JPS61150758A - Method for heating molten metal in tundish for continuous casting - Google Patents
Method for heating molten metal in tundish for continuous castingInfo
- Publication number
- JPS61150758A JPS61150758A JP27829984A JP27829984A JPS61150758A JP S61150758 A JPS61150758 A JP S61150758A JP 27829984 A JP27829984 A JP 27829984A JP 27829984 A JP27829984 A JP 27829984A JP S61150758 A JPS61150758 A JP S61150758A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- tundish
- heating
- continuous casting
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Heating (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は連続鋳造用タンディツシュにおける溶融金属加
熱方法に係り、特に加熱効率にすぐれ丸操作ならびに保
守点検が容易な加熱方法に関し、連続鋳造分野において
広く利用できる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for heating molten metal in a tundish for continuous casting, and particularly relates to a heating method that has excellent heating efficiency and is easy to operate and maintain. Widely available.
溶融金属の連続鋳造(以下連鋳と称する)においては、
例えば鋼の連哨の場合で説明すると、転炉等で溶製され
た溶鋼は取鍋に収容搬送されて連鋳タンディツシュに移
され、その底部から鋳型に達する浸漬ノズル等を介して
鋳型に注入される。In continuous casting of molten metal (hereinafter referred to as continuous casting),
For example, in the case of continuous steel casting, molten steel produced in a converter is stored in a ladle and transferred to a continuous casting tundish, where it is injected into the mold through a submerged nozzle that reaches the mold from the bottom of the tundish. be done.
かくの如く溶鋼は取鍋からタンディツシュへ、更に鋳型
へと容器に移される過程で必然的にその温度が低下する
。ところが連鋳では鋳込温度は極めて重要であるので、
タンディツシュ内の溶鋼が予定鋳込温度以下に低下する
おそれがある場合には加熱できるように溶鋼加熱装置付
きタンディツシュが使用されている。As described above, the temperature of molten steel inevitably decreases as it is transferred from the ladle to the tundish and then to the mold. However, since the casting temperature is extremely important in continuous casting,
A tundish equipped with a molten steel heating device is used to heat the molten steel in the tundish if there is a risk that the molten steel in the tundish may drop below the planned pouring temperature.
タンディツシュ内に収容されている溶融金属を加熱する
技術としては従来より第3図、第4図。Figures 3 and 4 are conventional techniques for heating the molten metal contained in the tundish.
第5図(5)、@に示す如き方法が考えられていた。A method as shown in Fig. 5 (5) @ has been considered.
(イ)第3図に示す如くタンディツシュ2の上方より電
極4を挿入して電力Eによりアーク加熱する方法。(a) A method in which an electrode 4 is inserted from above the tundish 2 and arc heating is performed using electric power E, as shown in FIG.
仲)第4図に示す如くタンディツシュ2とその上蓋6と
の間に発熱抵抗体8を配設し抵抗加熱する方法。Middle) A method of resistance heating by disposing a heating resistor 8 between the tundish 2 and its top cover 6 as shown in FIG.
(ハ)第5図(5)(ト)に示す如く、タンディツシュ
2の側方もしくは底部に溝型誘導炉10を配し低周波誘
導加熱する方法。(c) As shown in FIG. 5 (5) (g), a method in which a groove-type induction furnace 10 is arranged on the side or bottom of the tundish 2 and low-frequency induction heating is performed.
上記各方法は、いずれも溶融金属を加熱する方法として
は既に確立された技術であるが、連鋳用タンディツシュ
に使用する場合それぞれ次のような欠点を有している。All of the above methods are already established techniques for heating molten metal, but each method has the following drawbacks when used in a continuous casting tundish.
(イ)の方法は連鋳設備としては取鍋との取金上技術的
に困難であり、かつ溶融金属の上面を加熱するのでタン
ディツシュ内の温度分布が不均一となり上層のみ高温と
なる。Method (a) is technically difficult for continuous casting equipment due to the ladle and the ladle, and since the upper surface of the molten metal is heated, the temperature distribution within the tundish becomes uneven and only the upper layer becomes high temperature.
