JPS605133A - Ultrasonic converter improved in vibration mode - Google Patents
Ultrasonic converter improved in vibration modeInfo
- Publication number
- JPS605133A JPS605133A JP10736284A JP10736284A JPS605133A JP S605133 A JPS605133 A JP S605133A JP 10736284 A JP10736284 A JP 10736284A JP 10736284 A JP10736284 A JP 10736284A JP S605133 A JPS605133 A JP S605133A
- Authority
- JP
- Japan
- Prior art keywords
- transducer
- piezoelectric body
- metal
- ultrasonic transducer
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000003491 array Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000002604 ultrasonography Methods 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 産業上の利用分野 本発明は振動モードを改良した超音波変換器に関する。[Detailed description of the invention] Industrial applications The present invention relates to an ultrasonic transducer with improved vibration modes.
特に本発明は、医療物音波映閤に使用するための縦波を
発生および受容するタイプの超音波変換器に関する。In particular, the invention relates to an ultrasound transducer of the type that generates and receives longitudinal waves for use in medical ultrasound imaging.
従来技術と解決すべき問題点
超音波変換器技術において、各種振捜ノモードの圧電体
(ピエゾ電気材料)かよく知られており、これらは縦波
を発生するのに有用である。かかるモードとしては、“
プレート”モード(該モードにおいて、比較的フラット
な圧電体のプレートか振動し、上下のプレート面に接続
する電極に電圧を印加すると、プレート表面に対し垂直
方向に超音波を伝送するようになっている)、および6
バー”モード(該モードにおいて、細長いバーの圧電体
はその両端に接続した電極を有し、バーの縦軸に沿って
波伝送を起すように振動する)が包含される。また1ビ
ーム”モードも知られており、該モードでは、細長いバ
ーの圧電体はその両側面に伸長電極を有し、バーの縦軸
に対し垂直な波伝送を起すように振動し、これには例え
ば位相アレイまたは直線変換器が挙げられる。更に、6
プレート”モード、。バー”モードまたは“ビーム”モ
ードと横振動モードとの“混合”モードも知られている
。これらの横モードは圧電体内に許容しえない程度まで
発生し、この場合、圧電体の高さと+lJの比(1]/
W)は、半分波長共振モードを用いる変1ψ器の場合で
約0.5〜2の範囲にあり、また四分の一波長共振モー
ドを用いる変換器の場合で約0.25〜1の範囲にある
。当業者にとって理解されるように、いかなる圧電体に
おいても構モードみ振動がある程度に起るか、これは変
換器を構成する各エレメントの幾何学形状およ0ef定
圧電体の性質に基づく。半分波長変換器においてH/W
か約0.5〜2のとき、および四分の一波長変換器にお
いてH/ Wが約025〜1の場合には、それは大きな
問題となる。PRIOR ART AND PROBLEMS TO BE SOLVED In the ultrasonic transducer art, various vibromodal piezoelectric materials are well known and are useful for generating longitudinal waves. Such modes include “
Plate mode (in this mode, a relatively flat piezoelectric plate vibrates, and when voltage is applied to the electrodes connected to the upper and lower plate surfaces, ultrasonic waves are transmitted in a direction perpendicular to the plate surface. ), and 6
bar" mode (in which the piezoelectric body of an elongated bar has electrodes connected to its ends and vibrates to cause wave transmission along the longitudinal axis of the bar); and the one-beam" mode. is also known, in which the piezoelectric body of an elongated bar has elongated electrodes on each side thereof and vibrates in such a way as to cause wave transmission perpendicular to the longitudinal axis of the bar, which includes, for example, a phased array or Examples include linear transducers. Furthermore, 6
"Mixed" modes of "plate" mode, "bar" mode or "beam" mode with transverse vibration modes are also known. These transverse modes occur to an unacceptable degree in the piezoelectric body, in which case the ratio of the height of the piezoelectric body to +lJ is (1]/
W) is in the range of about 0.5 to 2 for a 1ψ transducer using a half-wave resonant mode, and about 0.25 to 1 for a transducer using a quarter-wave resonant mode. It is in. As will be understood by those skilled in the art, some degree of structural vibration will occur in any piezoelectric material, depending on the geometry of the elements making up the transducer and the nature of the 0ef constant piezoelectric material. H/W in half wavelength converter
It becomes a big problem when H/W is about 0.5 to 2, and when H/W is about 0.25 to 1 in quarter-wavelength converters.
