JPS6099306A - Permselective composite membrane and its preparation - Google Patents

Permselective composite membrane and its preparation

Info

Publication number
JPS6099306A
JPS6099306A JP58208789A JP20878983A JPS6099306A JP S6099306 A JPS6099306 A JP S6099306A JP 58208789 A JP58208789 A JP 58208789A JP 20878983 A JP20878983 A JP 20878983A JP S6099306 A JPS6099306 A JP S6099306A
Authority
JP
Japan
Prior art keywords
polyallylamine
solution
membrane
composite membrane
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58208789A
Other languages
Japanese (ja)
Other versions
JPS6260922B2 (en
Inventor
Susumu Harada
享 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP58208789A priority Critical patent/JPS6099306A/en
Publication of JPS6099306A publication Critical patent/JPS6099306A/en
Publication of JPS6260922B2 publication Critical patent/JPS6260922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • B01D71/601Polyethylenimine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a permselective composite membrane having high chlorine resistance by crosslinking polyallylamine with a compd. having >=2 functional groups capable of reacting with prim. amino group on a supporting film. CONSTITUTION:A soln. obtd. by dissolving polyallylamine in water, hydrophilic solvent or a mixture thereof is coated on a porous supporting film or impregnated into the film. After removing excess soln. if necessary, by flowing down, obtd. composite body is allowed to contact with a compd. having at least two functional groups capable of reacting with prim. amino group, heating thereafter, if necessary, to perform crosslinking reaction. Suitable hydrophilic solvent is methanol, and suitable concn. of the film forming liquid is 0.05-10wt%. The crosslinking reaction is performed with 0.05-10wt% concn. of the crosslinking agent and 10sec-10min contact time, then heating at room temp. -90 deg.C, further heating at 100-130 deg.C for 2-30min.

Description

【発明の詳細な説明】 技術分野 本発明唸新しい選択透過性複合膜及びその製造方法に憫
し、更に詳しくは高い選択透過性に加えて、耐塩素性の
優れた選択透過性複合膜及びその製造方法に関するもの
である。
Detailed Description of the Invention Technical Field The present invention provides a new permselective composite membrane and a method for producing the same, and more specifically, a permselective composite membrane with high chlorine resistance in addition to high permselectivity, and its manufacturing method. This relates to a manufacturing method.

背景技術 現在広く利用されているセルロース・アセテート系逆浸
透膜は、その基本性能紘優れているが、加水分解性、微
生物による分解劣化性、圧密性などの点に問題がある。
BACKGROUND ART Cellulose acetate reverse osmosis membranes, which are currently widely used, have excellent basic performance, but have problems in terms of hydrolyzability, deterioration due to microorganisms, and compactability.

仁のためこれらの欠点を持たない多くの合成高分子膜素
材が提案されている。
Many synthetic polymer membrane materials have been proposed that do not have these drawbacks.

たとえば多官能性化合物で橋かけされたポリエチレンイ
ミンを基体とする複合膜(米国特許4.039,440
号明細書参照)、同じく橋かけされたアミン変性ポリエ
ピクロルヒPリンを基体とする複合膜(米国特許4,0
05,012号明細書参照)、同じく橋かけされたアク
リロニトリル変性ポリエチレンイミンを基体とする複合
膜(米国特許3,951,815号明細書参照)、同じ
く橋かけされたポリジアリルアミン重合体を基体とする
複合膜(特開昭54−151570号公報)などがセル
ロースアセテート系膜の上記欠点を改良した膜として提
案されている。然しながらこの様なポリアミン系の膜は
耐塩素性が十分でなく、塩素滅菌による性能の低下、さ
らに長時間連続使用時に、水道水中の塩素の作用による
性能の低下が見られる。前記米国特許3,951.8 
t 5号明細誓及び特開昭54−151570号公報で
は、得られた膜の耐塩素性が優れていると主張している
が十分でなく、一般に耐酸化性を改良するために変性を
行った複合膜は、透水性が大巾に低下する傾向がある。
For example, a composite membrane based on polyethyleneimine cross-linked with a polyfunctional compound (U.S. Pat. No. 4,039,440)
(see US Pat. No. 4,006,000), a composite membrane based on cross-linked amine-modified polyepichlorohydrin (U.S. Pat.
05,012), composite membranes based on similarly cross-linked acrylonitrile-modified polyethyleneimine (see U.S. Pat. No. 3,951,815), and composite membranes based on similarly cross-linked polydiallylamine polymers (see US Pat. No. 3,951,815). A composite membrane (Japanese Unexamined Patent Publication No. 54-151570) has been proposed as a membrane that improves the above-mentioned drawbacks of cellulose acetate membranes. However, such polyamine-based membranes do not have sufficient chlorine resistance, and their performance deteriorates due to chlorine sterilization, and furthermore, when used continuously for a long time, their performance deteriorates due to the action of chlorine in tap water. Said U.S. Pat. No. 3,951.8
Although the specifications of No. 5 and JP-A-151570 claim that the obtained membrane has excellent chlorine resistance, it is not sufficient and it is generally modified to improve oxidation resistance. Composite membranes tend to have significantly reduced water permeability.

