JPS6067624A - Preparation of high strength and high toughness steel pipe - Google Patents
Preparation of high strength and high toughness steel pipeInfo
- Publication number
- JPS6067624A JPS6067624A JP17573183A JP17573183A JPS6067624A JP S6067624 A JPS6067624 A JP S6067624A JP 17573183 A JP17573183 A JP 17573183A JP 17573183 A JP17573183 A JP 17573183A JP S6067624 A JPS6067624 A JP S6067624A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- strength
- toughness
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高強度高靭性鋼管の製造方法に係り、特に10
0 kgy−以上の引張強さを有しかつ低温靭性のすぐ
れた継目無鋼管の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength, high-toughness steel pipes, particularly
The present invention relates to a method for manufacturing a seamless steel pipe having a tensile strength of 0 kgy or more and excellent low-temperature toughness.
石油、天然ガスの採掘に使用される油井用鋼管は掘削深
度が深(なるに伴いより高い強度か必要圧なりつつあり
、近年においては引張強さ100kg/IIIIi1以
上を有する油井管の使用実績も増えつつある。Oil country steel pipes used for oil and natural gas extraction are required to have higher strength or pressure as the drilling depth becomes deeper, and in recent years, oil country pipes with a tensile strength of 100 kg/IIIi1 or more have been used. It is increasing.
高強度油井管は従来、熱間圧延後Acs変態点以上の温
度に再加熱し焼入後、Ac+変態点以下において焼もど
しを行って製造され、また、高(・強度を得るためC,
Mn、Cr、Moなどの含有簸も多く、更にTi、Nb
、Vなどのルl出強化元素も必要に応じて添加されるた
め戚(・低fil”靭性を望むことは出来なかった。Conventionally, high-strength oil country tubular goods are manufactured by hot rolling, reheating to a temperature above the Acs transformation point, quenching, and then tempering at a temperature below the Ac+ transformation point.
There are many eluents containing Mn, Cr, Mo, etc., and also Ti, Nb.
, V, and other lubricant-strengthening elements are also added as needed, so it was not possible to expect low filtration toughness.
このように従来の尚強度を有′1−る鋼管にオ6(・て
は、低温靭性が著しく低いため破壊事故につな力tる危
険性が高く使用条件、取扱い条件が厳しく制限される問
題点があった。In this way, conventional steel pipes with still strength have extremely low low-temperature toughness, so there is a high risk of applying force that can lead to fracture accidents, and the conditions of use and handling are severely restricted. There was a problem.
本発明の目的は、上記従来技術の問題点を解決できる低
温靭性が十分すぐれた高強度油井用鋼管の製造方法を提
供するにある。An object of the present invention is to provide a method for manufacturing a high-strength oil well steel pipe that has sufficiently excellent low-temperature toughness and can solve the problems of the prior art described above.
本発明者らは、高強度油井用鋼管の低い低温靭性を改良
するため多(の検討を右目えた結果、適切な熱処理工程
を用いることにより、高強度油井用m’trにおいても
低温靭性を改善できることを見いだした。本発明はこの
知見に基づいてなされたものである。In order to improve the low-temperature toughness of high-strength steel pipes for oil wells, the present inventors conducted extensive research and found that by using an appropriate heat treatment process, the low-temperature toughness of high-strength oil well m'tr can be improved. The present invention has been made based on this finding.
本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.
すなわち、M量比にて
C:0.15〜0.35%、Si:0.05〜0.50
%、Mn : 0.25〜2.00%、Cr : 0.
5〜5.0%、Mo:0.05〜2.5%、AI!、:
0.005〜0.10%を含付し、必要に応じて
V : 0.10 % 以下、i’ i : 0.05
% 以下、Nb:0.10%以下、B:0.005%
以下のうちから選ばれたl柚または24′i11以上を
含み、残部がFeおよび不可避的不純物から成る「!?
J強度高靭性鋼管の製造方法において、前記6f:]
、i<利のビレットを1100℃以上に加熱した後穿孔
し継目無鋼管に熱間圧延する浚階と、前記熱間圧延鋼管
を平均冷却速度2℃/秒以上で室温まで強制冷却する段
階と、前記冷却鋼管をAcs変7.!慎点以−にの温度
゛範囲に加熱し焼入れを行い引き統い”CAC+変態点
以下の温度範囲で焼もどしする段階と、を有して成り引
張強さが100 kg/m+f以」二であることを特徴
とする高強度高靭性鋼管の製造方法である。That is, in the M amount ratio, C: 0.15 to 0.35%, Si: 0.05 to 0.50
%, Mn: 0.25-2.00%, Cr: 0.
