JPS61166983A - Formation of thin sulfide film - Google Patents

Formation of thin sulfide film

Info

Publication number
JPS61166983A
JPS61166983A JP644485A JP644485A JPS61166983A JP S61166983 A JPS61166983 A JP S61166983A JP 644485 A JP644485 A JP 644485A JP 644485 A JP644485 A JP 644485A JP S61166983 A JPS61166983 A JP S61166983A
Authority
JP
Japan
Prior art keywords
metal
sulfide
org
metallic
oxygen bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP644485A
Other languages
Japanese (ja)
Inventor
Akira Nakanishi
朗 中西
Hiroshi Hatase
畑瀬 博
Hiroshi Hasegawa
洋 長谷川
Kazuyuki Okano
和之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP644485A priority Critical patent/JPS61166983A/en
Priority to DE8686900838T priority patent/DE3672285D1/en
Priority to US07/910,215 priority patent/US4885188A/en
Priority to PCT/JP1986/000015 priority patent/WO1986004362A1/en
Priority to EP86900838A priority patent/EP0211083B1/en
Publication of JPS61166983A publication Critical patent/JPS61166983A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make the production of a thin sulfide film having a large area and good quality at a low cost and with high productivity possible by decomposing thermally an org. metallic compd. layer having internally a metal-oxygen bond formed on a substrate in an inert gas mixed with hydrogen sulfide. CONSTITUTION:The org. metallic compd. having internally at least one metal- oxygen bond is coated by printing, etc., using a suitable solvent on the substrate and is then predried by heating to evaporate the solvent by which the org. metallic compd. layer is formed. Metallic alkoxide, carboxylate, acetyl acetonate or the deriv. thereof, sulfonate, etc. of metal are used for the above-mentioned org. metallic compd. The above-mentioned org. metallic compd. is thereafter thermally decomposed in the inert gas mixed with hydrogen sulfide by which the thin metallic sulfide film having the good crystallinity and film formability is easily formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種エレクトロニクスデバイスに使用される金
属硫化物薄膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming metal sulfide thin films used in various electronic devices.

従来の技術 従来より、硫化亜鉛、硫化カドミウム、硫化鉛、硫化銅
などの金属硫化物は薄膜あるいは結晶等の形でエレクト
ロニクス分野で広く使用されている。
BACKGROUND OF THE INVENTION Conventionally, metal sulfides such as zinc sulfide, cadmium sulfide, lead sulfide, and copper sulfide have been widely used in the electronics field in the form of thin films or crystals.

これら化合物の薄膜は従来は主として真空蒸着あるいは
スパッタ等の手法で形成されてきた。
Thin films of these compounds have heretofore been mainly formed by methods such as vacuum evaporation or sputtering.

発明が解決しようとする問題点 上記、従来の方法は真空容器中で行われるため、生産性
が悪く、連続操作が困難であるか、あるいは非常に高額
の生産設備を必要とする。また、真空容器の大きさで製
品の大きさを規定され、大面積の製造が困難である等の
問題点を有している。
Problems to be Solved by the Invention The above-mentioned conventional methods are performed in a vacuum container, resulting in poor productivity, difficulty in continuous operation, or requiring very expensive production equipment. In addition, the size of the product is determined by the size of the vacuum container, making it difficult to manufacture a large area.

本発明は以上のような従来の欠点を除去するものであり
、簡単な方法で効果的に生産できる金属硫化物薄膜の形
成方法を提供するものである。
The present invention eliminates the above-mentioned conventional drawbacks and provides a method for forming a metal sulfide thin film that can be produced easily and effectively.

問題点を解決するための手段 本発明が上記問題点を解決するための手段は、金属−酸
素結合を少なくとも一つ内部に有する有機金属化合物層
を基板上に印刷その他の方法で形成してのち、上記有機
金属化合物層を、硫化水素を混合した不活性ガス中で熱
分解することにより金属硫化物を形成することである。
Means for Solving the Problems The present invention solves the above problems by forming an organometallic compound layer containing at least one metal-oxygen bond on a substrate by printing or other methods. , the metal sulfide is formed by thermally decomposing the organometallic compound layer in an inert gas mixed with hydrogen sulfide.