本発明か解決しようとするこの特定の問題を、環状アレ
イに用いられるタイプのピストン型環状変換器を例にと
って説明する。これまで、電気的可変焦点調整能力を付
与するため、各種のピストン型環状アレイ変換器が使用
されている。かかる環状アレイ変換器において、扉状ア
レイの外部環は典型的に、内部環または中心ピストンよ
りもすっと細い。このことは、超音波の浸透深さに実質
的均一な信号を付与するため、各種変換器エレメントの
面積か実質的に等しくなるように保持する要求に起因す
る。この事象は当該分野で周知であり、また環状アレイ
において、実質的に相互に等しく、且つ中心ピストンの
面積に等しい面積を持つ環状エレメントを設けることは
普通に行われている。The particular problem that the present invention seeks to solve will be illustrated using a piston-type annular transducer of the type used in annular arrays. In the past, various piston-type annular array transducers have been used to provide electrical variable focus adjustment capability. In such annular array transducers, the outer ring of the door array is typically much narrower than the inner ring or central piston. This is due to the requirement to keep the areas of the various transducer elements substantially equal in order to provide a substantially uniform signal at the ultrasound penetration depth. This phenomenon is well known in the art, and it is common practice in annular arrays to provide annular elements having areas that are substantially equal to each other and equal to the area of the central piston.
環状アレイを標準方法で製造することに起因する問題は
、ダ状アレイの外部環において、個々のエレメントの高
さくその基体から測定した圧電体の高さ)と巾(半径方
向に測定)の比が1に近づくことである。残念なことに
上述の如く、変換器の高さ/11】比が約0.5〜2の
範囲にあると、横モードの振動が医療4B音波ピストン
変換器において許容しえないレベルで起る。外部変換器
環の横振動モードを減少するため、これまで各種の試み
かなされている。かかる方法は、外部坪量の区域および
該層を取巻く区域に制動材を入れることを包含する。こ
れらの方法は全般に、肯だ的な結果をほとんど示さなか
った。A problem arising from manufacturing annular arrays using standard methods is that, in the outer ring of a diagonal array, the ratio of the height of the individual elements (height of the piezoelectric body measured from its substrate) to the width (measured radially) approaches 1. Unfortunately, as mentioned above, when the transducer height/11 ratio is in the range of about 0.5 to 2, transverse mode vibrations occur at unacceptable levels in medical 4B sonic piston transducers. . Various attempts have been made to reduce the transverse vibration modes of the external transducer ring. Such methods include placing damping material in the area of external basis weight and in the area surrounding the layer. These methods generally showed few positive results.
このため、外部環の横モード振動の問題を受ける必要も
なく広範囲にわたり電気的に焦点調整しうる環状アレイ
変換器を製造する方法が望まれるようになった。一般に
、任意の斐挾器タイプ(例えば環状アレイ)を選択する
ことができ、これによってたとえ偽振動モード(例えば
横モード)が外部環に起ったとしてもこれを受容するよ
う強制されないことが望まれる。また、いずれの任意の
幾何学形状を持つ変換器の全エレメント(例えは環状ア
レイの中心ピストンおよび外部環)においても、同じ振
動モード(例えばプレートまたは)く−モード)を有す
ることが望まれる。Therefore, a method of manufacturing an annular array transducer that can be electrically focused over a wide range without having to suffer from external ring transverse mode vibration problems has become desirable. In general, one can choose any clamp type (e.g. an annular array) and it is hoped that this will not force it to accept spurious vibrational modes (e.g. transverse modes) even if they occur in the outer ring. It will be done. It is also desirable to have the same vibrational mode (eg, plate or disk mode) in all elements of a transducer (eg, the central piston and outer ring of an annular array) of any arbitrary geometry.
