JPS6048870B2 - Manufacturing method for lead-acid battery electrode substrate - Google Patents

Manufacturing method for lead-acid battery electrode substrate

Info

Publication number
JPS6048870B2
JPS6048870B2 JP51106624A JP10662476A JPS6048870B2 JP S6048870 B2 JPS6048870 B2 JP S6048870B2 JP 51106624 A JP51106624 A JP 51106624A JP 10662476 A JP10662476 A JP 10662476A JP S6048870 B2 JPS6048870 B2 JP S6048870B2
Authority
JP
Japan
Prior art keywords
substrate
elongation
lead
battery
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51106624A
Other languages
Japanese (ja)
Other versions
JPS5332340A (en
Inventor
幸広 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP51106624A priority Critical patent/JPS6048870B2/en
Publication of JPS5332340A publication Critical patent/JPS5332340A/en
Publication of JPS6048870B2 publication Critical patent/JPS6048870B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 従来、鉛蓄電池用極板基板は、鉛を主体とし、これに少
量のアンチモン、錫、ヒ素、カルシウムの1種又はそれ
以上を含む2元又は3元等の鉛合金を材料とし、これを
熔融し格子状に鋳造したものが一般であるが、鋳造後時
間経過と共に伸びの低下現象が起る。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, electrode plate substrates for lead-acid batteries have been made of binary or ternary lead alloys containing lead as a main ingredient and a small amount of one or more of antimony, tin, arsenic, and calcium. Generally, this material is melted and cast into a lattice shape, but elongation decreases over time after casting.

例えはこの格子基板に活物質を充填して極板とし、電池
に組込まれた状態において時間とともに、格子基板を構
成している四周の親骨並に縦、横の小骨の材料が伸びが
低下する。例えは鋳造後室温て1日放置のものは数%の
伸びを示すが、10日放置のものは1%以下にまで低下
する。而して、電池に組込まれた極板の格子基板の伸び
は1%以下の非常に小さい値を示すのが常であ12−1
、る。
For example, if this lattice substrate is filled with an active material and used as an electrode plate, and when it is incorporated into a battery, over time, the elongation of the material of the four circumferential ribs and the vertical and horizontal small bones that make up the lattice substrate decreases. . For example, if a piece is left at room temperature for one day after casting, it will elongate by several percent, but if it is left for 10 days, the elongation will drop to less than 1%. Therefore, the elongation of the grid substrate of the electrode plate incorporated in the battery usually shows a very small value of 1% or less12-1.
,ru.

絃でその伸び率(%)は ×100で表1、わし、その
測定は、極板基板の例えば高さにつき、充放電前の高さ
寸法1、をノギスで測り、充放電をくり返して格子骨が
破断した後同じ場所の高さ寸法10を測り、上記式より
基板の伸び(%)を求めたものである。
The elongation rate (%) of the string is x100 in Table 1.The measurement is as follows: For example, the height of the electrode plate substrate before charging and discharging is measured with a caliper, and the grid is measured by repeating charging and discharging. After the bone was fractured, the height dimension 10 at the same location was measured, and the elongation (%) of the substrate was determined from the above formula.

このような小さい伸びを示す格子基板が用いられている
極板で電池が構成されている場合には、次に示す理由で
電池の短命をもたらす。即ち、電池の使用中、格子基板
に充填されている活物質の充放電に基く体積膨張に伴う
応力が格子骨に作用する。1方充放電の繰り返しにより
格子骨の表面に生成される酸化物層の生長に伴う応力が
格子骨に作用する。
When a battery is constructed of electrode plates in which a lattice substrate exhibiting such a small elongation is used, the life of the battery is shortened for the following reasons. That is, during use of the battery, stress due to volumetric expansion due to charging and discharging of the active material filled in the lattice substrate acts on the lattice bones. Stress accompanying the growth of an oxide layer generated on the surface of the lattice bones by repeated one-way charging and discharging acts on the lattice bones.

