JPS6045138B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPS6045138B2
JPS6045138B2 JP53114637A JP11463778A JPS6045138B2 JP S6045138 B2 JPS6045138 B2 JP S6045138B2 JP 53114637 A JP53114637 A JP 53114637A JP 11463778 A JP11463778 A JP 11463778A JP S6045138 B2 JPS6045138 B2 JP S6045138B2
Authority
JP
Japan
Prior art keywords
optical fiber
resin composition
coating
optical
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53114637A
Other languages
Japanese (ja)
Other versions
JPS5542244A (en
Inventor
隆男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53114637A priority Critical patent/JPS6045138B2/en
Publication of JPS5542244A publication Critical patent/JPS5542244A/en
Publication of JPS6045138B2 publication Critical patent/JPS6045138B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は光伝送用ガラスファイバの製造方法に関し、更
に詳細には光ファイバの被覆処理に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass fiber for optical transmission, and more particularly to a coating treatment for an optical fiber.

光伝送用媒体として使用されるガラスファイバ(以下単
に光ファイバという)は通常その直径が200μm以下
であり、又材質的に非常に脆いため、その製造中又はケ
ーブル化の工程若しくは保管中において表面に傷が発生
し易く、この傷が応力集中源になり、外部から応力が加
わつた場合に容易に光ファイバが破断する欠点を有する
Glass fibers (hereinafter simply referred to as optical fibers) used as optical transmission media usually have a diameter of 200 μm or less and are extremely brittle, so their surface may be damaged during manufacturing, cable production, or storage. It has the disadvantage that scratches are easily generated, and these scratches become a stress concentration source, and the optical fiber easily breaks when stress is applied from the outside.

この理由で光ファイバをそのまゝ光伝送用媒体として使
用すことは極めて困難である。この問題を解決するため
に、光ファイバの線引工程に引続いて、光ファイバの表
面にプラスチック被覆を行ない、これによりその初期強
度の維持並びに長期間使用に耐える光ファイバの製造方
法が提案されている。そしてこの種の方法としてはたと
えば、光ファイバにポリエチレンテレフタレート等の熱
可塑性樹脂を押出成形により被覆し、強度の向上を図る
こと(英国特許第1371318明細書参照)又ビニリ
デンフルオロラード−テトラフルオロエチレン共重合体
、エポキシアクリレート重合体等を光ファイバに塗布硬
化することが知られている。ところで、光ファイバの被
覆は、通常前記した初期強度を維持するための一次被覆
の外に、ケーブル化に対処するためのポリアミド、ポリ
エチレン等の熱可塑性樹脂の押出成形による二次被覆及
び二次被覆時の伝送損失の増加を防ぐために一次被覆層
と二次被覆層の間にゴム状弾性体から成る緩衝層が設け
られ、したがつてその被覆は3層構造から成り、そして
通常一次被覆及び緩衝層はガラスファイバの線引に引続
いて形成される。しかるに、現用の一次被覆材料である
ウレタン系及びエポキシ系樹脂は硬化速度が遅く、硬化
乾燥に長時間を要するため光ファイバの線引速度が制限
され、光ファイバの量産上の問題点の一となっている。
又現用の緩衝層材料としては、伝送特性の理由から常温
硬化型のシリコーンゴムで使用されているめ、室温で放
置するだけで粘度が上昇し、長時間の線引に耐えられな
いと共に、シリコーンゴムは比較的に粘着性が高いため
、じんあいヨ等が付着し易く、二次被覆時に悪影響を及
ぼす等の欠点があつた。本発明は前記現状に鑑みてなさ
れたもので、その目的は光ファイバの量産性及び製造の
作業性を改善した製造方法を提供することである。
For this reason, it is extremely difficult to use optical fiber as it is as a medium for optical transmission. To solve this problem, a method has been proposed in which the surface of the optical fiber is coated with plastic following the drawing process, thereby maintaining its initial strength and producing an optical fiber that can withstand long-term use. ing. Examples of this type of method include coating an optical fiber with a thermoplastic resin such as polyethylene terephthalate by extrusion molding to improve the strength (see British Patent No. 1371318), and vinylidene fluoride-tetrafluoroethylene coating. It is known to coat and cure polymers, epoxy acrylate polymers, etc. on optical fibers. By the way, optical fiber coatings usually include, in addition to the primary coating described above to maintain the initial strength, a secondary coating made by extrusion molding of a thermoplastic resin such as polyamide or polyethylene to cope with cable formation. A buffer layer made of rubber-like elastic material is provided between the primary coating layer and the secondary coating layer in order to prevent an increase in transmission loss during transmission. The layer is formed subsequent to drawing the glass fiber. However, the current primary coating materials, urethane and epoxy resins, have a slow curing speed and require a long time to cure and dry, which limits the drawing speed of optical fibers, which is one of the problems in mass production of optical fibers. It has become.
In addition, the current buffer layer material used is silicone rubber that cures at room temperature due to its transmission characteristics, so its viscosity increases just by leaving it at room temperature, making it unable to withstand long-term wire drawing. Since rubber has relatively high adhesiveness, it has disadvantages such as easy attachment of dust, etc., which adversely affects the secondary coating. The present invention has been made in view of the above-mentioned current situation, and its purpose is to provide a manufacturing method that improves mass productivity and manufacturing workability of optical fibers.