X発明の構成と効果
本発明によれば、バー振動モードをいずれの変換器設計
にも組合せることかできるか、これは圧′重体が多数の
サブエレメントにのこひきされ、該サブエレメントのそ
れぞれがその物理形状および寸法に基づきバーモードて
振動rるためである。Structure and Effect of the Invention According to the present invention, the bar vibration mode can be combined into any transducer design, since the pressure mass is sawn into a number of sub-elements and This is because each vibrates in a bar mode based on its physical shape and dimensions.
そしてこれらのサブエレメントは、いずれかの所望エレ
メント幾何学形状を有するように、′電気的に接続され
る。従って、全てのエレメントにおいて同じ振動モード
を有する任意形状の変換器を設計することができる。These sub-elements are then electrically connected to have any desired element geometry. Therefore, it is possible to design a transducer of arbitrary shape with the same vibration mode in all elements.
以下、添付図面に基づき本発明について詳しく説明する
。かかる図面において、
% 1171は本発明を利用する変換器の一例の上面図
、
第2図は本発明を利用する変換器の側面図、第3図は環
状アレイの電極パターンを示す、第1図の変換器の底面
図、および
弗4図は本発明の第二の例を利用する変換器の側面図で
ある。Hereinafter, the present invention will be explained in detail based on the accompanying drawings. In such drawings, % 1171 is a top view of an example of a transducer utilizing the present invention, FIG. 2 is a side view of a transducer utilizing the present invention, FIG. 3 is an annular array electrode pattern, and FIG. Figure 4 is a bottom view of a transducer, and Figure 4 is a side view of a transducer utilizing a second example of the present invention.
本発明によれば、環状アレイの外部環の横モードの振動
を実質的に削除することが望まれる。かかる結果を達成
するため、第1図に示す円形片の圧電体10を例えば半
導体ダイスのこぎりで、幾つかのサブエレメント12に
のこひきする。本発明の好ましい具体例において、サブ
エレメント12は実質上IE方形で、圧電体1oの高さ
くH)より実質的に短かい辺長さくW)を有する。実施
例として、J) Z T (鉛−ジルコネート−チタネ
ート)圧電体のPZ’r4組成を用いるとき、3MHz
医療超音波変換器に対しHは約20ミル(0,5mm)
およびWは約8ミル(0,2mm)であってよい。第2
図に示す如く、のこひき目(saw kerf )14
は[モ亀、体10の上面16から実質的に下の底面18
へ研ひている。しかしながら、本発明の好ましい具体例
において、のこひき目14は圧型2体10の底面18ま
て完全には延ひておらす、これによって圧電体10と電
極パターンの情造保や性を維持する。しかしながら、後
記で説明するように、以下に記載する好ましい方法に適
当な変化を加えて、のこひき目14を底面18まて延ひ
るようにすることは可能である。According to the present invention, it is desired to substantially eliminate transverse mode vibrations in the outer ring of the annular array. To achieve this result, the circular piece of piezoelectric body 10 shown in FIG. 1 is sawn into several sub-elements 12, for example with a semiconductor die saw. In a preferred embodiment of the invention, the sub-element 12 is substantially IE rectangular and has a side length W) that is substantially shorter than the height H) of the piezoelectric body 1o. As an example, when using PZ'r4 composition of J) Z T (lead-zirconate-titanate) piezoelectric material, 3 MHz
H for medical ultrasound transducers is approximately 20 mils (0.5 mm)
and W may be about 8 mils (0.2 mm). Second
As shown in the figure, saw kerf 14
[Mokame, the bottom surface 18 substantially below the top surface 16 of the body 10
I'm honing my skills. However, in a preferred embodiment of the invention, the saw lines 14 extend completely to the bottom surface 18 of the die 2 body 10, thereby maintaining the integrity of the piezoelectric body 10 and the electrode pattern. do. However, as will be explained below, it is possible to make suitable changes to the preferred method described below to cause the saw marks 14 to extend all the way to the bottom surface 18.