実際にはこれら2つの応力の合成されたものが格子骨に
作用する訳であるが、前述のように格子骨の伸びは極め
て小さいので、この合成応力により、機械的に破断し、
又格子骨はその結晶粒界や共晶部分がいわゆる応力腐食
し、更に破断する。かくして、格子骨の早期破断は活物
質の脱落をもたらし、破断が外枠骨に起つた場合には、
極板は短絡する等電池の損傷、寿命短縮をもたらす。
In reality, the combination of these two stresses acts on the lattice bones, but as mentioned above, the elongation of the lattice bones is extremely small, so this combined stress causes them to mechanically break.
In addition, the grain boundaries and eutectic portions of the lattice bones undergo so-called stress corrosion and are further fractured. Thus, premature rupture of the lattice bones results in shedding of the active material, and if rupture occurs in the outer framework bones,
The electrode plates can cause short circuits, which can damage the battery and shorten its lifespan.

本発明は、か)る鉛々金の伸び率が1〜2%程度と小さ
いために、応力腐食などによる格子骨の破断により生す
る活物質の脱落問題を著しく改善した鉛蓄電池電極基板
を提供するもので、カルシウムを含まない鉛合金を材料
としこれを格子基板に鋳造したものを一旦室温で5〜7
日間放置後加熱軟化処理を施すことを特徴とする。加熱
軟化処理は、基板を加熱により昇温させ急激に金属の硬
さが低下、即ち軟化する温度以上で所定時間加熱保持す
る処理てある。かくして一旦加熱軟化処理を経た本品基
板は電池の通常の使用期間を通じて機械的伸びが4%以
上維持し、前記従来の不都合を著しく減少した電極を与
えることが認められた。
The present invention provides a lead-acid battery electrode substrate that significantly improves the problem of active material falling off due to fracture of lattice bones due to stress corrosion etc., since the elongation rate of lead metal is as small as about 1 to 2%. The material is made of a lead alloy that does not contain calcium, and is cast onto a lattice substrate for 5 to 7 seconds at room temperature.
It is characterized by being subjected to heat softening treatment after being left for a day. The heat softening treatment is a treatment in which the temperature of the substrate is raised by heating, and the temperature is maintained for a predetermined time at a temperature above which the hardness of the metal suddenly decreases, that is, the metal becomes soft. Thus, it was confirmed that the substrate of the present invention, once subjected to heat softening treatment, maintains a mechanical elongation of 4% or more throughout the normal use period of the battery, and provides an electrode in which the above-mentioned conventional disadvantages are significantly reduced.

加熱軟化処理は幅射加熱、通電加熱、高周波加熱等任意
であり、被処理鉛合金をその融点以下の温度で軟化せし
めれば足り、特に一旦半軟化状態とするときは、最終基
板として4%以上の伸びをもつものが得られ、好ましく
は130℃以上で50〜7紛の加熱の軟化処理条件によ
り経済的に而も伸びの大きい基板にすることが出来、電
極として使用されている間少くとも3%の延びを有する
ものとすることが出来る。
The heat softening treatment can be arbitrary, such as radiation heating, current heating, high frequency heating, etc., and it is sufficient to soften the lead alloy to be treated at a temperature below its melting point. In particular, once it is in a semi-softened state, 4% as the final substrate is used. By using the softening treatment condition of heating 50 to 7 powder at preferably 130°C or higher, it is possible to obtain a substrate with a high elongation economically, and it is possible to obtain a substrate with a high elongation while being used as an electrode. Both can have an elongation of 3%.

下記の実施例中で明らかとなるように、軟化処J理を基
板の鋳造直後に行なうときは、4%以上の伸び率を維持
する基板は得られず。
As will become clear in the examples below, when the softening treatment J is performed immediately after casting the substrate, a substrate that maintains an elongation rate of 4% or more cannot be obtained.

カルシウムを含まない鉛合金の鋳造格子基板の伸び率を
4%以上とするには、その加熱軟化処理は、その鋳造後
一旦室温で5〜7日間放置後に行なう必要があることが
認められた。実施例1. As及びSnを微量含むPb−4.0%Sb合金を用い
て常法により自動車用電池電極の格子基板を鋳造し、鋳
造後室温で5日間放置された伸び0.5〜1.0%を有
する基板を170℃で印分加熱の軟化処理を行ない4〜
5%の伸びを有する本発明基板を得た。
It has been found that in order to increase the elongation of a calcium-free lead alloy cast grid substrate to 4% or more, the heat softening treatment must be carried out after the substrate is left at room temperature for 5 to 7 days after casting. Example 1. Using a Pb-4.0%Sb alloy containing trace amounts of As and Sn, a grid substrate for an automobile battery electrode was cast by a conventional method, and after being left at room temperature for 5 days after casting, the elongation was 0.5 to 1.0%. A softening process is performed on the substrate with an indentation heating at 170°C.
A substrate of the present invention having an elongation of 5% was obtained.