5-5.0%, Mo: 0.05-2.5%, AI! , :
Contains 0.005 to 0.10%, if necessary, V: 0.10% or less, i' i: 0.05
% or less, Nb: 0.10% or less, B: 0.005%
Contains 1 yuzu or 24'i11 or more selected from the following, with the remainder consisting of Fe and unavoidable impurities.
In the method for manufacturing a J-strength high-toughness steel pipe, the above 6f: ]
, a step of heating a billet with an i 7. Acs modification of the cooling steel pipe. ! A step of heating and quenching to a temperature range below the "CAC + transformation point" and tempering at a temperature range below the "CAC+transformation point", and the tensile strength is 100 kg/m+f or more. This is a method for manufacturing a high-strength, high-toughness steel pipe characterized by the following.
本発明における高強度高靭性鋼ちり化学成分の限定理由
について説明する。The reason for limiting the chemical composition of high-strength, high-toughness steel dust in the present invention will be explained.
C;
Cは高強度を得るために替歌な元素でk】るが、0.1
5%未満では十分な強度を・rυることができず、また
0、35%を越える添加は焼割れlQ:受1生が高(な
り焼入れ、焼もどしの際、焼訓れを生じるため0.15
〜0.35%の範囲に限定した。。C; C is a parody element to obtain high strength, but 0.1
If it is less than 5%, sufficient strength cannot be achieved, and if it exceeds 0 or 35%, it will cause quench cracking. .15
It was limited to a range of ~0.35%. .
Si :
Siは脱酸のため0.05%以上必安心安)るが、0.
50%を越えると加工性を劣化させるので0.05〜0
.50%の範囲に限定した。Si: Because Si deoxidizes, it is safe to use 0.05% or more, but 0.05% or more is safe.
If it exceeds 50%, workability deteriorates, so 0.05 to 0.
.. It was limited to a range of 50%.
Mn:
Mnは焼入性、強度上昇に有効であるが、0.25%未
満ではその効果がなく、2.00 %を越えると焼割れ
感受性が高くなるので、0.25〜2.00%の範囲に
限定した。Mn: Mn is effective in increasing hardenability and strength, but if it is less than 0.25%, it has no effect, and if it exceeds 2.00%, quench cracking susceptibility increases, so 0.25 to 2.00%. limited to the range of
Cr:
Orは焼入れ性と焼もどし抵抗性を増大するため添加さ
れるが、0.5%未満ではその効果が小さく、5.0%
を越すと熱間加工性が低下するので。Cr: Or is added to increase hardenability and tempering resistance, but its effect is small at less than 0.5%, and at 5.0%
If the temperature is exceeded, hot workability will decrease.
下限値を0,5%、上限値を5.0%に限定した。The lower limit was limited to 0.5% and the upper limit was limited to 5.0%.
MO=
Moは焼入れ性と焼もどし抵抗性を増大する効果を有す
るが、0.05%未満ではその効果か小さく、25%を
m−1−と熱間加工性を著しく低下させるので、0.0
5〜2.5%の範囲に1涙足した。MO = Mo has the effect of increasing hardenability and tempering resistance, but if it is less than 0.05%, the effect is small, and if it is less than 0.05%, it will significantly reduce hot workability; 0
One tear was added to the range of 5-2.5%.
Aぶ :
八には脱酸のため0.005%以上の添加が必要である
ので下1社(値を0.005%とし、0.10%を越え
る添加は靭性を著しく低下させるので上限値を0.10
%とした。A: 8 requires addition of 0.005% or more for deoxidation, so the value is set at 0.005%, and addition of more than 0.10% significantly reduces toughness, so the upper limit 0.10
%.