仲)の方法は、間接的な輻射加熱によるのでエネルギー
効率が低いほか、上面のみの加熱であるのでタンディツ
シュ内の温度分布が不均一となり上層のみ高温となる。Naka)'s method uses indirect radiant heating, which has low energy efficiency, and since it heats only the top surface, the temperature distribution inside the tundish is uneven, and only the top layer becomes high temperature.
゛ ぐ→の方法は、加熱効率にもすぐれ、かつタンデ
ィツシュ2内での攪拌効果もあり均一な温度分布で加熱
できる点は他の方法よりすぐれており、実際の連鋳用タ
ンディツシュにも使用されているが、その形状の特殊性
より溝型炉内部の点検補修が困難であるほか、タンディ
ツシュ補修時の溝型炉の着脱操作が煩鎖である。The method of ``g→'' is superior to other methods in that it has excellent heating efficiency and can heat with a uniform temperature distribution due to the stirring effect within the tundish 2, and is also used in actual continuous casting tundishes. However, due to its unique shape, it is difficult to inspect and repair the inside of the trench furnace, and it is cumbersome to attach and remove the trench furnace when repairing the tundish.
加熱方法の上記従来技術の問題棒を解消し、加熱効率に
すぐれ、かつ操作ならびに保守点検も容易な効果的な加
熱方法を提供するにある。It is an object of the present invention to provide an effective heating method that solves the problems of the above-mentioned conventional heating methods, has excellent heating efficiency, and is easy to operate and maintain.
〔問題点を解決するための手段および作用〕本発明の要
旨とするところは次の如くである。[Means and operations for solving the problems] The gist of the present invention is as follows.
すなわち、連続鋳造用タンディツシュ内に収容された溶
融金属の加熱方法において、前記タンディツシュの側壁
を通じ高融点金属酸化物と黒鉛もしくはカーボランダム
との混合体より成る電極を挿通し前記溶融金属に浸漬せ
しめて直接通電することを特徴とする連続鋳造用タンデ
ィツシュにおける溶融金属加熱方法、である。That is, in a method of heating molten metal housed in a tundish for continuous casting, an electrode made of a mixture of a high melting point metal oxide and graphite or carborundum is inserted through the side wall of the tundish and immersed in the molten metal. This is a method for heating molten metal in a continuous casting tundish, which is characterized by directly applying electricity.
アーク炉等に使用される黒鉛を電極材料として溶融金属
を加熱する場合には、通常電極材料の黒鉛が溶融金属に
対して溶解度を有するので連鋳タンディツシュにあける
溶融金属の加熱用には供し得ない。しかし本発明者らの
実験によると、例えばλl、 0. 、 MgO,Cl
l0.8 tow等の高融点金属酸化物に10〜50重
量%の黒鉛もしくはカーボランダム(5iC)を添加し
た混合体は、黒鉛もしくはSICを酸化させない限り溶
融金属へのCの溶出速度は極めて低いことを見出した。When heating molten metal using graphite, which is used in arc furnaces, etc. as an electrode material, graphite, which is normally used as an electrode material, has a high solubility in the molten metal, so it cannot be used for heating the molten metal in a continuous casting tundish. do not have. However, according to the experiments of the present inventors, for example, λl, 0. , MgO,Cl
In the case of a mixture in which 10 to 50% by weight of graphite or carborundum (5iC) is added to a high melting point metal oxide such as l0.8 tow, the elution rate of C into the molten metal is extremely low unless the graphite or SIC is oxidized. I discovered that.
