemical stability, which are the characteristics of fused silica. For example, it is used in various parts and lining materials in the steel industry, cement industry, ceramic industry, electrical industry, aircraft industry, space industry, etc., as well as medical equipment, cooking utensils, various containers, laboratory equipment, incinerators, nuclear reactors, etc. can.

【図面の簡単な説明】[Brief explanation of drawings]

本発明を実施する装置例の説明図である。 ] 焼成炉      4 スチーム供給管2 サ ヤ
      5 スチーム排気管3被焼成品     
6受 柵 特許出願人 播磨耐火煉瓦株式会社 =1〇− 手続補正(自発)
FIG. 1 is an explanatory diagram of an example of a device implementing the present invention. ] Firing furnace 4 Steam supply pipe 2 Saya 5 Steam exhaust pipe 3 Product to be fired
6. Fence patent applicant Harima Refractory Brick Co., Ltd. = 10- Procedural amendment (voluntary)

Claims (2)

【特許請求の範囲】[Claims] (1)粒径10μm以下の粒子を10wt%以上含む溶
融シリカ粉を主骨材とした配合物を鋳込み成形し、得ら
れた成形体を水蒸気雰囲気下で焼成することを特徴とし
た溶融シリカ質焼結体の製造方法。
(1) A fused silica product characterized by casting and molding a mixture whose main aggregate is fused silica powder containing 10 wt% or more of particles with a particle size of 10 μm or less, and firing the resulting molded body in a steam atmosphere. A method for producing a sintered body.
(2)焼成温度が1050〜1250℃である特許請求
の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the firing temperature is 1050 to 1250°C.
JP2806285A 1985-02-14 1985-02-14 Manufacture of fused silica base sintered body Granted JPS61186259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2806285A JPS61186259A (en) 1985-02-14 1985-02-14 Manufacture of fused silica base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2806285A JPS61186259A (en) 1985-02-14 1985-02-14 Manufacture of fused silica base sintered body

Publications (2)

Publication Number Publication Date
JPS61186259A true JPS61186259A (en) 1986-08-19
JPH0154301B2 JPH0154301B2 (en) 1989-11-17

Family

ID=12238272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2806285A Granted JPS61186259A (en) 1985-02-14 1985-02-14 Manufacture of fused silica base sintered body

Country Status (1)

Country Link
JP (1) JPS61186259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832238A (en) * 1994-05-13 1996-02-02 Nec Corp Multilayer wiring board, its production and production of sintered silica used for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832238A (en) * 1994-05-13 1996-02-02 Nec Corp Multilayer wiring board, its production and production of sintered silica used for it

Also Published As

Publication number Publication date
JPH0154301B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
CA2279809C (en) Process for preparing aluminum titanate powder and process for preparing sintered body of aluminum titanate
EP0417292B1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
JPS61215261A (en) Bo ron nitride base sintered polycrystal composite material
US3649313A (en) Refractory mortar
JPS61186259A (en) Manufacture of fused silica base sintered body
US3773532A (en) Mullite-chrome refractory
US3079266A (en) Process for the manufacture of refractory materials and resultant product
Budnikov et al. Quartz ceramics
Hubble Steel plant refractories
JPS6128624B2 (en)
CN110713380A (en) Preparation method of high-purity compact forsterite
SU734167A1 (en) Charge for producing ceramic material
JPH0794343B2 (en) Magnesia clinker and method for producing the same
EP0325436A2 (en) High-purity magnesia sintered body and process for preparation thereof
JPH09301766A (en) Porous spinel clinker and its production
JPS61247660A (en) Manufacture of porous silica sintered body
SU865479A1 (en) Composition for making ceramic foundry cores
US3778493A (en) Compacting refractory particles having a surface coating of gelled silicasol
SU749816A1 (en) Refractory mass
US3480454A (en) Shock resistant alumina refractory
Al-Taie et al. Characterizations of semi-silica refractory bricks produced from local Iraqi materials
JPH0699190B2 (en) Carbon-containing ceramic composite for non-ferrous molten metal
Adylov et al. Alumina-magnesia spinel based ceramic produced in a solar furnace
SU759490A1 (en) Charge for producing refractory materials
SU920046A1 (en) Charge for making heat-insulation refractory material