発明の開示 本発明者は、ポリアミン重合体を基体として、セルロー
スアセテート系複合膜の有する問題点を解消し、かつ耐
塩素性の優れた複合膜を開発するために種々検討した結
果、次の結論に到達した。
DISCLOSURE OF THE INVENTION The present inventor has conducted various studies in order to solve the problems of cellulose acetate-based composite membranes and develop a composite membrane with excellent chlorine resistance using a polyamine polymer as a base material, and has come to the following conclusion. reached.

すなわち同じ橋かけ剤を用いて橋かけした場合、得られ
る複合膜の耐塩素性は、基体として使用したポリアミン
中のアミノ基の種類に依存し、第一アミノ基〉第二アミ
ノ基Σ第三アミノ基≧第四アンモニウム基。
In other words, when cross-linked using the same cross-linking agent, the chlorine resistance of the resulting composite membrane depends on the type of amino groups in the polyamine used as the substrate, and the Amino group ≧ quaternary ammonium group.

の順序である。すなわち第一アミノ基だけを含む重合体
を基体とする複合膜の耐塩素性は、第二アミノ基のみを
含むポリアミンまたは第三アミ7基及び/または第四級
アンモニウム基を一部含むポリアミンを基体とする複合
膜の耐塩素性よシ優れているという結論に達した。
The order is In other words, the chlorine resistance of a composite membrane based on a polymer containing only primary amino groups can be improved by using a polyamine containing only secondary amino groups or a polyamine partially containing tertiary amino groups and/or quaternary ammonium groups. It was concluded that the chlorine resistance of the composite membrane used as the base was superior.

本発明者は、第一アミノ基のみを含むポリアミン重合体
であるポリアリルアミン(モノアリルアミン重合体)を
、多孔性支持膜上で、第一アミノ基と反応する基を分子
中に2個以上含む化合物と反応させて橋かけすることに
よシ得られる複合膜が高い選択透過性を有し、かつ耐塩
素性が極めて優れていることを見い出し本発明を完成し
た。
The present inventor has prepared polyallylamine (monoallylamine polymer), which is a polyamine polymer containing only primary amino groups, on a porous support membrane, which contains two or more groups in the molecule that react with primary amino groups. The present invention was completed by discovering that a composite membrane obtained by crosslinking by reacting with a compound has high permselectivity and extremely excellent chlorine resistance.

基を少くとも2個有する化合物(II)を用いて埜・と
からなることを特徴とする選択透過性複合膜にある。
There is a permselective composite membrane characterized in that the compound (II) having at least two groups is used.

また本発明はポリアリルアミン(I)と、第17ミノ基
と反応する官能基を少くとも2個有する化合物(I[)
とを多孔性支持膜(A)上で接触させ、必要に応じて加
熱処理して、橋かけ反応を朽なわせポリアリルアミン橋
かけ反応物(B)を形成させることを特徴とする選択透
過性複合膜の製造方法にある。
The present invention also provides polyallylamine (I) and a compound (I[) having at least two functional groups that react with the 17th amino group.
A permselective method characterized by contacting with the above on a porous support membrane (A), and heat-treating as necessary to destroy the cross-linking reaction and form a polyallylamine cross-linked reactant (B). In the method for manufacturing a composite membrane.

発明を実施するための最良の形態 本発明の選択透過性複合膜の製造方法の一態様によれば
、前記ポリアリルアミン(I)を、水、親水性溶媒また
は水−親水性溶媒混合溶媒に溶した溶液を多孔性支持膜
(A)に塗布または含浸させた後、必要に応じて過剰な
溶液を流下させて除き、得られた複合体を、第17ミノ
基と反応する官能基を少くとも2個有する化合物(II
)と接触させ、その後必、要に応じて腋複合体を加熱処
理して橋かけ反応を行わせるのが特に好ましい。なお前
記親水性溶媒としては低級アルコール特にメタノールが
挙げられるがこれに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION According to one aspect of the method for producing a permselective composite membrane of the present invention, the polyallylamine (I) is dissolved in water, a hydrophilic solvent, or a water-hydrophilic solvent mixed solvent. After coating or impregnating the porous support membrane (A) with the solution, excess solution is removed by flowing down as necessary, and the resulting composite is treated with at least one functional group that reacts with the 17th amino group. A compound having two (II
), and then, if necessary, heat-treating the axillary composite to carry out a cross-linking reaction. Note that the hydrophilic solvent includes lower alcohols, particularly methanol, but is not limited thereto.

また本発明の選択透過性複合膜の製造方法の他の態様に
よれば、橋かけ剤である前記化合物(II)を予じめ添
加したポリアリルアミン(In!液を・多孔性支持膜(
A)に塗布または含浸させた後、該多孔性支持膜上で前
記ポリアリルアミン(I)と前記化合物(II)との反
応を行なわせてもよい。
According to another aspect of the method for producing a permselective composite membrane of the present invention, a polyallylamine (In! solution) to which the compound (II) as a crosslinking agent has been added in advance is mixed with a porous support membrane (
After coating or impregnating A), the polyallylamine (I) and the compound (II) may be reacted on the porous support membrane.

