JPS6037620B2 - semiconductor storage device - Google Patents

semiconductor storage device

Info

Publication number
JPS6037620B2
JPS6037620B2 JP54160522A JP16052279A JPS6037620B2 JP S6037620 B2 JPS6037620 B2 JP S6037620B2 JP 54160522 A JP54160522 A JP 54160522A JP 16052279 A JP16052279 A JP 16052279A JP S6037620 B2 JPS6037620 B2 JP S6037620B2
Authority
JP
Japan
Prior art keywords
field effect
effect transistor
mos field
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54160522A
Other languages
Japanese (ja)
Other versions
JPS5683060A (en
Inventor
透 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54160522A priority Critical patent/JPS6037620B2/en
Priority to US06/212,103 priority patent/US4398267A/en
Priority to DE3046376A priority patent/DE3046376C2/en
Publication of JPS5683060A publication Critical patent/JPS5683060A/en
Publication of JPS6037620B2 publication Critical patent/JPS6037620B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Read Only Memory (AREA)

Description

【発明の詳細な説明】 本発明は高集積化、高速化に最適なメモリセルを用いた
半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device using memory cells that are optimal for high integration and high speed.

近年、半導体メモリの発展は目覚ましいものがある。In recent years, the development of semiconductor memory has been remarkable.

中でもMOS電界効果ダイナミックメモリはその高集積
性、低消費電力性の面ですぐれており、広く利用されて
いる。このダイナミックメモリの著しい発展を可能にし
た技術の1つにメモリセル1個がMOS電界効果トラン
ジスタ(以下MOSFETと略称する)1個とMOSキ
ャパシタ1個で作られる1トランジスタ/セルがあげら
れる。それと同時に1トランジスタ/セルを実現可能に
した、フリツプフロツプタイプのセンスアンプも見落と
すことはできない。ダイナミックメモリで現在まで、最
も盛んに用いられてきた1トランジスタ/セルは、その
キャパシタの電荷量を“1”“0”の2進情報に対応づ
けられたもので、キャパシタの静電容量の1の音から2
ぴ音もの静電z量を持つビット線にキャパシタに蓄積さ
れた電荷を再分配するので、ビット線を介してセンスア
ンプに入力される信号は非常に微小なものとなってしま
う。従ってセンスアンプの性能は微小信号を感知しうる
高感度なものが要求され、又、センスアンプのフリップ
フロップの1対の駆動トランジスタの関値電圧の差など
のセンスアンプ個有のアンバランスも十分小さくしなけ
ればならなかった。これに対し、1トランジスタノセル
以前のダイナミックメモ川こ用いられていた3トランジ
スタ/セルがある。
Among them, MOS field effect dynamic memory is excellent in terms of high integration and low power consumption, and is widely used. One of the technologies that has enabled this remarkable development of dynamic memory is the one-transistor/cell system in which one memory cell is made of one MOS field effect transistor (hereinafter abbreviated as MOSFET) and one MOS capacitor. At the same time, we cannot overlook the flip-flop type sense amplifier, which has made it possible to implement one transistor/cell. One transistor/cell, which has been most widely used in dynamic memory to date, is one whose capacitor's charge is associated with binary information of "1" and "0"; 2 from the sound of
Since the charge accumulated in the capacitor is redistributed to the bit line which has a large electrostatic z amount, the signal input to the sense amplifier via the bit line becomes very small. Therefore, the performance of the sense amplifier is required to be highly sensitive so that it can sense very small signals, and it is also required to be sufficiently sensitive to the imbalance inherent in the sense amplifier, such as the difference in the voltage between the pair of drive transistors of the sense amplifier's flip-flop. I had to make it smaller. On the other hand, there is a 3-transistor/cell that was used in the dynamic memory cell prior to the 1-transistor cell.