上記、C,S t、 Mn、 Cr、 Mo、 AiV
、(1)各限矩量をもって本発明の高強度高靭性鋼管の
基本成分とするが、更に必要によりV、 Ti、 Nb
、 Bを下h1月涙定量以下において、これらの1種ま
たは2種以上を同時に含有する高強度高靭性鋼管におい
ても1本発明の目的をより有効に達成することができる
。Above, C, St, Mn, Cr, Mo, AiV
, (1) The basic components of the high-strength, high-toughness steel pipe of the present invention are limited to each rectangular amount, and V, Ti, and Nb are further added as necessary.
, B is below the monthly tear quantity, the object of the present invention can be more effectively achieved even in a high-strength, high-toughness steel pipe containing one or more of these at the same time.
これらの限定理由は次の如くである。The reasons for these limitations are as follows.
■=
■は析出強化による強度上昇の効果が大きいか0.10
%を越す添加は靭性の低下が大きいので上限値を0.1
0%とした。■= ■Is the effect of increasing strength due to precipitation strengthening large? 0.10
If the addition exceeds %, the toughness will decrease significantly, so the upper limit should be set at 0.1.
It was set to 0%.
Ti:
TiはN化合物を形成し結晶粒を微細化する効果を有す
るが、0.05%を越えると靭性をJJlなうので0.
05%以下に限定した1、
Nb:
NbはTiと同様N化合物を形l戎し結晶粒の微細化と
析出強化の作用を有するが、o、io%を越す添加は靭
性を阻害すく)ので上限値を0. I O%とした。Ti: Ti has the effect of forming N compounds and refining crystal grains, but if it exceeds 0.05%, the toughness will decrease, so it should be added to 0.05%.
1. Nb limited to 0.5% or less: Nb, like Ti, forms N compounds and has the effect of refining crystal grains and strengthening precipitation, but addition of more than 0.0% or io% impairs toughness). Set the upper limit to 0. IO%.
B。B.
Bは機前で焼入性の同上に有効であり、特に厚肉の場合
に添加されることがあるが、0.005%を越えると焼
入性をかえって低下させるばかりでなく、靭性の低下を
招(ので0.005%以下に限定した。B is effective in improving hardenability before the machine and is sometimes added especially in the case of thick walls, but if it exceeds 0.005%, it not only reduces hardenability but also reduces toughness. Therefore, it was limited to 0.005% or less.
次K、上記眠足成分を有する高強度高靭性内管用のビレ
ットの熱延と熱処理等の製造方法について説明する。ビ
レットの加熱を1100℃以上に限定したのは、l 1
00 ’C未満の加熱では熱間圧延時に抵抗が多(、穿
孔して継目無鋼′uに圧延するのが困難となるからであ
る。Next, a manufacturing method including hot rolling and heat treatment of a high-strength, high-toughness billet for an inner pipe having the above-mentioned lumber component will be explained. The heating of the billet was limited to 1100℃ or higher because l 1
Heating to less than 00'C increases resistance during hot rolling and makes it difficult to perforate and roll into seamless steel.
この熱間圧延鋼管を焼入れQbもどしを行うに先立って
、熱間圧延後だだちに平均冷却速度2℃/秒以上の速い
速度で強制冷却を行うことにより焼入れ焼もどじ後の低
温靭性の向上を図るのが本発明−の最もrrh徴とする
ところである。低温靭性は化学組成、圧延条件、熱処理
条件jよどし〔より、ミクロ組織、合金元素の形態等の
金属組織を通じて種々に変化するため、本発明法による
低温靭性の向上要因を断定するのは困難であるが、次の
3要因に大さく影響されると思われる。Before performing quenching Qb on this hot-rolled steel pipe, the low-temperature toughness after quenching and tempering is improved by performing forced cooling at a fast average cooling rate of 2°C/sec or more immediately after hot rolling. The most important feature of the present invention is to improve the performance. Since low-temperature toughness varies in various ways through chemical composition, rolling conditions, heat treatment conditions, and metal structure such as microstructure and morphology of alloying elements, it is difficult to determine the factors contributing to the improvement in low-temperature toughness by the method of the present invention. However, it seems to be greatly influenced by the following three factors.