本発明で用いられるポリアリルアミン(I)はる、第一
アミノ基だけを含むポリアミンであるが、これまで、そ
の工業的製造法が知られていなかった。最近本発明者は
、モノアリルアミンの無機酸塩を水系媒体中で特定のア
ゾ系開始剤を用いて重合スルことにょシ極めて容易にポ
リアリルアミンの無機酸塩が得られることを見い出し、
ポリアリルアミンの工業的製造法を確立し、これを特許
出願している(特願昭58−54988号)。その製造
法の一例を参考例として後記したので、それを参照され
たい。
The polyallylamine (I) used in the present invention is a polyamine containing only primary amino groups, but no industrial method for producing it has been known so far. Recently, the present inventor has discovered that an inorganic acid salt of polyallylamine can be obtained very easily by polymerizing an inorganic acid salt of monoallylamine in an aqueous medium using a specific azo initiator.
We have established an industrial method for producing polyallylamine and have filed a patent application for this (Japanese Patent Application No. 54988-1988). An example of the manufacturing method is described below as a reference example, so please refer to it.

次にこのようにして得られたポリアリルアミン(4)の
溶液を、塗布または含浸させて、複合膜を造るのに用い
られる多孔性支持膜(A)としては、一般に孔径が5o
〜3000A、好ましくは100〜ioooM、膜定数
C2kll / cm”の圧力下での純水の透過量〕が
1〜10−’、!i’/crn2−sec・atm、望
ましくは10−” 〜10−3.ji’ /2” ・s
ea −atmの非対称構造のものが好ましい。膜の素
拐としては、ポリエーテルスルホン、ポリ塩化ビニル、
ポリアクリロニトリル、セルロースアセテート、塩素化
ポリ塩化ビニル、およびポリプロピレンなどが用いられ
るが、最も望ましいものは全芳香族ポリエーテルスルホ
ンである。これら多孔性支持膜(A)は片側を布または
不織布などで補強した形態で使用するのが好ましい。そ
のような布または不織布の素材としては、ポリエチレン
テレフタレート、ポリスチレン、ポリプロピレン、ナイ
ロンまたはポリ塩化ビニルなどが挙げられる。
Next, the solution of polyallylamine (4) obtained in this way is applied or impregnated to form a porous support membrane (A) that is used to produce a composite membrane.
~3000A, preferably 100~ioooM, membrane constant C2kll/cm" permeation amount of pure water under pressure of 1~10-', !i'/crn2-sec atm, preferably 10-"~10 -3. ji'/2"・s
An asymmetric structure of ea-atm is preferred. Membrane materials include polyether sulfone, polyvinyl chloride,
Polyacrylonitrile, cellulose acetate, chlorinated polyvinyl chloride, and polypropylene are used, but the most desirable one is wholly aromatic polyether sulfone. These porous support membranes (A) are preferably used with one side reinforced with cloth or nonwoven fabric. Materials for such cloth or nonwoven fabric include polyethylene terephthalate, polystyrene, polypropylene, nylon, or polyvinyl chloride.

このような多孔性支持膜(A)上に塗布または含浸する
際のポリアリルアミン(I)溶液の濃度は0.05〜1
0 wtチ好ましくは、0.1〜5wt%である。次に
多孔性支持膜上に塗布されたポリアリルアミン(I)溶
液紘、通常風乾後に橋かけ剤である化合物(II)によ
シ橋かけ処理されるが、ポリアリルアミン(I)溶液に
橋かけ剤である化合物(n)を混合して得た混合液を多
孔性支持膜(A)に塗布または含浸させることもできる
The concentration of the polyallylamine (I) solution when coating or impregnating onto such a porous support membrane (A) is 0.05 to 1.
0 wt%, preferably 0.1 to 5 wt%. Next, the polyallylamine (I) solution coated on the porous support membrane is usually air-dried and then cross-linked with a cross-linking agent, compound (II). It is also possible to apply or impregnate the porous support membrane (A) with a mixed solution obtained by mixing the compound (n) which is the agent.

本発明で用いられる橋かけ剤である化合物(II)の好
ましいものは、ホルムアルデヒド、またはハロゲン基、
アルデヒド基、エポキシ基、酸無水物基、酸ハライr基
、N−クロロホルミル基、クロロホーメイト基、イミr
エーテル基、アミジニル基、イソシアナート基から選ば
れた1種または2種以上の官能基を少くとも2個有する
化合物であシ、その内の代表的なものを例示すると、次
のものが挙げられる。
Compound (II), which is a crosslinking agent used in the present invention, is preferably formaldehyde or a halogen group,
Aldehyde group, epoxy group, acid anhydride group, acid halide group, N-chloroformyl group, chloroformate group, imir group
Compounds having at least two functional groups of one or more types selected from ether groups, amidinyl groups, and isocyanate groups, representative examples of which include the following: .

