JPS61115354A - Amorphous semiconductor solar cell - Google Patents
Amorphous semiconductor solar cellInfo
- Publication number
- JPS61115354A JPS61115354A JP59236816A JP23681684A JPS61115354A JP S61115354 A JPS61115354 A JP S61115354A JP 59236816 A JP59236816 A JP 59236816A JP 23681684 A JP23681684 A JP 23681684A JP S61115354 A JPS61115354 A JP S61115354A
- Authority
- JP
- Japan
- Prior art keywords
- tin oxide
- transparent electrode
- ray diffraction
- solar cell
- amorphous semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 30
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 11
- 239000007921 spray Substances 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 2
- 230000008021 deposition Effects 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000001364 causal effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は透光性基板の上に酸化錫製の透明電極、非晶質
半導体層、及び背面電極を順次形成して成る非晶質半導
体太陽電池の改良に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an amorphous semiconductor formed by sequentially forming a transparent electrode made of tin oxide, an amorphous semiconductor layer, and a back electrode on a transparent substrate. Concerning improvements in solar cells.
〈従来の技術〉
透光性基板上にCVD法、スプレー法等により酸化錫膜
を形成してこれを透明電極とし、更にこの上に非晶質半
導体層、背面電極を順次形成して成る非晶質半導体太陽
電池は、従来からも種々の製造パラメータによったもの
が開発されてし)るが、それらの中にあっては、8%程
度の変換効率が得られるものもある。<Prior art> A tin oxide film is formed on a transparent substrate by a CVD method, a spray method, etc., this is used as a transparent electrode, and an amorphous semiconductor layer and a back electrode are sequentially formed on this. Crystalline semiconductor solar cells have been developed using various manufacturing parameters, and some of them have a conversion efficiency of about 8%.
しかし、こうした太陽電池の酸化錫透明電極の結晶面に
関して、X線回折パターンとの兼ね合いでどのような面
が良いのかに就き検討されたものはなく、従って勿論、
特定の結晶面を指定すると上記の値よりも更に変換効率
が増す等の研究は、−切、なされていなかった。However, with regard to the crystal plane of the tin oxide transparent electrode of such a solar cell, there has been no study on which plane is best in terms of the X-ray diffraction pattern, and therefore, of course,
No research has been conducted to show that specifying a specific crystal plane increases the conversion efficiency even more than the above value.
〈発明が解決しようとする問題点〉
例えば従来法によって作成された非晶質半導体太陽電池
における酸化錫透明電極のX線回折ノ(ターンの一例を
取ってみると1例えば第3図に示すようなものとなる。<Problems to be solved by the invention> For example, X-ray diffraction data (taking an example of a turn) of a tin oxide transparent electrode in an amorphous semiconductor solar cell produced by a conventional method, for example, as shown in FIG. Become something.
サンプルとした従来の非晶質半導体太陽電池は、その酸
化錫透明電極を作成するときの基板温度を480℃、膜
厚な0.7%m、成長速度を30人/seeとしたもの
で、他は後述する本発明の第一実施例と同様、通常の作
成手法によって作成されており、短絡電流密度Jscは
1B、8■A/cm2.開放電圧Vocは0.8V、曲
線因子FFはo、eo、ソシテ変換効率は8.06%と
なっている。従ってこの太陽電池は、その変換効率に鑑
みると、従来にあっても優秀な部類に入るものである。In the conventional amorphous semiconductor solar cell used as a sample, the substrate temperature was 480°C, the film thickness was 0.7% m, and the growth rate was 30 people/see when creating the tin oxide transparent electrode. The other parts are made by the usual method as in the first embodiment of the present invention described later, and the short circuit current density Jsc is 1B, 8A/cm2. The open circuit voltage Voc is 0.8V, the fill factor FF is o, eo, and the conversion efficiency is 8.06%. Therefore, in view of its conversion efficiency, this solar cell is in the excellent category even among conventional solar cells.
しかし、第3図を見ると分かるように、その酸化錫透明
電極のX線回折パターンは、大小幾つかのピークを持つ
ものとなっていて、最大ピークは(211)面となって
いる。However, as can be seen from FIG. 3, the X-ray diffraction pattern of the tin oxide transparent electrode has several large and small peaks, with the largest peak being on the (211) plane.
してみるに、もし仮に、このX線回折パターンに関して
変換効率との間に何等かの相関が見い出せれば、或いは
更に変換効率を向上させることができるかも知れない。As a result, if some correlation can be found between this X-ray diffraction pattern and the conversion efficiency, it may be possible to further improve the conversion efficiency.