しかもこれらの混合体は熱伝導性にすぐれ、かつ耐スポ
ーリング性にもすぐれており、通電可能であることは次
の計算例からも明らかである。ただし、この場合の加熱
電流は高融点金属酸化物と黒鉛もしくは8+Cとの混合
体より成る電極材料の物性により決定される。例えば、
断面積100 cm”、長さ30cIRの黒鉛含有量4
0チの混合体より成る電極材料の比抵抗をρとすれば、
ρ輪1.lX10 Ω譚
であるが、接続部の接触抵抗を含み
ρ =2X10Qcm
とすれば、全抵抗R= 2 X 10−”(Ωcrn)
X 30crs÷100i=6X10 Ω
従って端子電圧1000Vの直流の場合は電流1=10
”v15X10−38=1.6X101Ampすなわち
、1.6 X 10’ Ampの電流を溶融金属に通電
することが可能である。Moreover, these mixtures have excellent thermal conductivity and spalling resistance, and it is clear from the following calculation example that they can be energized. However, the heating current in this case is determined by the physical properties of the electrode material made of a mixture of high melting point metal oxide and graphite or 8+C. for example,
Graphite content 4 with cross-sectional area 100 cm” and length 30 cIR
If the specific resistance of the electrode material made of a mixture of 0 and 0 is ρ, then ρ is 1. If ρ = 2X10Qcm including the contact resistance of the connection part, then the total resistance R = 2X10-'' (Ωcrn)
X 30crs ÷ 100i = 6X10 Ω Therefore, in the case of DC with terminal voltage 1000V, current 1 = 10
"v15X10-38=1.6X101Amp, that is, it is possible to pass a current of 1.6X10'Amp through the molten metal.
しかしてこの場合、同一断面積の長さ506nの溶鋼中
に通電されると仮定すれば、溶鋼の1500℃における
比抵抗はほぼ150μΩのであるから全抵抗R= 15
0X10−’ΩzX 50crn÷10〇−= 75
X 10 Ω
従って発生ジュール熱= 75 Xl0−’ΩX(1,
6刈05麺)2#1900KW
すなわち約1900KWのジュール熱を発生させること
が可能である。However, in this case, assuming that electricity is applied to molten steel with the same cross-sectional area and length of 506n, the specific resistance of molten steel at 1500°C is approximately 150 μΩ, so total resistance R = 15
0X10-'ΩzX 50crn÷10〇-=75
X 10 Ω Therefore, Joule heat generated = 75 Xl0-'ΩX(1,
6 cutting 05 noodles) 2#1900KW That is, it is possible to generate about 1900KW of Joule heat.
本発明者らの実験結果もほぼ上記計算と一致することを
確認した。It was confirmed that the experimental results obtained by the present inventors also substantially coincided with the above calculation.
かくの如く、高融点金属酸化物と、10〜50重量%の
黒鉛もしくは8+Cとの混合体より成る電極材料は通電
可能であり、かつCの溶出速度が極めて低いが更にこれ
らの混合体は機械加工も可能であることが判明したので
、これを連鋳タンディツシュの溶融金属加熱用電極とし
て使用することに着目し、研究の結果本発明を完成する
に至ったものである。As described above, an electrode material made of a mixture of a high melting point metal oxide and 10 to 50% by weight of graphite or 8+C can conduct electricity, and the elution rate of C is extremely low. Since it was found that processing was possible, we focused on using this as an electrode for heating molten metal in a continuous casting tundish, and as a result of research, we have completed the present invention.
本発明の実施例を第1図、第2図を参照して説明する。Embodiments of the present invention will be described with reference to FIGS. 1 and 2.
第1図に示す如く、タンディツシュ2の側壁2人を貫通
して2本の電極12を挿通し、内部に収容されている溶
鋼14に浸漬させるっ電極材料としてはA I2O3、
Mg O、C−0、8102等の高融点金属酸化物に1
0〜50重量%の黒鉛もしくはSICを添加した混合体
である。黒鉛もしくはSICの配合割合は10%未満に
なると機械加工性、電導性が不良となり、50チを越す
とCの溶解度がやや大となるので10〜50%の配合割
合が好ましい。As shown in FIG. 1, the two electrodes 12 are inserted through the two side walls of the tundish 2 and immersed in the molten steel 14 housed inside.The electrode materials include A I2O3,
1 for high melting point metal oxides such as MgO, C-0, 8102, etc.