この基板に活物質を充填した極板とし、これを用いて電
池を組立て、300サイクルまで寿命試験を行なつた後
、その陽極板について外枠骨の破断数と活物質脱落率と
を測定した。その1枚当りの結果は下記表1に示す。比
較のため軟化処理を施さない伸ひ0.5〜1.0%を有
する従来の基板に同様に活物質を充填し電極とし、これ
により組立てた電池について同様に試験し測定した。そ
の結果.を同表に併記する。更に比較のため、前記の鋳
造後の格子基板を、直ちに170℃で印分加熱の軟化処
理を行なつたものの伸び率は2.5〜3.5%であつた
This substrate was used as an electrode plate filled with an active material, and a battery was assembled using this and a life test was performed for up to 300 cycles.The number of fractures in the outer frame bone and the active material falling rate were measured for the anode plate. . The results per sheet are shown in Table 1 below. For comparison, a conventional substrate having an elongation of 0.5 to 1.0% without softening treatment was similarly filled with an active material and used as an electrode, and a battery assembled using this was similarly tested and measured. the result. are also listed in the same table. Furthermore, for comparison, the elongation rate of the lattice substrate after the casting was immediately subjected to a softening treatment by minute heating at 170 DEG C. was 2.5 to 3.5%.

又これを用いて電池を組立て、300サイクルまで寿命
試験を行・なつた後、その陽極板1枚当りについて測定
した外枠骨の破断数は21、脱落率は11.5%であつ
た。その後180日経過した該基板の伸び率は1.5〜
2%に低下した。これに対し、本法処理基は、180日
経過しても当初の4〜5%の伸び率を維持して居た。実
施例2. Pb−2.5%Sb合金を用いて常法により格子基板を
鋳造し、鋳造後室温で7日間放置された伸び1〜1.5
%を有する基板を150℃で60分加熱の軟化処理を行
ない5〜6%の伸びを有する本発明基板を得た。
After assembling a battery using this and carrying out a life test for up to 300 cycles, the number of fractures of the outer frame ribs measured per anode plate was 21, and the falling off rate was 11.5%. The elongation rate of the substrate after 180 days was 1.5~
It dropped to 2%. On the other hand, the group treated with this method maintained the initial growth rate of 4 to 5% even after 180 days. Example 2. A grid substrate was cast using a Pb-2.5%Sb alloy by a conventional method, and the elongation after being left at room temperature for 7 days was 1 to 1.5.
% was subjected to a softening treatment by heating at 150° C. for 60 minutes to obtain a substrate of the present invention having an elongation of 5 to 6%.

この基板に活物質を充填し極板とし、これを用いて電池
を組立て、実施例1と同様の試験を行なつた後、その陽
極板1枚当りについての外骨枠の破断数及び脱落率の測
定結果を下記表2に示す。伸び1〜1.5%を有する従
来の未軟化処理基板を用いて電池をつくり比較試験し、
仝表に示す結果を得た。更に比較のため、前記の鋳造後
の格子基板を、直ちに150゜Cで6吟加熱の軟化処理
を行なつたものの伸び率は3.5〜4.5%であつた。
This substrate was filled with an active material to form an electrode plate, a battery was assembled using this, and the same test as in Example 1 was conducted. The measurement results are shown in Table 2 below. A battery was made using a conventional unsoftened substrate with an elongation of 1 to 1.5%, and a comparative test was conducted.
The results shown in the table were obtained. For comparison, the lattice substrate after casting was immediately subjected to a softening treatment by heating at 150 DEG C. for 6 minutes, and the elongation rate was 3.5 to 4.5%.