本発明に使用できる金属−酸素結合を少なくとも一つ内
部に有する有機金属化合物としては、各種金属アルコシ
ト、各種カルボン酸またはスルホン酸の各種金属塩、ア
セチルアセトネートまたはそれに類似した化合物などを
挙げることができる。
Examples of the organometallic compound having at least one internal metal-oxygen bond that can be used in the present invention include various metal alkosites, various metal salts of various carboxylic acids or sulfonic acids, acetylacetonate, and compounds similar thereto. can.

これら化合物の合成方法は公知である。Methods for synthesizing these compounds are known.

有機金属化合物を積層する基板としては、熱分解温度に
耐えるものであれば任意に選ぶことができる。通常熱分
解温度は360〜460°Cていどであるため、安価な
ガラス板で十分使用することができる。
The substrate on which the organometallic compound is laminated can be arbitrarily selected as long as it can withstand thermal decomposition temperatures. Since the thermal decomposition temperature is usually 360 to 460°C, an inexpensive glass plate can be used.

作  用 上記本発明の手段を用いることにより、従来の手法のネ
ットとなっている真空容器を使用せずに、金属硫化物薄
膜を形成できるため、薄膜の製造に際して、生産性の向
上が計られ、かつ大面積の製造を容易に行うことができ
る。
Effect: By using the means of the present invention described above, a metal sulfide thin film can be formed without using a vacuum container, which is the net of the conventional method, so productivity can be improved when producing a thin film. , and can be easily manufactured over a large area.

実施例 以下実施例により説明する。Example This will be explained below using examples.

実施例1 ナトリウムラウリルアルコキシドと酢酸亜鉛から得られ
る亜鉛ラウリルアルコキシドをアルコール系溶媒に溶か
し、ガラス板上にスピナ一方式によシ塗布する。
Example 1 Zinc lauryl alkoxide obtained from sodium lauryl alkoxide and zinc acetate is dissolved in an alcoholic solvent and coated onto a glass plate using a spinner.

塗布されたガラス板は、約150℃で予備乾燥して溶媒
を揮散させた後、焼成炉中、550’CI時間焼成する
。焼成炉内部は、硫化水素濃度2〜10チの窒素ガス気
流とする。
The coated glass plate is pre-dried at about 150°C to volatilize the solvent and then fired in a firing oven for 550'CI. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10 g.

焼成されたガラス板上には、はぼ透明で膜厚1000〜
6o00人の薄膜が形成されており、X線回折測定より
大方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
A thin film of 6,000 people was formed, and X-ray diffraction measurements confirmed that it was macrogonal zinc sulfide.

実施例2 ナトリウムラウリルアルコキシドと酢酸鉛から得られる
鉛ラウリルアルコキシドをアルコール系溶媒に溶かし、
ガラス板上にスビーナ一方式により塗布する。
Example 2 Lead lauryl alkoxide obtained from sodium lauryl alkoxide and lead acetate was dissolved in an alcoholic solvent,
Coat it on a glass plate using one-sided subina method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒
を揮散させた後、焼成炉中、550℃1時間焼成する。
The coated glass plate is pre-dried at about 150°C to volatilize the solvent, and then fired in a firing oven at 550°C for 1 hour.

焼成炉内部は、硫化水素濃度2〜10%の窒素ガス気流
とする。
Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10%.

焼成されたガラス板上には、はぼ透明で膜厚1000〜
6000人薄膜が形成されており、X線回折測定より硫
化鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
A 6,000-layer thin film was formed, and X-ray diffraction measurements confirmed that it was lead sulfide.

実施例3 ラウリルアルコールと酢酸カドミウムから得られるカド
ミウムラウリルアルコキシドをアルコール系溶媒に溶か
し、ガラス板上にスピナ一方式により塗布する。
Example 3 Cadmium lauryl alkoxide obtained from lauryl alcohol and cadmium acetate is dissolved in an alcoholic solvent and applied onto a glass plate using a spinner.

塗布されたガラス板は、約150’Cで予備乾燥して溶
媒を揮散させた後、焼成炉中、560℃1時間焼成する
。焼成炉内部は、硫化水素濃度2〜10%の窒素ガス気
流とする。
The coated glass plate is pre-dried at about 150'C to volatilize the solvent, and then fired in a firing oven at 560C for 1 hour. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10%.