前記目的を達成する本発明の光ファイバの製造方法は光
伝送用ガラスファイバの表面にアジド基を有する高分子
化合物を含む樹脂組成物を塗布した後、これに光照射し
て樹脂組成物を硬化することを特徴とする。
The method for manufacturing an optical fiber of the present invention that achieves the above object includes applying a resin composition containing a polymer compound having an azide group to the surface of a glass fiber for optical transmission, and then curing the resin composition by irradiating the resin composition with light. It is characterized by

光ファイバの表面に塗布した樹脂組成物に光照射すると
、高分子化合物に結合したアジド基は窒素とナイトレン
に分解する。
When the resin composition applied to the surface of the optical fiber is irradiated with light, the azide groups bonded to the polymer compound are decomposed into nitrogen and nitrene.

このナイトレンは不対電子2個を有し、それぞれが別の
軌道に存在するビラジカルであるとされている。この三
重項状態のナイトレンは活性であるため種々の化学反応
例えば、水素引き抜き反応、二重結合への挿入反応、再
結合、C−H結合への挿入反応、フェノール類に対する
酸化付加反応を生起する。このためアジド基を含む高分
子化合物に光を照射すると、高分子化合物間に上記反応
が生起し樹脂組成物は速かに硬化する。本発明において
使用されるアジド基を含む高分子化合物としては、ポリ
アジド安息香酸ビニル、ポリアジドフタル酸ビニル、ポ
リアジドスチレン、ポリリビニルアジドベンザルアセタ
ール、ポリビニルアジドナフチルアセタール、ポリビニ
ルシンナマート、ポリ(ビニルアセタートー3アジドフ
タラート)、ポリ(ビニルアセタートー4−アジドフタ
ラート)、ポリ(ビニルアセタートー3,4−アジドフ
タラート)、ポリ(ビニルアセタートーP−アジドベン
ゾアート)、3−(4−アジドフェノキシ)エタノール
のスチレンマレイン酸エステル等が挙げられる。
This nitrene is said to be a biradical having two unpaired electrons, each of which exists in a different orbit. Since this triplet state nitrene is active, it causes various chemical reactions such as hydrogen abstraction reaction, double bond insertion reaction, recombination, C-H bond insertion reaction, and oxidative addition reaction to phenols. . Therefore, when a polymer compound containing an azide group is irradiated with light, the above reaction occurs between the polymer compounds and the resin composition is rapidly cured. Polymeric compounds containing an azide group used in the present invention include polyazidovinyl benzoate, polyazidovinyl phthalate, polyazidostyrene, polyvinylazidobenzalacetal, polyvinylazidonaphthyl acetal, polyvinylcinnamate, poly( (vinyl acetate 3-azidophthalate), poly(vinyl acetate 4-azidophthalate), poly(vinyl acetate 3,4-azidophthalate), poly(vinyl acetate P-azidobenzoate) , styrene maleate of 3-(4-azidophenoxy)ethanol, and the like.

本発明における樹脂組成物の主なる構成成分は前記のア
ジド基を有する高分子化合物であるが、その他にアジド
基の光分解を促進する芳香族ケトン類、芳香族ニトロ化
合物、トリフェニルメタン系染料等の光増感剤、ガラス
(光ファイバ)と被.覆材料の接着性を高めるためのγ
−メタクリロキシプロピルトリメトキシシラン、γ−ア
ミノプロピルトリメトキシシラン、γ−グリシドキシプ
ロピルトリメトキシシラン等のシランカップリング剤、
粘度調整のためにベンゼン、トルエン等の有.機溶媒を
添加することができる。
The main component of the resin composition in the present invention is the above-mentioned azide group-containing polymer compound, but also aromatic ketones, aromatic nitro compounds, and triphenylmethane dyes that promote photodecomposition of the azide group. Photosensitizers such as glass (optical fiber) and coatings. γ to increase the adhesion of the covering material
- Silane coupling agents such as methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane,
Contains benzene, toluene, etc. to adjust viscosity. A solvent can be added.