Br + OH2スBr (nl −2〜10の整数〕
[X=O1またはBr ] 0HO(−OH2缶可OHOI: ng = 0〜10
の整数〕CR1はHまたはOH3,n3 = 0〜10
の整数〕グリセリンージーまたはトリーグリシジルエー
テル、1,1.1−)リメチロールプロパンージまたは
トリーグリシジルエーテル、ペンタニルスリトール−ジ
ー、トリーまたはテトラグリシゾルエーテル、ンルビト
ールージー、トリーまたはテトラグリシゾルエーテル、 アラルキル基〕 さ/ さ/ g これらの化合物は単独でも又2種以上組合せて使用して
も良い。
Br + OH2su Br (nl −2 to 10 integer)
[X=O1 or Br] 0HO (-OH2 cans possible OHOI: ng = 0 to 10
]CR1 is H or OH3, n3 = 0 to 10
[integer of] glycerin di- or triglycidyl ether, 1,1.1-)limethylolpropane di- or triglycidyl ether, pentanylthritol-di, tri- or tetraglycidyl ether, unrubitol-di, tri- or tetraglycidyl ether , Aralkyl group] S/ S/ g These compounds may be used alone or in combination of two or more.

このような橋かけ剤(II)を、沸点のあまシ高くない
有機溶媒たとえば塩化メチレン、ベンゼン、ヘキサンな
どに溶解させて得られた溶液を、多孔性支持膜(A)上
にポリアリルアミン(I)溶液を塗布し風乾することに
よ多形成されたポリアリルアミン(I)皮膜と接触させ
ることにより橋かけ反応を行わせポリアリルアミン橋か
け反応物(B)を得る。前述の如く、橋かけ剤(■)を
予じめポリアリルアミン(I)溶液に加えても良い。
A solution obtained by dissolving the crosslinking agent (II) in an organic solvent with a not too high boiling point, such as methylene chloride, benzene, hexane, etc., is applied to the porous support membrane (A). ) A cross-linking reaction is carried out by contacting with the polyallylamine (I) film formed by applying the solution and air-drying it to obtain a polyallylamine cross-linking reaction product (B). As mentioned above, the crosslinking agent (■) may be added to the polyallylamine (I) solution in advance.

橋かけ剤(II)の濃度は、0.05〜l Q wt%
、好ましくは0.1〜5 Wt %であシ、接触時間は
10秒〜10分、好ましくは50秒〜3分である。
The concentration of crosslinking agent (II) is 0.05 to 1 Q wt%
, preferably from 0.1 to 5 Wt %, and the contact time is from 10 seconds to 10 minutes, preferably from 50 seconds to 3 minutes.

橋かけ反応は低温でも進行する場合が多いが、反応を完
結させるために、室温〜90℃に加熱後さらに100〜
160℃で、2〜60分間熱処理を行うことが望ましい
Although the crosslinking reaction often proceeds even at low temperatures, in order to complete the reaction, after heating from room temperature to 90°C,
It is desirable to perform heat treatment at 160°C for 2 to 60 minutes.

本発明によシ得られる複合膜は、各種のモジュール形態
で使用できるが、中でもスパイラル形式が最も望ましい
The composite membrane obtained according to the present invention can be used in various modular forms, but the spiral form is the most desirable.

本発明の複合膜は、高透水性、すぐれた選択分離性、耐
圧密性、耐有機溶剤性に加えて耐塩素性が極めてすぐれ
ている。
The composite membrane of the present invention has extremely excellent chlorine resistance in addition to high water permeability, excellent selective separation properties, compaction resistance, and organic solvent resistance.

以下参考例によシ本発明で用いられるポリアリルアミン
(I)の製造例を示す。
The following is a reference example of the production of polyallylamine (I) used in the present invention.

参考例 濃塩酸(65重量%)1.1klI中に、水冷下5〜1
0℃で、かきまぜながら、モノアリルアミン(OH2=
 0H−OH2N)h ) 570 g(1ρモル)を
滴下する。滴下終了後ロータリーエバポレーターを用い
て、水銀柱20朋の減圧下、60℃で水及び過剰の塩化
水素を留去し、白色の結晶を得る。この結晶を、乾燥用
シリカゾル上、水銀柱5龍の減圧下、80℃で乾燥し、
モノアリルアミン塩酸塩(以下MAA−Holという)
980#を得る。このMAA−HOIは、約5%の水分
を含む。
Reference Example In 1.1 klI of concentrated hydrochloric acid (65% by weight), under water cooling, 5 to 1
Monoallylamine (OH2=
570 g (1 ρ mol) of 0H-OH2N)h) is added dropwise. After the dropwise addition is completed, water and excess hydrogen chloride are distilled off at 60° C. under a reduced pressure of 20 mercury columns using a rotary evaporator to obtain white crystals. The crystals were dried on a drying silica sol at 80°C under a reduced pressure of 5 units of mercury,
Monoallylamine hydrochloride (hereinafter referred to as MAA-Hol)
Get 980#. This MAA-HOI contains approximately 5% water.

攪拌機、温度計、逆流冷却器、窒素ガス導入管を備えた
21の丸底フラスコ中に、上記MAA−HO1590g
(6モル)と蒸留水210Ilを入れ、かきまぜて溶解
させMAA−HOIの70%水溶液とする。
1590 g of the above MAA-HO was placed in a 21 round bottom flask equipped with a stirrer, a thermometer, a backflow condenser, and a nitrogen gas inlet tube.
(6 mol) and 210 Il of distilled water were added and stirred to dissolve and prepare a 70% aqueous solution of MAA-HOI.