焼成されたガラス板上には、はぼ透明の薄膜が形成され
ており、X線回折測定より硫化カドミウムであることが
確認された。
A transparent thin film was formed on the fired glass plate, and X-ray diffraction measurements confirmed that it was cadmium sulfide.

実施例4 2−エチルヘキサン酸亜鉛をアルコール系溶媒に溶かし
、ガラス板上にスピナ一方式によシ塗布する。
Example 4 Zinc 2-ethylhexanoate is dissolved in an alcoholic solvent and coated onto a glass plate using a spinner.

塗布されたガラス板は、約150°Cで予備乾燥して溶
媒を揮散させた後、焼成炉中、660°C1時間焼成す
る。焼成炉内部は、硫化水素濃度2〜10%の窒素ガス
気流とする。
The coated glass plate is pre-dried at about 150°C to volatilize the solvent, and then fired in a firing oven at 660°C for 1 hour. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10%.

焼成されたガラス板上には、はぼ透明で膜厚1000〜
6000への薄膜が形成されており、X線回折測定より
大方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
6000 was formed, and it was confirmed by X-ray diffraction measurement that it was macrogonal zinc sulfide.

実施例6 亜鉛アセチルアセトネートをアルコール系溶媒に溶かし
、ガラス板上にスピナル方式により塗布する0 塗布されたガラス板は、約150°Cで予備乾燥して溶
媒を揮散させた後、焼成炉中、550’C1時間焼成す
る。焼成炉内部は、硫化水素濃度2〜10チの窒素ガス
気流とする。
Example 6 Zinc acetylacetonate is dissolved in an alcoholic solvent and applied onto a glass plate using a spinal method. The coated glass plate is pre-dried at about 150°C to volatilize the solvent, and then placed in a firing furnace. , 550'C for 1 hour. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10 g.

焼成されたガラス板上には、はぼ透明で膜厚10oO〜
1500人の薄膜が形成されており、X線回折測定より
大方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 10oO~.
A thin film of 1,500 people was formed, and X-ray diffraction measurements confirmed that it was macrogonal zinc sulfide.

実施例6 ラウリルベンゼンスルホン酸すl−IJウムと酢酸ホ 亜鉛から得られるラウリルベンゼンスル/酸亜鉛を炭化
水素系溶媒に溶かし、ガラス板上にスピナ一方式により
塗布する。
Example 6 Laurylbenzenesulfonate/zinc acid obtained from sodium laurylbenzenesulfonate and zinc acetate is dissolved in a hydrocarbon solvent and applied onto a glass plate using a spinner.

塗布されたガラス板は、約160°Cで予備乾燥して溶
媒を揮散させた後、焼成炉中、s、so’c  1時間
焼成する。焼成炉内部は、硫化水素濃度2〜10係の窒
素ガス気流とする。
The coated glass plate is pre-dried at about 160° C. to volatilize the solvent, and then fired in a firing oven for 1 hour at s, so'c. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10 parts.

焼成されたガラス板上には、はぼ透明で膜厚1000〜
5000人の薄膜が形成されており、X線回折測定より
硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
A thin film of 5,000 people was formed, and X-ray diffraction measurements confirmed that it was zinc sulfide.

発明の効果 以上、実施例から判るごとく、本発明にかかる手法を採
用することKより、真空蒸着あるいはスハノタ等による
製造方法と比較して、生産性に優れ、非常な高額の生産
設備を必要とせず、また大面積の製造が容易であるとい
う産業上極めて有益な特徴をもつ。
In addition to the effects of the invention, as can be seen from the examples, the adoption of the method of the present invention has superior productivity compared to manufacturing methods such as vacuum evaporation or Suhanota, and does not require extremely expensive production equipment. Moreover, it has an extremely useful feature industrially in that it is easy to manufacture over a large area.

さらに、本発明にかかる手法は低温での結晶性、成膜性
も良好で、硫化亜鉛の場合、従来の手法では1000℃
以上で生成するα型穴方晶系硫化亜鉛が、500’(:
、程度の焼成温度で得られるという点でも効果的な手法
であるといえる。
Furthermore, the method according to the present invention has good crystallinity and film-forming properties at low temperatures; in the case of zinc sulfide, the conventional method
The α-type holegonal zinc sulfide produced above is 500' (:
It can be said that it is an effective method in that it can be obtained at a firing temperature of about .