(イ)結晶粒め微純化
(ロ)合金元素の均一化
(ハ)十分な焼もどし
従来法においては、継目無鋼管に熱間圧延されたのち室
温まで放冷されるので、焼入前の組織は圧延後の放冷時
に生じるγ−α変態のため、一般にフェライト、パーラ
イト、ベイナイトなどから成る粗い圧延組織であって、
合金元素は各組織に対する固溶量が異なるため不均一に
なっている。これに対し、本発明法においては、熱間圧
延後強制冷却を施すことにより、粗大圧延組織の微細化
が得られると共に、合金元素の分布は熱間圧延時の均一
状態に近づ(。その結果、焼入れ焼もどし後の組織は微
細な焼もどしマルテンサイトか(j)られるばかりでな
(、十分均一化された合金JT:素による強度上昇効果
が大きく、同じ強朋をイ)Iる1こめの焼もどし温度を
従来法に比べ上げることが可能になり十分な焼もどしに
よる低温靭性の向上が得られる。なお、熱間圧延後の急
冷の平均冷却速度を2℃/秒以上に限定したのは、2℃
/秒未満では、冷却後の組織が十分に微細化せず、合金
元素も不均一分布となり、従って焼入れ焼もどし後の高
強度高靭性をイ0ることができないからである。(a) Fine grain refinement (b) Uniformity of alloying elements (c) Sufficient tempering In the conventional method, seamless steel pipes are hot-rolled and then allowed to cool to room temperature. The structure is generally a rough rolled structure consisting of ferrite, pearlite, bainite, etc. due to the γ-α transformation that occurs during cooling after rolling.
The alloying elements are non-uniform because the amount of solid solution in each structure is different. In contrast, in the method of the present invention, by performing forced cooling after hot rolling, the coarse rolled structure can be refined, and the distribution of alloying elements approaches the uniform state during hot rolling. As a result, the structure after quenching and tempering is only a fine tempered martensite. It is possible to raise the tempering temperature of rice compared to the conventional method, and the low-temperature toughness can be improved by sufficient tempering.In addition, the average cooling rate of rapid cooling after hot rolling is limited to 2℃/second or more. is 2℃
This is because if the cooling time is less than 1 second, the structure after cooling will not be sufficiently refined and the alloying elements will be unevenly distributed, so that high strength and high toughness after quenching and tempering cannot be achieved.
熱間圧延後、平均冷却速度2℃/秒以上で強制冷却され
た継目;1Jib鋼管は、従来法と同4)J!−にAc
s以上の温度範囲に加熱し焼入れを行い引き幌い℃Ac
+以下の温度IIiα囲で焼もどしを行う。After hot rolling, the joint is forcibly cooled at an average cooling rate of 2°C/sec or more; 1 Jib steel pipe is the same as the conventional method 4) J! - to Ac
It is heated to a temperature range of s or higher and quenched, and the temperature is reduced to ℃Ac.
Tempering is performed at a temperature IIiα below +.
本発明は熱間圧延鋼管を焼入れ焼もどしを行5に先だっ
て、熱間圧延後ただちに平均冷却速度2℃/秒以上の強
制冷却を行うことにより、結晶粒を微細化し、合金元素
を均一化し、焼入れ焼もどし後、引張強さが100 k
g/nUi1以上の低温靭性のすぐれた継目無野喝θを
製造することができた。In the present invention, prior to quenching and tempering the hot rolled steel pipe in step 5, immediately after hot rolling, forced cooling is performed at an average cooling rate of 2° C./sec or more, thereby refining the crystal grains and homogenizing the alloying elements. After quenching and tempering, tensile strength is 100K
It was possible to produce a seamless steel plate θ having excellent low-temperature toughness of g/nUi1 or more.
実施例
第1表に示す化学組成の5鋼種のビレットを使用して同
表に示す宜サイズの継[」無′A管に熱間圧2152表
延した。A、BおよびD鋼は本発明の成分限定条件を満
足しているが、CおよびE 鋼は満足し”Cいない。EXAMPLE Billets of five steel types having the chemical compositions shown in Table 1 were rolled at a hot pressure of 2152 to form jointless A pipes of the appropriate sizes shown in the table. Steels A, B and D satisfy the component limiting conditions of the present invention, but steels C and E do not.