本発明はこうした新たな知見乃至発想に基き成されたも
ので、この種の非晶質半導体太陽電池にあって、その酸
化錫透明電極のX線回折パターンに着目し、それと結晶
面との間に少なくとも何等かの相関を採ることにより、
太陽電池としての変換効率の向上に繋がる因果関係を導
出できないかとしたものである。The present invention was based on these new findings and ideas, and focused on the X-ray diffraction pattern of the tin oxide transparent electrode in this type of amorphous semiconductor solar cell, and focused on the relationship between it and the crystal plane. By taking at least some correlation with
The aim was to derive a causal relationship that would lead to improved conversion efficiency as a solar cell.
従って換言すれば1本発明の目的は、酸化錫透明電極を
用いた非晶質半導体太陽電池にあって、その変換効率を
従来におけるよりも更に向上させることにあり、またそ
のために、X線回折パターンと酸化錫透明電極の結晶面
との間に1発明の構成として特定できる何等かの因果関
係を導出することにある。Therefore, in other words, an object of the present invention is to further improve the conversion efficiency of an amorphous semiconductor solar cell using a tin oxide transparent electrode than in the past. The object of the present invention is to derive some kind of causal relationship between the pattern and the crystal plane of the tin oxide transparent electrode, which can be specified as a configuration of the invention.
〈問題点を解決するための手段)
上記目的を達成するため、乃至達成した結果として、本
発明においては、
透光性基板上に酸化錫製の透明電極、非晶質半導体層、
及び背面電極を順次形成して成る非晶質半導体太陽電池
において、
上記酸化錫製の透明電極は、X線回折パターンにおいて
(200)面に最強ピークを持つことを特徴とする非晶
質半導体太陽電池を提供する。<Means for Solving the Problems> In order to achieve the above object, or as a result of achieving the above object, the present invention provides the following: a transparent electrode made of tin oxide, an amorphous semiconductor layer,
The transparent electrode made of tin oxide has the strongest peak in the (200) plane in the X-ray diffraction pattern. Provide batteries.
(作 用〉
よwcオイ−c (200)□41 mM (200)
□、 1−の原子間隔を有する結晶面を全て含む総称
で・あるが、上記本発明に即して構成された非晶質半導
体太陽電池においては、9%を越える高い変換効率を実
現することができる。(Effect> YowcOi-c (200)□41mM (200)
□ is a general term that includes all crystal planes with an atomic spacing of 1-, but in an amorphous semiconductor solar cell constructed in accordance with the present invention, a high conversion efficiency exceeding 9% can be achieved. Can be done.
但しこのように、 (200)面にX線回折パターン
上の最強ピークを有する酸化錫膜の作成それ自体は、作
成条件を適切に制御することにより、公知既存の適宜な
手法、例えばスプレー法、CVD法、真空蒸着法、スパ
ッタ法等によってなすことができる。However, in this way, the production of a tin oxide film having the strongest peak in the X-ray diffraction pattern on the (200) plane can be achieved by appropriately controlling the production conditions using known and existing methods, such as the spray method, This can be done by a CVD method, a vacuum evaporation method, a sputtering method, or the like.
例えばスプレー法では、420〜480℃に加熱した透
光性基板の上に、錫の塩化物等を溶解した原料液を堆積
速度が5〜30A /sea程度となるようにスプレー
L、 0.3〜1.2j1m程度の膜厚に形成するこ
とで、目的の(200)面にX線回折最強ピークを有す
る酸化錫透明電極を得ることができる。For example, in the spray method, a raw material solution in which tin chloride, etc. is dissolved is sprayed onto a transparent substrate heated to 420 to 480°C at a deposition rate of about 5 to 30 A/sea at L, 0.3. By forming the film to a thickness of about 1.2 m, a tin oxide transparent electrode having the strongest X-ray diffraction peak on the desired (200) plane can be obtained.
またCVD法では、基板温度400〜450℃、成長速
度1〜10人/sec、膜厚0.3〜1.2jlO1程
度の条件で、目的の(200)面にX線回折最強ピーク
を有する酸化錫透明電極を作成することができる。In addition, in the CVD method, the substrate temperature is 400 to 450°C, the growth rate is 1 to 10 people/sec, and the film thickness is about 0.3 to 1.2jlO1. Tin transparent electrodes can be created.