It is a mixture to which 0 to 50% by weight of graphite or SIC is added. If the blending ratio of graphite or SIC is less than 10%, machinability and electrical conductivity will be poor, and if it exceeds 50%, the solubility of C will become somewhat high, so a blending ratio of 10 to 50% is preferable.
電極12への給電は給電ユニット16より水冷ケーブル
18を経て電極12を把持する給電バンド20を介して
給電される。水冷ケーブル18および給電バンド20へ
の給水は給水ユニット22によって循環される。Power is supplied to the electrode 12 from a power supply unit 16 via a water-cooled cable 18 and a power supply band 20 that grips the electrode 12 . The water supply to the water cooling cable 18 and the power supply band 20 is circulated by a water supply unit 22.
次に本発明に使用する高融点金属酸化物と黒鉛もしくは
SICとの混合体より成る電極12のタンディツシュ側
壁2人の貫通部分は第2図に示す如く構成されている。Next, the portion through which the two side walls of the tundish of the electrode 12 made of a mixture of high melting point metal oxide and graphite or SIC used in the present invention is constructed as shown in FIG.
すなわち、タンディツシュ2の外側の鉄皮24は、電極
12の周囲に設けられた絶縁耐火物羽口れんが26およ
びマイカ28で絶縁され、更に鉄皮24との間隙には耐
火モルタル30が充填されている。また電極12の内側
溶鋼14中に浸漬される部分は毎回取替える必要のない
ように同材質のキャップ12Aにて被覆されており消耗
時はキャップ12Aのみ取替可能とし、大気中に露出さ
れている外側部分には例えばガラス膜形成材料の如き酸
化防止剤32が被覆され、かつ外部から強制空冷されて
いる。That is, the outer shell 24 of the tundish 2 is insulated by insulating refractory tuyere bricks 26 and mica 28 provided around the electrode 12, and the gap between the shell 24 and the shell 24 is filled with refractory mortar 30. There is. In addition, the inner part of the electrode 12 that is immersed in the molten steel 14 is covered with a cap 12A made of the same material so that it does not need to be replaced every time, and when it wears out, only the cap 12A can be replaced and is exposed to the atmosphere. The outer portion is coated with an antioxidant 32 such as a glass film forming material, and is forcedly air cooled from the outside.
かくの如く構成された本発明による電極12はタンディ
ツシュ2の鉄皮24、耐火材34および内部ライニング
36を絶縁貫通して内部の溶鋼14中に浸漬されている
ので、通電による抵抗加熱lこよって溶鋼14が加熱さ
れる。The electrode 12 according to the present invention thus constructed is immersed in the molten steel 14 inside the tundish 2 through insulation through the steel skin 24, the refractory material 34, and the inner lining 36, so that resistance heating due to current conduction occurs. Molten steel 14 is heated.
加熱された溶鋼14は上昇流となってタンディツシュ2
の内部で対流攪拌作用が行われるのでタンディツシュ2
内の溶鋼14は均熱され、従来の如き温度の不均一は全
く見られなかった。The heated molten steel 14 becomes an upward flow and reaches the tandish 2.
Since the convection stirring action takes place inside the tandish 2
The molten steel 14 inside was uniformly heated, and no non-uniformity in temperature was observed as in the conventional case.
本発明による連鋳タンディツシュにおける溶融金属加熱
方法は、上記実施例より明らかな如く、タンディツシュ
側壁を通じ高融点金属酸化物と黒鉛もしくはカーボラン
ダムとの混合体より成る1組の電極を挿通し、これを内
部に収容した溶融金属に浸漬せしめて直接通電する方法
を採ったので次の如き効果を収めることができた。As is clear from the above embodiment, the method for heating molten metal in a continuous casting tundish according to the present invention involves inserting a set of electrodes made of a mixture of a high melting point metal oxide and graphite or carborundum through the side wall of the tundish. By immersing it in the molten metal contained inside and directly applying electricity, we were able to achieve the following effects.