のこひき目14をL面16を介して形成した徒、上面1
6のサブエレメント12を電気的に接続しなけれはなら
ない。この接続をなしうる方法は幾つかあるか、好まし
い方法ではのこひき目14に低粘度の非導電性エポキシ
を充填する。次に、好ましい具体例において、エポキシ
の表面上に二金属系をスパッタして上部箪、極20を形
成し、該除権はこれをアースに電気接続すると、RFシ
ールドとしても機能する。三金蟻系は当該分野で周知の
如く、−F地相に十分密着する第1金1萬、弔1金川と
第3金属間の結合を付与する弔2金属、および酸化に対
し比較的に抵抗性を有し、容易に)1ンダ付けしつる第
3金匡を備えている。本発明の好ましい具体例において
、第1金属はクロム、第2金属はニッケル、および!$
3全3金屈である。次に、例えば非導電4性充填エポキ
シの四分の一波もしくはそれ以」二の音響整合層22を
上g1≦′電極20の表面上に公知の方法および理由で
適用する。The upper surface 1 has sawn marks 14 formed through the L surface 16.
The six sub-elements 12 must be electrically connected. There are several ways in which this connection can be made; a preferred method is to fill the saw holes 14 with a low viscosity, non-conductive epoxy. In a preferred embodiment, a bimetallic system is then sputtered onto the surface of the epoxy to form the top well, pole 20, which also functions as an RF shield when electrically connected to ground. As is well known in the art, the three-metal ant system has a primary metal that adheres well to the -F phase, a secondary metal that provides a bond between the primary metal and the third metal, and a relatively resistant to oxidation. It has a third metal box that is resistant and easily attached to the first solder. In a preferred embodiment of the invention, the first metal is chromium, the second metal is nickel, and! $
3 all 3 Kinbukuro. Next, an acoustic matching layer 22 of, for example, a quarter wave or more of a non-conductive quaternary filled epoxy is applied over the surface of the upper g1≦' electrode 20 in a manner and for reasons known in the art.
底面18に所望の形状の電極24を形成する。An electrode 24 having a desired shape is formed on the bottom surface 18.
本発明の好ましい具体例において、電極24は第3図に
示すような環状アレイパターンの形状にある。本発明の
好ましい具体例において、導電性材料(例えば銅)の層
を圧電体10の底に適用する。In a preferred embodiment of the invention, electrodes 24 are in the form of an annular array pattern as shown in FIG. In a preferred embodiment of the invention, a layer of conductive material (eg copper) is applied to the bottom of piezoelectric body 10.
次に、レジスト材料の層を底電極のパターンの形状で棉
電性層にプリントし、次いで導電性1四の露出部をエツ
チングして、不要部を圧電体10に至るまで除去する。Next, a layer of resist material is printed on the cotton conductive layer in the shape of the pattern of the bottom electrode, and the exposed portions of the conductive material 14 are then etched to remove unnecessary portions down to the piezoelectric body 10.
音響裂地I疹26を底部、極パターン24に適用するか
、その目的は当該分野でよく知られている。自明の如く
、電極パターンの環状環の間に一定間隔で位置する最小
の電極間を選択して、2つの電極が同じサブエレメント
12に電圧を印加できないように保証する。これはWX
/Tより大きい間隔の?Ji I=間を用いることによ
り遂行することができる(辺長Wの正方形サブエレメン
トの場合)。The purpose of applying an acoustic fissure 26 to the bottom, polar pattern 24 is well known in the art. As will be appreciated, a minimum electrode spacing, located at a constant spacing between the annular rings of the electrode pattern, is chosen to ensure that no two electrodes can apply voltage to the same sub-element 12. This is WX
Is the interval larger than /T? This can be accomplished by using Ji I= (in the case of a square sub-element with side length W).