モしていづれの方法によった場合にも、太陽電池として
完成させるには、当該透明電極の上に公知既存の手法に
よって一般にP+l++1+の各層から成る非晶質半導
体層を形成した後、同様に公知既存の手法によって更に
その上に背面電極を作成すれば良い。Regardless of which method is used, in order to complete a solar cell, an amorphous semiconductor layer generally consisting of P+l++1+ layers is formed on the transparent electrode by a known existing method, and then the same process is performed. A back electrode may be further formed thereon using a known existing method.
(実 施 例〉
本声明の思想に即し、X線回折パターンにおいて(20
G)面に最強ピークを持つ酸化錫透明電極を有する非晶
質半導体太陽電池の第一の実施例として、先づ第1図に
示すように、当該酸化錫透明電極のX線回折パターンが
(200)面において最強且つ単一のピークを持つ場合
の作成例を挙げる。(Example of implementation) In accordance with the idea of this statement, in the X-ray diffraction pattern (20
As a first example of an amorphous semiconductor solar cell having a tin oxide transparent electrode having the strongest peak in the plane G), as shown in FIG. 200) plane has the strongest and single peak.
258の5nC1鴫・5)120と、0.317gの5
nCI4 を 150ccのHCI水溶液に溶解させ、
スプレーの原料液を作った。258 of 5nC1 5) 120 and 0.317g of 5
Dissolve nCI4 in 150 cc of HCI aqueous solution,
I made the raw material liquid for the spray.
次に透光性基板としてコーニング社製の@7059のガ
ラス基板を用い、これを洗浄した後、440℃に加熱さ
れたホット・プレート上に載せて十分加熱した。Next, a glass substrate @7059 manufactured by Corning was used as a light-transmitting substrate, and after cleaning, it was placed on a hot plate heated to 440° C. and sufficiently heated.
その後、当該加熱状態のまま、大気中でその表面に上記
原料液をスプレーし、且つ、それによる酸化錫結晶の成
長速度がIOA 1secとなるように当該スプレー量
を調整して、膜厚1.1層のS+102膜を得た。Thereafter, the raw material liquid is sprayed onto the surface of the heated surface in the atmosphere, and the spray amount is adjusted so that the growth rate of tin oxide crystals is IOA 1 sec, so that the film thickness is 1. One layer of S+102 film was obtained.
このようにして得られた酸化錫透明電極のX線回析結果
が上記のように第1図であって、 (200)面にのみ
、単一の最強ピークが現れ、他のピークは観測されない
ものとなっている。The X-ray diffraction results of the tin oxide transparent electrode obtained in this way are shown in Figure 1, as shown above, where a single strongest peak appears only on the (200) plane, and no other peaks are observed. It has become a thing.
こうした酸化錫透明電極上に、公知の平行平板型プラズ
マCVD法により、非晶質半導体層として、2層、1層
、n暦を順に作成した。On such a tin oxide transparent electrode, two layers, one layer, and n layers were sequentially formed as amorphous semiconductor layers by a known parallel plate plasma CVD method.
pWjは、 SiH4ガスと、これに対して0.5体積
%のB2)16ガス、及びBO体体積のCH4ガスから
成る混合ガスを真空槽内に導入し、真空度0.8Tor
r。pWj is determined by introducing a mixed gas consisting of SiH4 gas, 0.5% by volume of B2)16 gas, and BO body volume of CH4 gas into a vacuum chamber, and setting the vacuum to 0.8 Tor.
r.
周波数13.58MHz、電力Q、IW/am2なる条
件下でグロー放電を生じさせることにより、約150人
の膜厚に形成した。The film was formed to a thickness of approximately 150 mm by generating glow discharge under the following conditions: frequency 13.58 MHz, power Q, IW/am2.
1層は、上記混合ガスを真空槽から排気した後、同槽内
に改めてSiH4ガスのみを導入し、真空度1.0To
rrの下で約5500人の膜厚にまで作成した。For the first layer, after evacuating the above mixed gas from the vacuum chamber, only SiH4 gas was introduced into the same chamber, and the vacuum degree was 1.0To.
It was made to a film thickness of approximately 5,500 people under rr.
nWは、真空層から上記SiH4ガスを排気した後、新
たに同槽内にS iH4ガスと、これに対して0.8体
積%のPH3ガスとから成る混合ガスを導入し、真空度
1.0Torrの下で約250人の膜厚に作成した。In nW, after exhausting the SiH4 gas from the vacuum layer, a mixed gas consisting of SiH4 gas and 0.8% by volume of PH3 gas is newly introduced into the same tank, and the degree of vacuum is 1. It was made to a thickness of about 250 mm under 0 Torr.