Claims (5)

【特許請求の範囲】[Claims] (1)金属−酸素結合を少なくとも一つ内部に有する有
機金属化合物層を基板上に形成してのち、硫化水素を混
合してなる不活性ガス中で上記有機金属化合物層を熱分
解して形成することを特徴とする硫化物薄膜の形成方法
(1) After forming an organometallic compound layer containing at least one metal-oxygen bond on the substrate, the organometallic compound layer is thermally decomposed in an inert gas containing hydrogen sulfide. A method for forming a sulfide thin film, characterized by:
(2)金属−酸素結合を有する有機金属化合物が金属ア
ルコキシドであることを特徴とする特許請求の範囲第一
項に記載の硫化物薄膜の形成方法。
(2) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-oxygen bond is a metal alkoxide.
(3)金属−酸素結合を有する有機金属化合物が金属の
カルボン酸塩であることを特徴とする特許請求の範囲第
一項に記載の硫化物薄膜の形成方法。
(3) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-oxygen bond is a metal carboxylate.
(4)金属−酸素結合を有する有機金属化合物が金属の
アセチルアセトネートまたはその誘導体であることを特
徴とする特許請求の範囲第一項に記載の硫化物薄膜の形
成方法。
(4) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-oxygen bond is metal acetylacetonate or a derivative thereof.
(5)金属−酸素結合を有する有機金属化合物が金属の
スルホン酸塩であることを特許とする特許請求の範囲第
一項に記載の硫化物薄膜の形成方法。
(5) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-oxygen bond is a metal sulfonate.
JP644485A 1985-01-17 1985-01-17 Formation of thin sulfide film Expired - Lifetime JPS61166983A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP644485A JPS61166983A (en) 1985-01-17 1985-01-17 Formation of thin sulfide film
DE8686900838T DE3672285D1 (en) 1985-01-17 1986-01-16 METHOD FOR FORMING THIN METAL SULFIDE FILMS.
US07/910,215 US4885188A (en) 1985-01-17 1986-01-16 Process for forming thin film of metal sulfides
PCT/JP1986/000015 WO1986004362A1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film
EP86900838A EP0211083B1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP644485A JPS61166983A (en) 1985-01-17 1985-01-17 Formation of thin sulfide film

Publications (1)

Publication Number Publication Date
JPS61166983A true JPS61166983A (en) 1986-07-28

Family

ID=11638576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP644485A Expired - Lifetime JPS61166983A (en) 1985-01-17 1985-01-17 Formation of thin sulfide film

Country Status (1)

Country Link
JP (1) JPS61166983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010326A1 (en) * 1988-04-21 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing thin film of metal sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010326A1 (en) * 1988-04-21 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing thin film of metal sulfide

Similar Documents

Publication Publication Date Title
Puddephatt et al. Volatile organogold compounds [AuR (CNR1)]: Their potential for chemical vapour deposition of gold
JPS60236404A (en) Method of producing thin film ferrodielectric material
JPH0346402B2 (en)
JPH03115106A (en) Production of composite material
KR100787309B1 (en) Ruthenium Film and Ruthenium Oxide Film, and Method for Formation Thereof
JPS61166983A (en) Formation of thin sulfide film
US6086957A (en) Method of producing solution-derived metal oxide thin films
US4885188A (en) Process for forming thin film of metal sulfides
JPS61166978A (en) Formation of thin sulfide film
JPS6150903B2 (en)
JPH0699809B2 (en) Method for forming sulfide thin film
JPS61166979A (en) Formation of thin sulfide film
JP2002114515A (en) METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS
JPH0414516B2 (en)
JPS62146270A (en) Formation of thin metallic selenide film
JP2627803B2 (en) Method of forming metal nitride thin film
JPH01282125A (en) Production of body covered by composite metal oxide having specified composition
JP3440514B2 (en) Method for producing coating type metal titanate thin film by sol-gel method
JPS59139617A (en) Lead titanate dielectric thin film and method of producing same
JPS62146274A (en) Thin calcium sulfide film and its formation
JPS59220913A (en) Titanium zirconate lead dielectric thin film and method of producing same
JPH0211776A (en) Production of superconductive metal oxide film by pyrolysis
JPH0467518A (en) Surface reforming of ceramic base material
JPS62227478A (en) Production of alumina membrane
JPH06345431A (en) Precursor solution for lead titanate thin film and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term