第4図において、本発明の他の具体例28か横断面で示
されている。この特殊な具体例において、圧電体30を
タイザーにかけてサブエレメント32を形成し、このと
きのこひき目34は四分の一彼長不整合層36まで完老
に達している。圧電体30そのものは、二分の一彼長厚
よりもむしろ約四分の一波長厚である。また同様に、四
分の一波長厚もしくはそれり、上の整合層38を圧電体
30の面40の′畝極39に適用する。不整合一36に
用いる特ボ材料としてZLの晋要インピーダンスを有す
るものを選択し、これに対し裏地1に)37(不整合l
tM36J二の)にあってはZBの音響インピーダンス
を有するものを選択し、これによって圧電体30から明
らかなように、不整合1−36への入力インピーダンス
がもたらされ、これは1ilii36か約四分の一波長
厚である場合の振動数に近い(ZL)2/ZBである。In FIG. 4, another embodiment 28 of the invention is shown in cross section. In this particular embodiment, the piezoelectric body 30 is tizered to form the sub-element 32 , with the cut edges 34 aged to a quarter length mismatched layer 36 . The piezoelectric body 30 itself is approximately one-quarter wavelength thick, rather than one-half wavelength thick. Similarly, a matching layer 38 of a quarter wavelength thick or less is applied to the ridges 39 of the surface 40 of the piezoelectric body 30. A material having a required impedance of ZL is selected as the special material to be used for the mismatch 36, and on the other hand, the material for the lining 1) 37 (mismatch
tM36J2) is chosen to have an acoustic impedance of ZB, which results in an input impedance to the mismatch 1-36, as seen from the piezoelectric body 30, which is 1ilii36 or about 4 The frequency is (ZL)2/ZB, which is close to the frequency when the thickness is one-tenth of a wavelength.
圧電体30を介してサブエレメント32を不整合@36
まで完全にダイサーをかける場合、不整合@36は導電
性であることか好ましく、この結果不整合層36に後部
電極パターン41を形成しうる。ある特定の場合に、当
業者によって理解されるように、特定変換器設計の最適
化には、不整合@36が四分の一波長厚以外であること
が要求される。Misalignment of sub-element 32 via piezoelectric body 30 @36
When fully diced, the mismatch@36 is preferably conductive, so that the back electrode pattern 41 can be formed in the mismatch layer 36. In certain cases, optimization of a particular transducer design requires that the mismatch@36 be other than a quarter wavelength thick, as will be understood by those skilled in the art.
ZLがZHに対し比較的大きくなるように選択すれば、
不整合@36へのインピーダンスは比較的大きくなる。If ZL is selected to be relatively large with respect to ZH,
The impedance to mismatch@36 will be relatively large.
即ち、実質上老での音響エネルギーは不整合一36へよ
りはむしろ圧電体30の面40を介して伝送され、圧電
体は当業者にとって自明の如く、後部境43の反射係数
のサイン変化(s i gn cllange )に基
づき、四分の一波長共振モードで振動する。この具体例
に従って変換器10を峙造する有利な点は、圧箱、体3
0か一定朔ソの間に薄くなるので、個々のサブエレメン
ト32がもろくならないことである。That is, substantially any acoustic energy is transmitted through the surface 40 of the piezoelectric body 30 rather than into the misalignment 36, and the piezoelectric body exhibits a sine change in the reflection coefficient of the rear border 43 ( It vibrates in a quarter-wavelength resonant mode. An advantage of constructing the transducer 10 according to this embodiment is that the pressure box, body 3
The individual sub-elements 32 do not become brittle because they become thinner over a period of 0 to 100 minutes.
この特定具体例は、約半分波長厚の一片の圧電体30よ
りもむしろ約四分の一波長厚の一片の圧電体30を包含
するので、望ましくない混合振動モードを実質的に削除
するのに必要な1雷さ/[Ij比(H/’W)は、半分
波長尾片のIf電体30よりも異なる規則によって管理
される。従って、高さ/1J比か実16上約0.25〜
1の範囲に入らなければ、この特定具体例において混合
モートの操作は経験されない。即ち、個々のサブエレメ
ント32は約1.25の高さ/中圧を有することかでき
、これは第2図について説明した具体例よりも構造上伸
固なものにする。This particular embodiment includes a piece of piezoelectric material 30 about a quarter wavelength thick, rather than a piece of piezoelectric material 30 about a half wavelength thick, so as to substantially eliminate undesirable mixed modes of vibration. The required 1/[Ij ratio (H/'W) is governed by different rules than the If electric body 30 of the half-wavelength tail. Therefore, the height/1J ratio is about 0.25~
1, no mixed mote operation is experienced in this particular embodiment. That is, the individual sub-elements 32 can have a height/median pressure of about 1.25, which makes them more structurally rigid than the embodiment described with respect to FIG.