@)加熱装置はきわめて簡単であるうえに、その耐用期
間が長く経済的である。@) The heating device is extremely simple, has a long service life and is economical.
(ロ)本発明によれば、従来のアーク加熱の如き出力安
定化機能やフリッカ−抑止機能を必要とせず、かつ溝型
誘導加熱における如きピンチング抑止機能を必要とせず
、加熱制御性がすぐれている。(b) According to the present invention, there is no need for an output stabilization function or a flicker suppression function such as in conventional arc heating, and there is no need for a pinching suppression function such as in groove-type induction heating, and the heating controllability is excellent. There is.
(ハ) タンディツシュ内の溶融金属は電極間の抵抗に
よるジュール熱により加熱されるので、溶融金属と電極
とが接している限り連続鋳造の初期、中期、末期を問わ
ず加熱することが可能であり、しかも加熱効率が高い。(c) The molten metal in the tundish is heated by Joule heat due to the resistance between the electrodes, so as long as the molten metal is in contact with the electrodes, it can be heated regardless of the initial, middle, or final stages of continuous casting. , and has high heating efficiency.
に) タンディツシュ底部で加熱された高温溶融金属は
自然対流により上昇する攪拌作用があるので、収容され
ている溶融金属の温度分布は均一である。2) The high temperature molten metal heated at the bottom of the tundish has a stirring action that causes it to rise due to natural convection, so the temperature distribution of the molten metal contained therein is uniform.
(ホ)加熱装置の構成が(イ)の如く簡単であるので、
保守2点検が容易であり、かつ電極材料の抵抗、もしく
は電極材と通電ケーブルとの接触抵抗を下げることによ
り加熱出力の増加も可能である。(e) Since the configuration of the heating device is simple as in (a),
Maintenance and inspection are easy, and heating output can be increased by lowering the resistance of the electrode material or the contact resistance between the electrode material and the current-carrying cable.
第1図は本発明による連鋳タンディツシュにおける溶融
金属加熱方法を実施する装置を示す斜視図、第2図は本
発明による電極のタンディツシュ側壁貫通部を示す部分
拡大図、第3図、第4図。
第5図(ト)、@はいずれも連鋳タンディツシュ内の溶
融金属加熱の従来法を示し、第3図はトップのアーク加
熱法、第4図はトップの抵抗加熱法、第5図(へ)、@
は溝型誘導加熱法を示す、いずれも模式断面図である。
2・・・連鋳タンディツシュ、 2A・・・側壁1
2・・・電極 24・・・鉄皮26
・・・耐火物羽口れんが、 28・・・マイカ3
0・・・耐火モルタル
代理人 弁理士 中 路 武 雄
第1図
<今ケ企FIG. 1 is a perspective view showing an apparatus for carrying out the method of heating molten metal in a continuous casting tundish according to the present invention, FIG. 2 is a partially enlarged view showing the penetration part of the tundish side wall of an electrode according to the present invention, FIGS. 3 and 4 . Figures 5 (G) and @ all show the conventional methods of heating molten metal in the continuous casting tundish, Figure 3 is the top arc heating method, Figure 4 is the top resistance heating method, and Figure 5 ( ), @
2A and 2B are schematic cross-sectional views showing the groove-type induction heating method. 2...Continuous casting tundish, 2A...Side wall 1
2... Electrode 24... Iron skin 26
...Refractory tuyere brick, 28...Mica 3
0...Fireproof mortar agent Patent attorney Takeo Nakaji Figure 1
Claims (1)
属の加熱方法において、前記タンディッシュの側壁を通
じ高融点金属酸化物と黒鉛もしくはカーボランダムとの
混合体より成る電極を挿通し前記溶融金属に浸漬せしめ
て直接通電することを特徴とする連続鋳造用タンディッ
シュにおける溶融金属加熱方法。(1) In a method of heating molten metal housed in a tundish for continuous casting, an electrode made of a mixture of a high melting point metal oxide and graphite or carborundum is inserted through the side wall of the tundish to the molten metal. A method for heating molten metal in a tundish for continuous casting, characterized by dipping the metal and directly applying electricity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27829984A JPS61150758A (en) | 1984-12-25 | 1984-12-25 | Method for heating molten metal in tundish for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27829984A JPS61150758A (en) | 1984-12-25 | 1984-12-25 | Method for heating molten metal in tundish for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61150758A true JPS61150758A (en) | 1986-07-09 |