窒素ガスを通しながら、溶液を50℃に加温する。The solution is heated to 50° C. while passing nitrogen gas.

次ニラジカル開始剤2,2′−ジアミジニル−2−2′
−アグプロパンージ塩酸塩、−7gを蒸留水20111
/に溶かした溶液を加える。約1時間後から発熱するの
でかきまぜながら冷却して、液温を48〜52℃に保つ
。60時間経過後再び同量の開始剤を添加し、さらに6
0時間50°±1℃で重合を続ける。かくして無色透明
で粘ちょうな溶液が得られる。この溶液を多量のメタノ
ール中に加えると白色の重合体が沈殿して来る。この沈
殿を濾取し、メタノールで洗浄後、50℃で減圧乾燥し
、540gのポリアリルアミン塩酸塩(以下FAA−H
OIという)を得る。このFAA−[01の数平均分子
量Mnは7500である。
radical initiator 2,2'-diamidinyl-2-2'
-Agpropane dihydrochloride, -7g in distilled water 20111
Add the solution dissolved in /. It will generate heat after about 1 hour, so cool it while stirring and keep the temperature of the liquid at 48-52°C. After 60 hours, the same amount of initiator was added again, and
Polymerization is continued at 50°±1° C. for 0 hours. A colorless, transparent and viscous solution is thus obtained. When this solution is added to a large amount of methanol, a white polymer precipitates out. This precipitate was collected by filtration, washed with methanol, and then dried under reduced pressure at 50°C.
(referred to as OI). The number average molecular weight Mn of this FAA-[01 is 7,500.

次にこのFAA−HOI、19 g(0,2モル)を力
性ソーダ8.0gを溶かした蒸留水11io、p中に俗
解すると、ポリアリルアミン(以下FAAという)の約
1%水溶液(食塩を含む)が得られる。この溶液をその
まま本発明の複合膜の製造に使用する。
Next, add 19 g (0.2 mol) of this FAA-HOI to 11 mol of distilled water in which 8.0 g of sodium hydroxide is dissolved. ) is obtained. This solution is used as it is in the production of the composite membrane of the present invention.

後述の実施例中ではこの水溶液をPAA−溶液一人と略
記する。
In the Examples described below, this aqueous solution will be abbreviated as PAA-solution.

またFAA−MCI 、19 gを細かく粉砕し、力性
ソーダ8.09を溶かしたメタノール1110.!9中
に懸濁し、室温で6時間反応させる。その後析出した食
塩を濾別すると、PAAの約1チメタノール溶液が得ら
れる。実施例中ではこの溶液をFAA−溶液Bと略記す
る。
In addition, 19 g of FAA-MCI was finely ground and 1110 g of methanol was dissolved in 8.09 g of sodium hydroxide. ! 9 and react at room temperature for 6 hours. Thereafter, the precipitated common salt is filtered off to obtain a solution of PAA in about 1 timemethanol. In the Examples, this solution is abbreviated as FAA-Solution B.

またFAA −HClの水溶液を強塩基性イオン交換樹
脂(アンバーライト−IRA −402)を充てんした
カラムに通し℃、塩酸を除去し、得られたFAA水溶液
を減圧下で濃縮後、凍結乾燥することにより、粉末状の
PAAを得ることができる。これを、水、メタノールま
たはその混合液中に溶解して、PAA−溶液を調整して
も良い。以下、実施例および比較例により本発明を更に
詳細に説明する。
In addition, an aqueous solution of FAA-HCl is passed through a column filled with a strongly basic ion exchange resin (Amberlite-IRA-402) at °C to remove hydrochloric acid, and the obtained aqueous FAA solution is concentrated under reduced pressure and then freeze-dried. Accordingly, powdered PAA can be obtained. This may be dissolved in water, methanol or a mixture thereof to prepare a PAA-solution. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1゜ 参考例で説明した方法で調整したFAA−溶液Bに、ボ
リエーテk ス/l/ホン(Udel −p 3500
■米国UCC社製)の多孔性支持膜(膜定数6.1ヌ1
0”−21/am” ・sec−atm ;裏側をポ1
ノエチレンテレ7タレートの不織布で補強したもの)を
2分浸漬したのち、10分間風乾した。次に該膜をテレ
フタル酸りロリPの2重量%n−へキサン溶液中に2分
浸漬したのち、膜面に付着しているn−ヘキサンを蒸発
させ、乾燥器中、110°〜120°Cで10分間熱処
理した。
Example 1゜FAA-solution B prepared by the method described in the reference example was added with Borietes kS/l/Hon (Udel-p 3500
■ Porous support membrane (manufactured by UCC, USA) (membrane constant: 6.1 - 1)
0"-21/am"・sec-atm;Po1 on the back side
(reinforced with a nonwoven fabric of Noethylene Tele 7 Talate) was immersed for 2 minutes and then air-dried for 10 minutes. Next, the membrane was immersed for 2 minutes in a 2% by weight n-hexane solution of terephthalic acid Loli-P, the n-hexane adhering to the membrane surface was evaporated, and the membrane was placed in a dryer at 110° to 120°. It was heat treated at C for 10 minutes.