特に弔2図に関し、その高さ/中圧(H/W)は実質上
2より大となるように選択される。特に、2.5の比率
か許容しうろことかわかった。Particularly with respect to Figure 2, its height/medium pressure (H/W) is selected to be substantially greater than 2. In particular, I found out that a ratio of 2.5 is acceptable.
本発明は特に環状アレイ型装置での使用に退会するが、
直線または位相アレイ型、Ij f&にも使用すること
ができ、この場合、該工程で適用される小極パターンは
異なる。環状アレイ小極パターンか使用されているが、
これは本発明を説明するためのものである。当業者であ
れは、適当な位置に本発明を利用して、通常のビームモ
ードよりはむしろ“バーモードでエレメントが作動する
直線アレイを提供しうろことが理解されるだろう。特に
有効に使用しつる点は、バーモードHaが電気エネルギ
ーと音響エネルギーの間により大なる結合を受けること
であり、これは直線アレイまたは位相アレイに利点を付
与することができる。Although the invention is particularly suited for use in annular array type devices,
A linear or phased array type, Ij f&, can also be used, in which case the small pole pattern applied in the process is different. A circular array small pole pattern is used,
This is to illustrate the invention. Those skilled in the art will appreciate that the present invention, in place, may be utilized to provide a linear array with elements operating in a "bar mode" rather than a conventional beam mode. The key point is that the bar mode Ha undergoes greater coupling between electrical and acoustic energy, which can confer an advantage to linear or phased arrays.
本発明によれは、十分に整合して種々の深さで実質的に
等しい強度信号を付与することができ、且つ各エレメン
ト間に優れた振動数整合を有する、個々の環状エレメン
トを持つ環状アレイ句音波変伽器か偶成される。これに
よって、環状アレイ変換器に関しこれまで受けた問題点
は、実質的に削除される。加えて、本発明を採用すれば
、変換器の全てのエレメントに対し均一振動モードを持
つ医療超音波変換器をいずれの所望変換器幾何学形状(
例えば本明細書に記載の環状アレイ)にでも製造するこ
とができる。The present invention provides an annular array with individual annular elements that are well matched to provide substantially equal intensity signals at various depths and that have excellent frequency matching between each element. The phrase sound wave transformer or combination. This substantially eliminates the problems previously encountered with annular array transducers. In addition, the present invention allows medical ultrasound transducers with uniform vibration modes for all elements of the transducer to be configured in any desired transducer geometry (
For example, the annular arrays described herein) can also be manufactured.
弔1肉は本発明変換器の一例における圧電体の上面図、
第2図は第1図の変換器の側面図、第3図は第1図の変
換器における圧電体の底面図、および第4図は本発明変
換器の他の例の側面図であって、
10.30・・・IIm、体、12 、32・・・サブ
エレメント、14.34・・・のこひき目、20 、2
4 。
39.41・・・電極。
特許出願人 アドバンスト・テクノロジー・ラボラトリ
ーズ・インコーポレイテッド代理人弁理士 前出 葆
外1名Part 1 is a top view of a piezoelectric body in an example of the transducer of the present invention,
2 is a side view of the transducer of FIG. 1, FIG. 3 is a bottom view of the piezoelectric body in the transducer of FIG. 1, and FIG. 4 is a side view of another example of the transducer of the present invention. , 10.30...IIm, body, 12, 32...subelement, 14.34...saw, 20, 2
4. 39.41...electrode. Patent applicant: Advanced Technology Laboratories, Inc. Patent attorney: Maeda Hao
1 other person
Claims (1)
小さいサブエレメントに細分化されており、これにより
電極の形状または寸法よりはむしろサブエレメントの物
理形状および寸法によってサブエレメントの振動モード
を決定するようにしてなる改良超音波変換器。 (2)該変換器が環状アレイ変換器であり、サブエレメ
ントか圧電体内に実質的に延びるが完全には延O・てい
ないのこひき目によって区隔されている前記第1項記載
の改良超音波変換器。 (3)のこひき目が非導電性杓料で充填され、圧電体と
充填+A料の表面が導電性電極でカバーされている前記
第2項記載の改良超音波変換器。 14)4市性電極か、圧電体表面上の第1金媚、該第1
金属表面上の第2金属および該第2金属表面」二の第3
金■からなる二金属系でj冑成される前記第3項記載の
改良超音波変換器。 (5)第1金属かクロム、第2金1萬かニツケノペおよ
び第3金属か銅である11X記弔4項記載の改良超音波
変換器。 (6)該変換器か環状アレイ変換器であり、サブエレメ
ントか圧電体内に完全に延びるのこひき目によって区隔