又これを用いて電池を組立て、実施例1と同様の試験を
行なつた後、その陽極板1枚当りについて測定した外骨
枠の破断数は1.2脱落率は10.5%であつた。その
後180日経過した該基板の伸び率は、2.5〜3%%
に低下した。これに対し、本法処理基板は、180日経
過しても当初の5〜6%の伸び率を維持して居た。この
ように本発明によるときは、カルシウムを含まない鉛合
金を材料としこれを格子基板に鋳造したものを一旦室温
で5〜7日間放置した後加熱軟化処理したので、加熱軟
化処理しない又は加熱軟化処理を鋳造直後行なつた此種
鉛合金基板では得られない4%以上の伸び率を維持する
基板が得られ電池極板として使用し、格子骨の破断や活
物質の脱落を著しく減少することが出来る効果を有する
After assembling a battery using this and conducting the same test as in Example 1, the number of fractures of the outer frame measured per anode plate was 1.2, and the dropout rate was 10.5%. . The elongation rate of the substrate after 180 days was 2.5% to 3%%.
It declined to . On the other hand, the substrate treated with this method maintained its initial growth rate of 5 to 6% even after 180 days. As described above, according to the present invention, a grid substrate made of a lead alloy that does not contain calcium is cast and then left at room temperature for 5 to 7 days and then subjected to heat softening treatment. A substrate that maintains an elongation rate of 4% or more, which cannot be obtained with this kind of lead alloy substrate that is treated immediately after casting, can be obtained, and can be used as a battery electrode plate, and the rupture of the lattice bones and falling out of the active material can be significantly reduced. It has the effect of allowing

Claims (1)

【特許請求の範囲】[Claims] 1 カルシウムを含まない鉛合金を材料としこれを格子
基板に鋳造したものを一旦室温で5〜7日間放置後加熱
軟化処理を施すことを特徴とする鉛蓄電池電極基板の製
造法。
1. A method for producing a lead-acid battery electrode substrate, which comprises casting a lattice substrate made of a lead alloy that does not contain calcium, leaving it at room temperature for 5 to 7 days, and then subjecting it to a heat softening treatment.
JP51106624A 1976-09-08 1976-09-08 Manufacturing method for lead-acid battery electrode substrate Expired JPS6048870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51106624A JPS6048870B2 (en) 1976-09-08 1976-09-08 Manufacturing method for lead-acid battery electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51106624A JPS6048870B2 (en) 1976-09-08 1976-09-08 Manufacturing method for lead-acid battery electrode substrate

Publications (2)

Publication Number Publication Date
JPS5332340A JPS5332340A (en) 1978-03-27
JPS6048870B2 true JPS6048870B2 (en) 1985-10-29

Family

ID=14438252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51106624A Expired JPS6048870B2 (en) 1976-09-08 1976-09-08 Manufacturing method for lead-acid battery electrode substrate

Country Status (1)

Country Link
JP (1) JPS6048870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197277A (en) * 1982-05-08 1983-11-16 Mitsubishi Gas Chem Co Inc Treating liquid for dissolving metal chemically
JP2909743B2 (en) * 1989-03-08 1999-06-23 富山日本電気株式会社 Chemical polishing method for copper or copper alloy

Also Published As

Publication number Publication date
JPS5332340A (en) 1978-03-27

Similar Documents

Publication Publication Date Title
JP3555877B2 (en) Alloy for battery grid
PT1248864E (en) Method for manufacture of thin positive grid for lead acid batteries from lead alloy
US4092462A (en) Electrode grids for lead accumulators
WO2009060919A1 (en) Method for producing lead-base alloy grid for lead-acid battery
CZ20021806A3 (en) Lead, silver, and barium alloy for lead acid battery grids
US5401278A (en) Method of making battery plates for lead acid storage batteries
JPS6048870B2 (en) Manufacturing method for lead-acid battery electrode substrate
CA1186169A (en) Low antimony alloy
JPS6326320A (en) High power conductive copper alloy
JP2000077076A (en) Lead base alloy for storage battery
EP2168186A1 (en) Method for producing lead-base alloy grid for lead-acid battery
CA1094359A (en) Low antimonial lead alloy for making grids for use in maintenance free batteries
JPS59208035A (en) Lead alloy for storage battery
US2040078A (en) Lead alloy
JPH0326905B2 (en)
CN112813325A (en) Lithium-silicon-tin alloy material and preparation method and application thereof
JPS6127066A (en) Grid for lead-acid battery and its manufacture
US1675643A (en) Storage-battery grid
US4035556A (en) Lead base alloy for use in a storage battery grid
US3008853A (en) Process for the treatment of alloys
JPH05182660A (en) Nonlead nonamalgamated zinc alloy powder and manufacture thereof for alkaline battery
JP3590229B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP4066496B2 (en) Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JPS63317636A (en) Copper alloy for burn-in ic socket of semiconductor device
JPS6074266A (en) Manufacture of lattice substrate for lead storage battery