このようにして得られた複°合膜を0.5チ食塩水溶液
を原水として、温度25℃、40 kg/ am2の圧
力下で逆浸透試験を行ったところ、24時間後に透水量
45−21 / m2・hr %脱塩率9 B、2 %
という結果が得られた。
When the thus obtained composite membrane was subjected to a reverse osmosis test at a temperature of 25°C and a pressure of 40 kg/am2 using 0.5% salt aqueous solution as raw water, the water permeability after 24 hours was 45-21. / m2・hr % desalination rate 9B, 2%
The result was obtained.

続いて上記原水中に次亜塩素酸ソーダと緩衝液を加え1
.H、5,0、塩素濃度5〜61−で、逆浸透試験を継
続し、100時間後に透水量35.5 / /m”・h
r、脱塩率98.0%、300時間後に透水量32.5
1 / 1rL”hr’、、脱□塩率97.8%という
結果が得られた。試験中、次亜塩素酸ソーダ溶液を原水
に加え、塩素濃度を常に5〜6騨に保持した。
Next, add sodium hypochlorite and a buffer solution to the above raw water.
.. Continuing the reverse osmosis test at H, 5.0, and chlorine concentration of 5 to 61, water permeation rate was 35.5//m"/h after 100 hours.
r, desalination rate 98.0%, water permeability 32.5 after 300 hours
A result of 1/1 rL"hr", a salt removal rate of 97.8% was obtained.During the test, a sodium hypochlorite solution was added to the raw water to maintain the chlorine concentration at 5 to 6 at all times.

ここで脱塩率とは次式で表わされる値である。Here, the salt removal rate is a value expressed by the following formula.

比較例1゜ ポリエチレンイミン(分子量 30.000 )の2%水溶液を用い、実施例1と同様
の方法で得られた複合膜を実施例1と同じ条件で逆浸透
試験を行ったところ、24時間後に透水量52.01 
/ m”hr、、脱塩率98.2 %の良好な値が得ら
れたが、200時間後には70.21 / m2・hr
、 、38.5%と著しい性能の低下が見られた。
Comparative Example 1 A composite membrane obtained in the same manner as in Example 1 using a 2% aqueous solution of polyethyleneimine (molecular weight 30.000) was subjected to a reverse osmosis test under the same conditions as in Example 1. Later water permeability 52.01
/ m”hr, a good value of 98.2% desalination rate was obtained, but after 200 hours it was 70.21 / m2・hr.
, , a significant performance drop of 38.5% was observed.

比較例2゜ 攪拌機、温度計、逆流冷却器を備えた300ccの三つ
口・フラスコ中に、ジアリルアミン塩酸塩60.9を入
れ、蒸留水34.9を加えて均一に溶解させる。この溶
液に過硫酸アンモン肌6gを蒸留水6gに溶かして加え
、50°±2℃で24時間重合させる。次いで過硫酸ア
ンモン0.6gを蒸留水6gに溶かした溶液を追加し、
さらに24時間重合を続けた。重合後溶液を大量のメタ
ノール中に加えて重合体を沈殿させ、濾別、乾燥後減圧
1゛50℃で乾燥し、ポリジアリルアミン塩酸塩46I
を得た1、この重合体13.5.Fを力性ソーダ4Iを
溶かした蒸留水950Iに溶解し、ポリジアリルアミン
の約196水溶液を得た。この水溶液を用い、実施例1
と同様の方法で得られた複合膜について、実施例1と同
一条件で逆浸透試験を行ったところ、24時間後に透水
量27−2 l/ m” −hr %脱塩率96.7%
、200時間後に32.21 / m2・hr、78.
6%の値が得られ、性能の低下が見られた。
Comparative Example 2 Into a 300 cc three-necked flask equipped with a stirrer, a thermometer, and a backflow condenser, 60.9 g of diallylamine hydrochloride was added, and 34.9 g of distilled water was added to dissolve it uniformly. 6 g of ammonium persulfate dissolved in 6 g of distilled water is added to this solution and polymerized at 50°±2° C. for 24 hours. Next, a solution of 0.6 g of ammonium persulfate dissolved in 6 g of distilled water was added,
Polymerization was continued for an additional 24 hours. After the polymerization, the solution was added to a large amount of methanol to precipitate the polymer, separated by filtration, dried at 50°C under reduced pressure, and prepared as polydiallylamine hydrochloride 46I.
1, this polymer 13.5. F was dissolved in 950 I of distilled water in which 4 I of sodium hydroxide was dissolved to obtain an aqueous solution of about 196 polydiallylamine. Using this aqueous solution, Example 1
A reverse osmosis test was conducted on the composite membrane obtained in the same manner as in Example 1 under the same conditions as in Example 1. After 24 hours, the water permeation rate was 27-2 l/m"-hr % and the desalination rate was 96.7%.
, 32.21/m2・hr after 200 hours, 78.
A value of 6% was obtained, indicating a decrease in performance.