されている前記弔1項記載の改良超音波変換器。Claims: Consisting of a peak-to-edge piezoelectric body, the piezoelectric body is subdivided into sub-elements smaller than the associated electrode, so that the physical shape and dimensions of the sub-elements rather than the shape or dimensions of the electrodes. an improved ultrasonic transducer for determining the vibration mode of a sub-element; (2) The improvement of paragraph 1, wherein the transducer is an annular array transducer, and the subelements are separated by serrations that extend substantially, but not completely, into the piezoelectric body. Ultrasonic transducer. (3) The improved ultrasonic transducer according to item 2 above, wherein the sawn holes are filled with a non-conductive ladle material, and the surfaces of the piezoelectric body and the filling+A material are covered with a conductive electrode. 14) Four electrodes or the first metal on the surface of the piezoelectric material, the first
a second metal on a metal surface and a third metal surface on the second metal surface;
The improved ultrasonic transducer according to item 3, which is made of a bimetallic material consisting of gold. (5) The improved ultrasonic transducer according to item 4 of Note 11X, wherein the first metal is chromium, the second metal is copper or copper, and the third metal is copper. (6) The improved ultrasonic transducer of claim 1, wherein the transducer is an annular array transducer, and the subelements are separated by serrations extending completely within the piezoelectric body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US49836483A | 1983-05-26 | 1983-05-26 | |
US498364 | 1983-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS605133A true JPS605133A (en) | 1985-01-11 |
Family
ID=23980778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10736284A Pending JPS605133A (en) | 1983-05-26 | 1984-05-25 | Ultrasonic converter improved in vibration mode |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0142215A3 (en) |
JP (1) | JPS605133A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170199A (en) * | 1985-01-21 | 1986-07-31 | シーメンス、アクチエンゲゼルシヤフト | Ultrasonic converter and ultrasonic converter system |
JP2021023395A (en) * | 2019-07-31 | 2021-02-22 | キヤノンメディカルシステムズ株式会社 | Ultrasonic probe and ultrasonic diagnostic apparatus |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3807568A1 (en) * | 1988-03-08 | 1989-09-21 | Storz Karl Gmbh & Co | PIEZOELECTRIC SOUND TRANSMITTER FOR THERAPEUTIC APPLICATIONS |
CA2054698A1 (en) * | 1990-03-20 | 1991-09-21 | Kohetsu Saitoh | Ultrasonic probe |
US5297553A (en) * | 1992-09-23 | 1994-03-29 | Acuson Corporation | Ultrasound transducer with improved rigid backing |
US6685647B2 (en) * | 2001-06-28 | 2004-02-03 | Koninklijke Philips Electronics N.V. | Acoustic imaging systems adaptable for use with low drive voltages |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
PL2409728T3 (en) | 2004-10-06 | 2018-01-31 | Guided Therapy Systems Llc | System for ultrasound tissue treatment |
WO2006042163A2 (en) | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for cosmetic enhancement |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
KR102479936B1 (en) | 2008-06-06 | 2022-12-22 | 얼테라, 인크 | Ultrasound treatment system |
KR20110101204A (en) | 2008-12-24 | 2011-09-15 | 가이디드 테라피 시스템스, 엘.엘.씨. | Methods and systems for fat reduction and/or cellulite treatment |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
CN104027893B (en) | 2013-03-08 | 2021-08-31 | 奥赛拉公司 | Apparatus and method for multi-focal ultrasound therapy |
US20170028227A1 (en) | 2014-04-18 | 2017-02-02 | Ulthera, Inc. | Band transducer ultrasound therapy |
BR112018007728A2 (en) | 2015-11-24 | 2018-10-23 | Halliburton Energy Services Inc | ultrasonic transducer, and methods for producing an ultrasonic transducer and for ultrasonic imaging of a formation. |
FI3405294T3 (en) | 2016-01-18 | 2023-03-23 | Ulthera Inc | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board |