Family
ID=17595412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27829984A Pending JPS61150758A (en) | 1984-12-25 | 1984-12-25 | Method for heating molten metal in tundish for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61150758A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63168258A (en) * | 1987-01-06 | 1988-07-12 | Nippon Steel Corp | Channel refractory for intermediate channel type induction heating tundish |
EP0296562A2 (en) * | 1987-06-24 | 1988-12-28 | Aichi Steel Works, Ltd. | A casting system |
JPS6414335U (en) * | 1987-07-20 | 1989-01-25 | ||
JPH03106255U (en) * | 1990-02-09 | 1991-11-01 | ||
JPH03106257U (en) * | 1990-02-09 | 1991-11-01 |
-
1984
- 1984-12-25 JP JP27829984A patent/JPS61150758A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63168258A (en) * | 1987-01-06 | 1988-07-12 | Nippon Steel Corp | Channel refractory for intermediate channel type induction heating tundish |
EP0296562A2 (en) * | 1987-06-24 | 1988-12-28 | Aichi Steel Works, Ltd. | A casting system |
US4849014A (en) * | 1987-06-24 | 1989-07-18 | Aichi Steel Works, Ltd. | Molten metal heating method |
JPS6414335U (en) * | 1987-07-20 | 1989-01-25 | ||
JPH0354664Y2 (en) * | 1987-07-20 | 1991-12-03 | ||
JPH03106255U (en) * | 1990-02-09 | 1991-11-01 | ||
JPH03106257U (en) * | 1990-02-09 | 1991-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6128914B2 (en) | ||
US1820248A (en) | Glass making furnace and method | |
JPS61150758A (en) | Method for heating molten metal in tundish for continuous casting | |
ES8600726A1 (en) | Melting furnaces. | |
US2589301A (en) | Electric melting furnace | |
JPS6124984A (en) | Electric connector for refining furnace | |
CN106232265A (en) | Casting ladle heater | |
JP5654339B2 (en) | Induction heating type aluminum melting and holding furnace | |
JP5473271B2 (en) | Electric heating device | |
US2021221A (en) | Method of and apparatus for producing fused refractory and abrasive materials | |
JPH0789027B2 (en) | DC arc furnace | |
US1337305A (en) | A coxpqbation oe con | |
US1915700A (en) | Induction furnace for the heating of metals having a high melting point | |
US984970A (en) | Furnace for metallurgical purposes. | |
JPH07190623A (en) | Manufacture of fireproof lining of metallurgical vessel and metallurgical vessel for dc arc device | |
GB1473091A (en) | ||
CN108870964A (en) | A kind of electromagnetic induction holding furnace | |
JPH11219781A (en) | Cooling structure for furnace-bottom electrode of direct current arc furnace | |
CN212842883U (en) | Production facility is smelted to gold | |
US932986A (en) | Transforming smelting-furnace. | |
SU113180A1 (en) | Crucible for smelting metals | |
JPS5825470A (en) | Indirect heating furnace for surface treatment of metal or the like using boride bath | |
KR790002154Y1 (en) | An electrical heater for use in apparatus for the manufacture of flat glass | |
SU1077698A1 (en) | Slide gate | |
JPH0625839Y2 (en) | Wall electrodes of DC arc furnace |