実施例2゜ 実施例1で用いたBAA−溶液Bの代りに、参考例に示
したBAA−溶液Aを用い、この溶液中に実施例1で使
用した物と同じ多孔性支持膜を2分間浸漬したのち、3
0分間、窒素雰囲気中で風乾した。次に該層をエピクロ
ルヒドリンの6重量%塩化メチレン溶液中に2分浸漬し
たのち膜面に付着している塩化メチレンを蒸発させ、乾
燥器中、100〜110°で10分間熱処理した。
Example 2゜The BAA-solution A shown in the reference example was used instead of the BAA-solution B used in Example 1, and the same porous support membrane used in Example 1 was placed in this solution for 2 minutes. After soaking, 3
Air-dried in a nitrogen atmosphere for 0 minutes. Next, the layer was immersed for 2 minutes in a 6% by weight solution of epichlorohydrin in methylene chloride, the methylene chloride adhering to the membrane surface was evaporated, and the layer was heat-treated at 100 to 110° for 10 minutes in a dryer.

このようにして得られた複合膜で実施例1と同じ条件で
逆浸透試験を行い、次の結果を得た。
A reverse osmosis test was conducted on the thus obtained composite membrane under the same conditions as in Example 1, and the following results were obtained.

透水量(J/m2・hr) 脱塩率チ ク4時間後 42,5 98.2 200時間後 54.6 89.3 実施例3゜ 参考例でその調製法を示したPAA−溶液A100I中
に、ナト2メチレンービスアミジン2Iを溶解し、直ち
に、実施例1で用いたのと同じ多孔性支持膜を2分間浸
漬したのち、風乾後、100〜120°で20分間熱処
理した。このようにして得られた複合膜で実施例1と同
じ条件で逆浸透試験を行い、次の結果を得た。
Water permeability (J/m2・hr) Salt removal rate after 4 hours 42.5 98.2 After 200 hours 54.6 89.3 Example 3゜In PAA-solution A100I whose preparation method was shown in the reference example , Nato2methylene-bisamidine 2I was dissolved, and the same porous support membrane used in Example 1 was immediately immersed for 2 minutes, air-dried, and then heat-treated at 100 to 120° for 20 minutes. A reverse osmosis test was conducted on the thus obtained composite membrane under the same conditions as in Example 1, and the following results were obtained.

透水量()/、2・hr) 脱塩率チ ク4時間後 85,5 98.2 200時間後 120・5 86・2 実施例4゜ 橋かけ剤としてトリレンジイソシアナートの1重量%n
−へキサン溶液を用いる他は、実施例゛1と全く同様に
して複合膜を調製した。この膜の逆浸透試験結果は42
4時間後で、透水量26.Bl/が・hr、脱塩率95
.5%であった。
Water permeability ()/2・hr) Salt removal rate after 4 hours 85.5 98.2 After 200 hours 120.5 86.2 Example 4 1% by weight of tolylene diisocyanate as a crosslinking agent
A composite membrane was prepared in exactly the same manner as in Example 1, except that -hexane solution was used. The reverse osmosis test result of this membrane is 42
After 4 hours, water permeability was 26. Bl/ga・hr, desalination rate 95
.. It was 5%.

実施例5゜ 液を用いる他は実施例1と全く同様にして複合膜を調製
した。この膜の逆浸透試験結果は、24時間後で、透水
量65−2 J/m2・hr %脱塩率96.2%でお
った。
Example 5 A composite membrane was prepared in exactly the same manner as in Example 1, except that the 5° solution was used. The reverse osmosis test results of this membrane showed that after 24 hours, the water permeability was 65-2 J/m2·hr and the desalination rate was 96.2%.

実施例6゜ 実施例1と同様にして、FAA−溶液Bに浸漬後風tし
た膜を、ホルムアルデヒドの飽和蒸気中に室温で10分
間保持し次いで100℃で5分間熱処理した。この膜の
逆浸透試験結果は、24時間後で、透水量21−41 
/ m”hr N脱塩率98.4%でおった。
Example 6 In the same manner as in Example 1, a membrane that had been immersed in FAA-solution B and then blown was kept in saturated formaldehyde vapor at room temperature for 10 minutes and then heat treated at 100 DEG C. for 5 minutes. The reverse osmosis test results for this membrane showed that the water permeability was 21-41 after 24 hours.
/ m”hr N desalination rate was 98.4%.