熱間圧延後、ただちに第2表に示す如く放冷もしくは強
制冷却を施し室温まで冷却し、その後同表に示す条件で
焼入れ焼もどしを行い引張強さをほぼ110 kg/−
にそろえ、低温靭性の比較を行いその結果を同じく第2
表に示した。低温靭性としては−50’F (−45,
5℃)におけるVノツチL方向シャルピー試験の吸収工
不ルキーを採用し、4.14に、g・m(30ft−1
1bs)以上を低温靭性を良好と判足しQ印で表示し、
4.14 kr;−m未満を小台格としX印で表示した
。Immediately after hot rolling, the material is allowed to cool or forced to cool to room temperature as shown in Table 2, and then quenched and tempered under the conditions shown in the same table to achieve a tensile strength of approximately 110 kg/-.
Compare the low-temperature toughness and compare the results with the second one.
Shown in the table. -50'F (-45,
Adopt the V-notch L-direction Charpy test at 4.14 g m (30 ft-1
1bs) or more is considered to have good low temperature toughness and is indicated by a Q mark.
Values less than 4.14 kr;-m are marked with an X mark.
第2表に示される如く、E鋼の例を除いて圧延後2℃/
抄以上の強制冷却した場合は、焼入れ焼もどしの際の焼
もどし温度を放冷の場合に比較して約20℃高(しても
、強度を低Fすることなく低温靭性の向上を図ることが
できる。また、本発明の成分条件を満足するA、Bおよ
び1〕鋼を熱間圧延後2℃/秒以上の平均冷却速度で強
制冷却した場合のみ高強度ですぐれた低ン品靭性がイ4
Iられており、これに対し化学成分と熱間圧延後の冷却
速度が本発明の条Pトを満足しない場合は、このような
高い強度と十分な低温靭性を得ることができな力箋った
。As shown in Table 2, except for the example of E steel, 2℃/
In the case of forced cooling to a temperature higher than that of paper, the tempering temperature during quenching and tempering is about 20°C higher than that in the case of natural cooling (even if the tempering temperature is about 20°C higher, it is possible to improve the low-temperature toughness without lowering the strength. In addition, high strength and excellent low-grade toughness can be obtained only when steels A, B, and 1] that satisfy the component conditions of the present invention are forcedly cooled at an average cooling rate of 2°C/second or more after hot rolling. A4
On the other hand, if the chemical composition and cooling rate after hot rolling do not satisfy the requirements of the present invention, it will be difficult to obtain such high strength and sufficient low temperature toughness. Ta.
本発明は上記実施例からも明らかな如(、化学成分を限
定したビレットを1100℃以上に加熱し継目無鋼管に
熱間圧延後、ただちに平均冷却速度2℃/秒以上で室温
まで強制冷却し、仄にAC3以上の温度から焼入れし、
AC1以上の温度で焼もどすことにより、引張強さが1
00 kg/−以上の低温靭性のすぐれたWI管を製造
することができた。As is clear from the above examples, the present invention is made by heating a billet with limited chemical composition to 1100°C or higher and hot rolling it into a seamless steel pipe, and then immediately forcibly cooling it to room temperature at an average cooling rate of 2°C/sec or more. , slightly quenched at a temperature of AC3 or higher,
By tempering at a temperature of AC1 or higher, the tensile strength increases to 1.
It was possible to manufacture a WI pipe with excellent low-temperature toughness of 00 kg/- or more.
代理人 弁理士 中 路 武 )4tAgent: Patent Attorney Takeshi Nakaji) 4t
Claims (1)
50%、Mn : 0.25〜2.00%、Cr :
0.5〜5.0%、Mo:0.05〜2.5 %、 A
ノ(4二 0.005〜0.10 %を含有し、必要に
応じて v : o、 i o%以下、Ti:0.05%以下、
Nb:0.10%以下、B:0.005%以下のうちか
ら選ばれた1種または2種以上を含み、残部がFeおよ
び不可避的不純物から成る高強度高靭性鋼管の製造方法
において、前記鋼素材のビレットを1100℃以上に加
熱した後穿孔し継目無鋼管に熱間圧延する段階と、前記
熱間圧延鋼管を平均冷却速度2℃/秒以上で室温まで強
11tll冷却する段階と前記冷却@′JI管をAcs
変態点以上の温度範囲に加熱し焼入れを行い引き続いて
Ac+変態点以下の温度範囲で焼もどしする段階と、を
有して成り、引張強さが100kg/−以上であること
を%徴とする高強度高靭性鋼管の製造方法。(1) In terms of weight ratio, c: 0.15-0.35%, Si: 0.05-0.