基板温度は上記いづれの層の形成時にも250℃一定と
した。The substrate temperature was kept constant at 250° C. during the formation of any of the above layers.
こうして作成した非晶質半導体層の上には、既存の真空
蒸着法によりAM膜を約1.04 、作成し、背面電極
とした。On the amorphous semiconductor layer thus formed, an AM film having a thickness of about 1.04 mm was formed by a conventional vacuum evaporation method to serve as a back electrode.
このようにして作成された本発明第一実施例の太陽電池
をAM−1,100腸留/ CS2のソーラー・シミュ
レータを用いて測定した所、短絡電流密度Jscは18
.2mA/ as2、開放電圧Voc j*0.858
V、曲線因子FFは0.887で、その変換効率は実に
3.24%が得られていた。When the solar cell of the first embodiment of the present invention prepared in this way was measured using an AM-1,100 solar simulator/CS2, the short circuit current density Jsc was 18.
.. 2mA/as2, open circuit voltage Voc j *0.858
V and fill factor FF were 0.887, and the conversion efficiency was actually 3.24%.
次に本発明の第二の実施例に就き説明する。Next, a second embodiment of the present invention will be described.
寸
上記第−実施例と同じ原料液、同じガラス基板を用いて
、460℃に加熱されたホット・プレート上に当該ガラ
ス基板を載せ、十分に加熱した。Using the same raw material solution and the same glass substrate as in Example 1 above, the glass substrate was placed on a hot plate heated to 460° C. and sufficiently heated.
その後、上記原料液をガラス基板上にスプレーし、膜厚
0.7閾の5nOz膜を得た。このときの当該酸化錫結
晶成長速度は15A /secとなるようにスプレー量
を調整した。Thereafter, the raw material solution was sprayed onto a glass substrate to obtain a 5nOz film with a thickness of 0.7 threshold. The spray amount was adjusted so that the tin oxide crystal growth rate at this time was 15 A/sec.
このようにして得られた第二l施例における酸化錫透明
電極のX線回析結果は第2図に示されているが、これに
見る通り、小さなピークは他にも幾つかあるものの、最
強ピークはやはり (20G)面となっている。The X-ray diffraction results of the tin oxide transparent electrode obtained in Example 2 are shown in FIG. 2, and as can be seen, although there are several other small peaks, The strongest peak is still on the (20G) plane.
この酸化錫透明電極の上に、第一実施例と同様の方法に
より非晶質半導体層、背面電極を形成し、非晶質太陽電
池として完成させたものを、第一実施例に即して作成さ
れた非晶質半導体太陽電池におけると同様の測定に掛け
た所、短絡電流密度Jscは15.3sA/am2.開
放電圧Vocは◎、asev、曲線因子FFは0.87
1となり、変換効率は8.2%が得られていた。An amorphous semiconductor layer and a back electrode were formed on this tin oxide transparent electrode by the same method as in the first example, and an amorphous solar cell was completed according to the first example. When subjected to the same measurement as in the produced amorphous semiconductor solar cell, the short circuit current density Jsc was 15.3 sA/am2. Open circuit voltage Voc is ◎, asev, fill factor FF is 0.87
1, and a conversion efficiency of 8.2% was obtained.
〈発明の効果〉
以上のように、本発明によれば、、似たような条件下で
作成された非晶質太陽電池の変換効率を、従来の8%程
度から9%以トに才でi4+、−1トげス、−とができ
る。<Effects of the Invention> As described above, according to the present invention, the conversion efficiency of an amorphous solar cell created under similar conditions can be increased from about 8% to 9% or more. i4+, -1 Toges, - can be done.
勿論、上記数値は一例であるが、本発明の教えに即し、
X線回折パターンにおいて(200)面に最強ピークを
持つように作成条件を適切に設定して酸化錫透明電極を
作成すれば、そうでないものに比して必ずや変換効率は
向上させることができるのである。Of course, the above numerical values are just examples, but in accordance with the teachings of the present invention,
If you create a tin oxide transparent electrode by appropriately setting the manufacturing conditions so that the X-ray diffraction pattern has the strongest peak on the (200) plane, you can definitely improve the conversion efficiency compared to something that does not. be.