代理人 浅 村 皓Agent Asamura Hako

Claims (1)

【特許請求の範囲】 する化合物(n)を用いて唇+子+舟子÷テ÷I十橋か
け反応させることによシ得られたポリアリルアミン橋か
け反応物(B)とからなることを特徴とする選択透過性
複合膜。 (2)前記多孔性支持膜(A)が芳香族ボリエ〒チルポ
リスルホンである特許請求の範囲第1゛項記載の選択透
過性複合膜。 (3) iYリアリルアミン(I)と、第1アミン基と
反応する官能基を少くとも2個有する化合物(n)とを
多孔性支持膜(A)上で接触させ、必要に応じて加熱処
理して、橋かけ反応を行なわせポリアリルアミン橋かけ
反応物(B)を形成させることを特徴とする選択透過性
複合膜の製造方法。 (4) 前記ポリアリルアミン(I)を、水、親水性溶
媒または水−親水性溶媒混合溶媒に溶した溶液を多孔性
支持膜(A)に塗布または含浸させた後、必要に応じて
過剰な溶液を流下させて除き、得られた複合体を、前記
化合物(II)と接触させ、その後必要に応じて咳複合
体を加熱処理して橋かけ反応を行わせポリアリルアミン
橋かけ反応物(B)を形成させる特許請求の範囲第6項
記載の方法。 (5) 前記化合物(n)を予じめ添加したポリアリル
アミン(I)溶液を多孔性支持膜(A)に塗布または含
浸させた後、該多孔性支持膜上で前記ポリアリルアミン
(I)と前記化合物(If)との反応を行なわせポリア
リルアミン橋かけ反応物(B)を形成させる特許請求の
範囲第6項記載の方法。
[Scope of Claims] It is characterized by consisting of a polyallylamine crosslinking reaction product (B) obtained by carrying out a 10-bridge reaction using the compound (n) of permselective composite membrane. (2) The permselective composite membrane according to claim 1, wherein the porous support membrane (A) is aromatic polyethyl polysulfone. (3) iY realylamine (I) and a compound (n) having at least two functional groups that react with a primary amine group are brought into contact on a porous support membrane (A), and heat treated if necessary. A method for producing a permselective composite membrane, which comprises carrying out a crosslinking reaction to form a polyallylamine crosslinking reaction product (B). (4) After applying or impregnating the porous support membrane (A) with a solution in which the polyallylamine (I) is dissolved in water, a hydrophilic solvent, or a water-hydrophilic solvent mixed solvent, excess The solution is removed by flowing down, and the obtained complex is brought into contact with the compound (II), and then, if necessary, the cough complex is heat-treated to perform a cross-linking reaction, and the polyallylamine cross-linking reaction product (B ).) The method according to claim 6. (5) After coating or impregnating the porous support membrane (A) with a polyallylamine (I) solution to which the compound (n) has been added in advance, the polyallylamine (I) and the polyallylamine (I) are coated on the porous support membrane. 7. The method according to claim 6, wherein the reaction with the compound (If) is carried out to form a polyallylamine crosslinking reaction product (B).
JP58208789A 1983-11-07 1983-11-07 Permselective composite membrane and its preparation Granted JPS6099306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208789A JPS6099306A (en) 1983-11-07 1983-11-07 Permselective composite membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208789A JPS6099306A (en) 1983-11-07 1983-11-07 Permselective composite membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS6099306A true JPS6099306A (en) 1985-06-03
JPS6260922B2 JPS6260922B2 (en) 1987-12-18

Family

ID=16562133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208789A Granted JPS6099306A (en) 1983-11-07 1983-11-07 Permselective composite membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS6099306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508601A (en) * 1999-09-03 2003-03-04 ザ ダウ ケミカル カンパニー Method for producing crosslinked polyallylamine polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695304A (en) * 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695304A (en) * 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508601A (en) * 1999-09-03 2003-03-04 ザ ダウ ケミカル カンパニー Method for producing crosslinked polyallylamine polymer
JP4959891B2 (en) * 1999-09-03 2012-06-27 ジェンザイム・コーポレーション Method for producing crosslinked polyallylamine polymer

Also Published As

Publication number Publication date
JPS6260922B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
JP2727087B2 (en) Polyamide reverse osmosis membrane
JPH0494726A (en) Semipermeable dual membrane, its production and production of high-purity water
JP3885565B2 (en) Composite semipermeable membrane and method for producing the same
KR100583136B1 (en) Silane-polyamide composite membrane and method thereof
JP3525759B2 (en) Fluid separation membrane and method for producing the same
JP3646362B2 (en) Semipermeable membrane and method for producing the same
JPS6099306A (en) Permselective composite membrane and its preparation
CN114504956A (en) Chlorine-resistant nanofiltration membrane and preparation method thereof
JPH05507233A (en) Semipermeable composite membrane
JP2843947B2 (en) Composite semipermeable membrane
JPS6225402B2 (en)
US20080199619A1 (en) Method Of Manufacturing For Aromatic Polyamide Composite Membrane
JPH0516291B2 (en)
JPH04200622A (en) Treatment of composite semipermeable membrane
JP3045200B2 (en) Composite semipermeable membrane
JPH05329346A (en) Composite semipermeable membrane
JPH02241530A (en) Complex membrance and its desalinizing method
JPH0938469A (en) High permeable composite reverse osmotic membrane
JPS61129155A (en) Amine base precursor compound and composite membrane comprising therefrom
JPH11226367A (en) Reverse osmosis composite membrane
JP3058461B2 (en) Composite semipermeable membrane and method for producing the same
JPH0232009B2 (en)
JPS61146302A (en) Composite ultrafiltration membrane
JPH04267938A (en) Dual semipermeable membrane and preparation thereof
JPS60156507A (en) Treatment of compound semipermeable membrane