IL264440B (en) | 2016-08-16 | 2022-07-01 | Ulthera Inc | Systems and methods for cosmetic ultrasound treatment of skin |
TWI797235B (en) | 2018-01-26 | 2023-04-01 | 美商奧賽拉公司 | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
WO2019164836A1 (en) | 2018-02-20 | 2019-08-29 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4122725A (en) * | 1976-06-16 | 1978-10-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Length mode piezoelectric ultrasonic transducer for inspection of solid objects |
DE2829570C2 (en) * | 1978-07-05 | 1979-12-20 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Ultrasound head |
DE2929541A1 (en) * | 1979-07-20 | 1981-02-05 | Siemens Ag | ULTRASONIC CONVERTER ARRANGEMENT |
FR2485858B1 (en) * | 1980-06-25 | 1986-04-11 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING ULTRASONIC TRANSDUCERS OF COMPLEX SHAPES AND APPLICATION TO OBTAINING ANNULAR TRANSDUCERS |
US4434384A (en) * | 1980-12-08 | 1984-02-28 | Raytheon Company | Ultrasonic transducer and its method of manufacture |
FR2544577B1 (en) * | 1983-04-15 | 1987-11-20 | Centre Nat Rech Scient | ULTRASONIC PROBE WITH TRANSLATOR NETWORK AND METHOD FOR MANUFACTURING SUCH A PROBE |
-
1984
- 1984-05-25 EP EP84303562A patent/EP0142215A3/en not_active Withdrawn
- 1984-05-25 JP JP10736284A patent/JPS605133A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170199A (en) * | 1985-01-21 | 1986-07-31 | シーメンス、アクチエンゲゼルシヤフト | Ultrasonic converter and ultrasonic converter system |
JPH0553360B2 (en) * | 1985-01-21 | 1993-08-09 | Siemens Ag | |
JP2021023395A (en) * | 2019-07-31 | 2021-02-22 | キヤノンメディカルシステムズ株式会社 | Ultrasonic probe and ultrasonic diagnostic apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP0142215A3 (en) | 1987-03-11 |
EP0142215A2 (en) | 1985-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS605133A (en) | Ultrasonic converter improved in vibration mode | |
US5099459A (en) | Phased array ultrosonic transducer including different sized phezoelectric segments | |
US4616152A (en) | Piezoelectric ultrasonic probe using an epoxy resin and iron carbonyl acoustic matching layer | |
US4880012A (en) | Ultrasonic probe | |
US3198489A (en) | Compound ultrasonic transducer and mounting means therefor | |
US4371805A (en) | Ultrasonic transducer arrangement and method for fabricating same | |
EP0676742A2 (en) | Integrated matching layer for ultrasonic transducers | |
JPH10304495A (en) | Coupling packing block and composite converter array | |
JPH02253798A (en) | Piezoelectric converting element | |
JPS5977799A (en) | Apodictic supersonic transducer | |
US4635484A (en) | Ultrasonic transducer system | |
US3735159A (en) | Method and apparatus for translating ultrasonic energy | |
JP2021509787A (en) | High frequency ultrasonic transducer | |
US4414482A (en) | Non-resonant ultrasonic transducer array for a phased array imaging system using1/4 λ piezo elements | |
Guo et al. | Design and fabrication of broadband graded ultrasonic transducers with rectangular kerfs | |
JPH03270282A (en) | Composite piezo-electric body | |
JP2554468B2 (en) | Ultrasonic probe and method of manufacturing the same | |
JPS6031437B2 (en) | Annular probe and its manufacturing method | |
JP3327497B2 (en) | Ultrasonic probe | |
JPS5832557B2 (en) | Ultrasonic transceiver probe and its manufacturing method | |
JPS6153562A (en) | Ultrasonic probe | |
JPS61292550A (en) | Array type ultrasonic probe | |
JPH0538335A (en) | Ultrasonic probe and manufacture thereof | |
JPS6330575B2 (en) | ||
US4062105A (en) | Method for fabricating ferroelectric ultrasonic transducers |