本発明において使用される樹脂組成物は硬化速度が速い
ため、光ファイバの高速線引作業が可能であり、光ファ
イバの量産性が向上する。
Since the resin composition used in the present invention has a fast curing speed, it is possible to draw optical fibers at high speed, and the mass productivity of optical fibers is improved.

この樹脂組成物を使用する他の特徴はアジド基の光照射
一により窒素ガスが放出されることである。この樹脂組
成物を光ファイバの被覆材料に適用する場合、被覆の膜
厚が20〜25μm程度までは光照射によつて発生した
窒素ガスは皮膜を通過するためピンホールのない均一な
皮膜が得られる。したがつて本発明における樹脂組成物
は通常の一次被覆材料と同様な効果を達成する。又、皮
膜の厚さが20〜25μmを越えると光照射により発生
した窒素は皮膜内部に閉じこめられ、発泡性の皮膜が得
られる。この発泡性皮膜は外圧を緩和する役割りを果す
ため、現在緩衝層材料として広く使用されているシリコ
ーン樹脂と同様に使用することができ、シリコーン樹脂
に比べて可使時間(ポツトライフ)が長い利点がある。
本発明における樹脂組成物を直接光ファイバへ塗布し厚
い皮膜とした場合、20〜25μmまでの内部は均一な
皮膜であり、それを越えた部分は発泡体となるため1回
の被覆操作及び同一の材料で一次被覆と緩衝層被覆が同
時に形成される利点がある。これは現在、一次被覆と緩
衝層被覆が別途に行なわれているのに比べて光ファイバ
の量産性、製造作業性の点からはるかに有利である。更
に、本発明において使用される樹脂組成物を前記のよう
に光ファイバに被覆、硬化した後その表面を熱可塑性樹
脂、熱硬化性樹旨又は光硬化性樹脂で被覆すれば、現在
の押出成形による二次被覆なしで直接ケーブル化可能で
ある利点を有する。次に本発明を実施例について説明す
るが、本発明はこれによりなんら限定されるものではな
い。
Another feature of using this resin composition is that nitrogen gas is released upon irradiation of the azide group with light. When this resin composition is applied as a coating material for optical fibers, nitrogen gas generated by light irradiation passes through the coating until the thickness of the coating is about 20 to 25 μm, so a uniform coating without pinholes can be obtained. It will be done. Therefore, the resin composition of the present invention achieves the same effects as ordinary primary coating materials. If the thickness of the film exceeds 20 to 25 μm, nitrogen generated by light irradiation will be trapped inside the film, resulting in a foamable film. Since this foamable film plays the role of relieving external pressure, it can be used in the same way as silicone resin, which is currently widely used as a buffer layer material, and has the advantage of a longer pot life than silicone resin. There is.
When the resin composition of the present invention is directly applied to an optical fiber to form a thick film, the inside of the film is uniform within a thickness of 20 to 25 μm, and the part beyond that becomes a foam, so one coating operation and the same process are required. There is an advantage that the primary coating and the buffer layer coating can be formed at the same time using this material. This is much more advantageous in terms of mass production of optical fibers and manufacturing workability than the current method in which primary coating and buffer layer coating are performed separately. Furthermore, if the resin composition used in the present invention is coated on an optical fiber as described above and cured, then the surface thereof is coated with a thermoplastic resin, a thermosetting resin, or a photocurable resin. It has the advantage that it can be directly cabled without secondary sheathing. Next, the present invention will be described with reference to Examples, but the present invention is not limited thereto in any way.

実施例1光ファイバ母材を約2000℃に加熱し、線引
速度80rn/分で線引作業を行ない、ファイバ径13
0pmのモノフィラメントの光ファイバを製造し、次に
ポリ(ビニルアセタートーP−アジドベンゾアート)か
ら成る樹脂組成物を線引直後の光ファイバに塗布し、出
力2KW×4の紫外線ランプにより光照射して硬化させ
た。
Example 1 An optical fiber base material was heated to about 2000°C and drawn at a drawing speed of 80 rn/min, resulting in a fiber diameter of 13
A 0 pm monofilament optical fiber is manufactured, and then a resin composition made of poly(vinyl acetate P-azidobenzoate) is applied to the optical fiber immediately after drawing, and irradiated with light using an ultraviolet lamp with an output of 2 KW x 4. and cured.

被覆材料は完全に硬化しており、平均膜厚12μmの均
一な皮膜を得た。光ファイバの平均破断強度は475k
9/Miであつた。実施例2 光ファイバの母材を約2000℃に加熱し、線引速度3
0rn/分で線引作業を行ない、直径130μmのモノ
フィラメントの光ファイバを得た。
The coating material was completely cured, and a uniform film with an average thickness of 12 μm was obtained. The average breaking strength of optical fiber is 475k
It was 9/Mi. Example 2 The base material of optical fiber was heated to about 2000°C, and the drawing speed was 3.
The drawing operation was performed at 0 rn/min to obtain a monofilament optical fiber with a diameter of 130 μm.