第1図は本発明の第一実施例の酸化錫透明電極のX線回
折パターン図、第2図は本発明の第二実施例の酸化錫透
明電極のX線回折パターン図、第3図は従来の非晶質太
陽電池における酸化錫透明電極の代表的な一例のX線回
折パターン図、である。FIG. 1 is an X-ray diffraction pattern diagram of a tin oxide transparent electrode according to a first embodiment of the present invention, FIG. 2 is an X-ray diffraction pattern diagram of a tin oxide transparent electrode according to a second embodiment of the present invention, and FIG. 1 is an X-ray diffraction pattern diagram of a typical example of a tin oxide transparent electrode in a conventional amorphous solar cell.
Claims (1)
、及び背面電極を順次形成して成る非晶質半導体太陽電
池において、 上記酸化錫製の透明電極は、X線回折パターンにおいて
(200)面に最強ピークを持つことを特徴とする非晶
質半導体太陽電池。[Claims] In an amorphous semiconductor solar cell in which a transparent electrode made of tin oxide, an amorphous semiconductor layer, and a back electrode are sequentially formed on a transparent substrate, the transparent electrode made of tin oxide is , an amorphous semiconductor solar cell characterized by having the strongest peak in the (200) plane in an X-ray diffraction pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236816A JPS61115354A (en) | 1984-11-12 | 1984-11-12 | Amorphous semiconductor solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236816A JPS61115354A (en) | 1984-11-12 | 1984-11-12 | Amorphous semiconductor solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61115354A true JPS61115354A (en) | 1986-06-02 |
Family
ID=17006202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59236816A Pending JPS61115354A (en) | 1984-11-12 | 1984-11-12 | Amorphous semiconductor solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61115354A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01259572A (en) * | 1988-04-11 | 1989-10-17 | Nippon Sheet Glass Co Ltd | Amorphous solar cell |
JPH0296381A (en) * | 1988-09-30 | 1990-04-09 | Kanegafuchi Chem Ind Co Ltd | Semiconductor device |
JPH02231773A (en) * | 1989-03-03 | 1990-09-13 | Nippon Sheet Glass Co Ltd | Amorphous solar cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60240166A (en) * | 1984-05-14 | 1985-11-29 | Taiyo Yuden Co Ltd | Amorphous silicon solar battery and manufacture thereof |
-
1984
- 1984-11-12 JP JP59236816A patent/JPS61115354A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60240166A (en) * | 1984-05-14 | 1985-11-29 | Taiyo Yuden Co Ltd | Amorphous silicon solar battery and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01259572A (en) * | 1988-04-11 | 1989-10-17 | Nippon Sheet Glass Co Ltd | Amorphous solar cell |
JPH0296381A (en) * | 1988-09-30 | 1990-04-09 | Kanegafuchi Chem Ind Co Ltd | Semiconductor device |
JPH02231773A (en) * | 1989-03-03 | 1990-09-13 | Nippon Sheet Glass Co Ltd | Amorphous solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0179547B1 (en) | Thin film solar cell with free tin on transparent conductor | |
CN106953015B (en) | A kind of preparation method of high efficiency large area perovskite solar battery | |
JPH0230176B2 (en) | ||
JP4557400B2 (en) | Method for forming deposited film | |
JPS56116673A (en) | Amorphous thin film solar cell | |
JPH07263732A (en) | Polycrystalline silicon device | |
CN105489669B (en) | A kind of silicon heterogenous solar cell and its interface processing method | |
JP3146112B2 (en) | Plasma CVD equipment | |
JPS6150378A (en) | Manufacture of amorphous solar cell | |
JPS61115354A (en) | Amorphous semiconductor solar cell | |
JPH0142125B2 (en) | ||
JPH0568097B2 (en) | ||
JPS5864070A (en) | Amorphous silicon solar battery containing fluorine | |
WO2019085458A1 (en) | Solar cell and preparation method therefor | |
JPH0510835B2 (en) | ||
JPS6066422A (en) | Manufacture of semiconductor | |
JP3272681B2 (en) | Solar cell manufacturing method | |
JPS61256625A (en) | Manufacture of thin film semiconductor element | |
JPH04355970A (en) | Manufacture of solar cell | |
JPS5835988A (en) | Amorphous silicon solar cell | |
JPH05136440A (en) | Manufacture of photovoltaic device | |
JP2002261312A (en) | Method of manufacturing hybrid thin-film photoelectric conversion device | |
JPS6336521A (en) | Fromation of amorphous thin film | |
JPS57153436A (en) | Semiconductor device | |
JP2728874B2 (en) | Semiconductor device manufacturing method |