50%, Mn: 0.25-2.00%, Cr:
0.5-5.0%, Mo: 0.05-2.5%, A
(42) Contains 0.005 to 0.10%, if necessary, v: o, io% or less, Ti: 0.05% or less,
In the method for manufacturing a high-strength, high-toughness steel pipe containing one or more selected from Nb: 0.10% or less, B: 0.005% or less, and the balance consisting of Fe and unavoidable impurities, the A step of heating a billet of steel material to 1100° C. or higher and then hot-rolling it into a seamless steel pipe; a step of cooling the hot-rolled steel pipe to room temperature by a strong 11 tll at an average cooling rate of 2° C./sec or higher; and the cooling. @'JI tube Acs
A step of heating to a temperature range above the transformation point and quenching, followed by tempering in a temperature range below the Ac + transformation point, and the tensile strength is 100 kg/- or more. A method for manufacturing high-strength, high-toughness steel pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17573183A JPS6067624A (en) | 1983-09-22 | 1983-09-22 | Preparation of high strength and high toughness steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17573183A JPS6067624A (en) | 1983-09-22 | 1983-09-22 | Preparation of high strength and high toughness steel pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6067624A true JPS6067624A (en) | 1985-04-18 |
Family
ID=16001247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17573183A Pending JPS6067624A (en) | 1983-09-22 | 1983-09-22 | Preparation of high strength and high toughness steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6067624A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367360A2 (en) * | 1988-11-01 | 1990-05-09 | MANNESMANN Aktiengesellschaft | Process for manufacturing seamless pressure vessels |
EP0842715A1 (en) * | 1996-04-19 | 1998-05-20 | Sumitomo Metal Industries, Ltd. | Seamless steel pipe manufacturing method and equipment |
-
1983
- 1983-09-22 JP JP17573183A patent/JPS6067624A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367360A2 (en) * | 1988-11-01 | 1990-05-09 | MANNESMANN Aktiengesellschaft | Process for manufacturing seamless pressure vessels |
EP0842715A1 (en) * | 1996-04-19 | 1998-05-20 | Sumitomo Metal Industries, Ltd. | Seamless steel pipe manufacturing method and equipment |
EP0842715A4 (en) * | 1996-04-19 | 1999-02-10 | Sumitomo Metal Ind | Seamless steel pipe manufacturing method and equipment |
US6024808A (en) * | 1996-04-19 | 2000-02-15 | Sumitomo Metal Industries, Ltd. | Seamless steel pipe manufacturing method and equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3358135B2 (en) | High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same | |
WO2001057286A1 (en) | High strength, high toughness, seamless steel pipe for line pipe | |
JPH0598350A (en) | Production of line pipe material having high strength and low yield ratio for low temperature use | |
JPS5896818A (en) | Production of hot-rolled steel material having high strength and excellent low temperature toughness | |
AU4230099A (en) | Method of making a weathering grade plate and product therefrom | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
JPS6145685B2 (en) | ||
JP2711163B2 (en) | Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance | |
JP3228986B2 (en) | Manufacturing method of high strength steel sheet | |
JP3246993B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JP3274013B2 (en) | Method for producing sour resistant high strength steel sheet having excellent low temperature toughness | |
JPS6067624A (en) | Preparation of high strength and high toughness steel pipe | |
JP3218447B2 (en) | Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness | |
JP3009558B2 (en) | Manufacturing method of thin high-strength steel sheet with excellent sour resistance | |
JPH06279848A (en) | Yield point controlled shape steel | |
JPH0826395B2 (en) | 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method | |
JP3620099B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JP2706159B2 (en) | Method for producing low yield ratio high strength steel with good weldability | |
JPH0717947B2 (en) | Low yield ratio high strength steel sheet manufacturing method | |
JPH0670249B2 (en) | Manufacturing method of tempered high strength steel sheet with excellent toughness | |
JPS5828327B2 (en) | Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility | |
JP2655956B2 (en) | Manufacturing method of low yield ratio refractory steel sheet for building structure | |
JP2543282B2 (en) | Method for producing controlled rolled steel with excellent toughness | |
JP2647313B2 (en) | Oxide-containing rolled steel with controlled yield point and method for producing the same | |
JPH04333526A (en) | Hot rolled high tensile strength steel plate having high ductility and its production |