次にポリ(ビニルアセタートー4−アジドフタラート)
から成る樹脂組成物を線引直後の光ファイバに塗布した
後紫外線(出力2KW×4)を照射して硬化させた。被
覆材料は完全に硬化しており、平均膜厚80μmの発泡
性の皮膜を持つ光ファイバが得られた。このファイバの
平均波断強度は502k9/Tdであつた。以上の説明
から明らかなように本発明によれば、樹脂組成物は光硬
化性材料であるため可使時間(ポツトライフ)が長く、
又硬化速度が速いため、光ファイバの高速線引を可能に
し、更に1回の塗布硬化で一次被覆、緩衝層被覆が行な
える等光ファイバの量産性、製造作業性を高める利点が
ある。
Next, poly(vinyl acetate 4-azidophthalate)
A resin composition consisting of the above was applied to an optical fiber immediately after being drawn, and then irradiated with ultraviolet rays (output 2 KW x 4) to cure it. The coating material was completely cured, and an optical fiber having a foamable coating with an average thickness of 80 μm was obtained. The average wave intensity of this fiber was 502k9/Td. As is clear from the above description, according to the present invention, the resin composition has a long pot life because it is a photocurable material.
Furthermore, since the curing speed is fast, it is possible to draw optical fibers at high speed, and furthermore, it has the advantage of improving the mass production and manufacturing workability of optical fibers, such as being able to perform primary coating and buffer layer coating in one coating and curing process.

Claims (1)

【特許請求の範囲】[Claims] 1 光伝送用ガラスファイバの表面にアジド基を有する
高分子化合物を含む樹脂組成物を塗布した後、これに光
照射して樹脂組成物を硬化することを特徴とする光ファ
イバの製造方法。
1. A method for manufacturing an optical fiber, which comprises applying a resin composition containing a polymer compound having an azide group to the surface of a glass fiber for optical transmission, and then irradiating the resin composition with light to cure the resin composition.
JP53114637A 1978-09-20 1978-09-20 Optical fiber manufacturing method Expired JPS6045138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53114637A JPS6045138B2 (en) 1978-09-20 1978-09-20 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53114637A JPS6045138B2 (en) 1978-09-20 1978-09-20 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS5542244A JPS5542244A (en) 1980-03-25
JPS6045138B2 true JPS6045138B2 (en) 1985-10-08

Family

ID=14642787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53114637A Expired JPS6045138B2 (en) 1978-09-20 1978-09-20 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPS6045138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738347A (en) * 1980-08-13 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Coating method for optical fiber
JPS58178302A (en) * 1982-04-12 1983-10-19 Sumitomo Electric Ind Ltd Optical fiber of heat resistant plastic
JPS58187902A (en) * 1982-04-27 1983-11-02 Hitachi Cable Ltd Coated optical fiber

Also Published As

Publication number Publication date
JPS5542244A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
JPS604773B2 (en) Dimensionally stable flexible hydraulic hose and method of manufacturing the same
US4639080A (en) Optical fibers coated with modified 1,4-polybutadienes
JPS6045138B2 (en) Optical fiber manufacturing method
US6181859B1 (en) Coated optical fiber and method of making the same
US4540597A (en) Process for producing optical fiber for optical transmission
JPS6045139B2 (en) Optical fiber manufacturing method
JPS60151257A (en) Manufacture of optical fiber
JPS63151648A (en) Production of coated optical fiber
JPS60155553A (en) Method for coating optical fiber
JPH038522B2 (en)
US20220111566A1 (en) System and Method for Achieving a One Component Growable Resin System
JPH0227296B2 (en)
JPS5898704A (en) Optical fiber core
JPS6220144B2 (en)
KR100640293B1 (en) Molding product from siloxane polymer compound with adhesion layer thereon, and formation method thereof
JPS59107945A (en) Manufacture of optical fiber
JPS59182259A (en) Covering material for optical fiber
JP3218623B2 (en) Thermoplastic saturated norbornene-based polymer molded article having cured layer and method for producing the same
JPH06263900A (en) Molded article having adhesive layer
JPS58205103A (en) Light transmitting fiber
JPS63128309A (en) Optical fiber
JPS6177645A (en) Clad material for optical glass fiber
JPS59202231A (en) Production of transparent coating film
JPH1048481A (en) Optical fiber core coneveyed by air pressure
JPS59111953A (en) Preparation of coated optical fiber