このメモリセルは記憶情報に従ってビット線をメモリセ
ル内のドライバによってディスチャージしたり、しなか
ったりする事で2進情報の“1”“0”を区別するもの
で、ビット線に現われる信号振幅は1トランジスタ/セ
ルとは比較にならないほど大きかった。しかし、メモリ
セル1個に3個のMOSSFETを要することが致命的
な高集積化に不適であることから最近ではほとんど用い
られなくなった。今後、半導体メモリに対する高集積化
の要請はますます強くなる一方と思われ、ダイナミック
メモリもその例外ではない。
This memory cell distinguishes between "1" and "0" of binary information by discharging or not discharging the bit line by a driver in the memory cell according to the stored information, and the signal amplitude appearing on the bit line is 1. It was incomparably larger than a transistor/cell. However, since the requirement of three MOSSFETs for one memory cell is fatally unsuitable for high integration, it has rarely been used in recent years. In the future, the demand for higher integration in semiconductor memories is expected to grow stronger, and dynamic memories will be no exception.

更に高集積化を実現して行くに当って、従来の1トラン
ジスタ/セルとフリツプフロツプのセンスアンプを用い
、それを微細化しして行くだけでは、センスアンプへの
入力信号はますます微小化し、それに対してセンスアン
プ個有のアンバランスはそれほど小さくならず、やがて
は信号とアンバランス(即ち雑音)が同程度の大きさに
なって正しく動作しなくなってしまう。本発明は上記の
点に鑑み、微細化してもビット線に現われる信号則ちセ
ンスアンプへの入力信号が小さくならず、従来の3トラ
ンジスタ/セルと同等の十分大きな入力信号が得られ、
かつ1トランジスタ/セル並みの面積で実現できる、高
集積化ダイナミックメモ川こ好適なメモリセル構造をも
つ半導体記憶装置を提供するものである。
In order to achieve even higher integration, if we simply use the conventional one-transistor/cell and flip-flop sense amplifier and miniaturize it, the input signal to the sense amplifier will become smaller and smaller. On the other hand, the unbalance unique to the sense amplifier does not become so small, and eventually the signal and the unbalance (ie, noise) become approximately the same size, and the sense amplifier no longer operates properly. In view of the above points, the present invention has been developed so that even when miniaturized, the signal appearing on the bit line, that is, the input signal to the sense amplifier, does not decrease, and a sufficiently large input signal equivalent to that of the conventional 3 transistors/cell can be obtained.
The present invention also provides a semiconductor memory device having a memory cell structure suitable for highly integrated dynamic memory that can be realized with an area comparable to one transistor/cell.

第1図は本発明の一実施例のメモリセルを示す等価回路
図である。第1のMOSFETIと第2のMOSFET
2は同一半導体基板に集積されたェンハンスメント型M
OSFETで、第1のMOSFETIのゲートと第2の
MOSFET2のソースを接続してこの接続点を情報記
憶ノード3としている。第1のMOSFETIのソ−ス
は読み出しワード線WLRに、ドレィンは第1のビット
線BLにそれぞれ接続し、第2のMOSFET2のゲー
トは書き込みワード線W−に、ドレィンは第2のビット
線BLにそれぞれ接続している。MOSFET1,2の
構造上の特徴は後述するが、本実施例では2つのMOS
FETともにNチャネルMOSFETで作られているも
のとし、今、2進情報を記憶する場合を考え、ノード3
の電位が高電位の時を“0”、低電位の時を“1”と定
義する。
FIG. 1 is an equivalent circuit diagram showing a memory cell according to an embodiment of the present invention. First MOSFET and second MOSFET
2 is an enhancement type M integrated on the same semiconductor substrate.
The gate of the first MOSFET I and the source of the second MOSFET 2 are connected by an OSFET, and this connection point is used as an information storage node 3. The source of the first MOSFET I is connected to the read word line WLR, and the drain is connected to the first bit line BL. The gate of the second MOSFET 2 is connected to the write word line W-, and the drain is connected to the second bit line BL. are connected to each. The structural features of MOSFETs 1 and 2 will be described later, but in this example, two MOS
Assuming that both FETs are made of N-channel MOSFETs, and considering the case where binary information is to be stored, node 3
When the potential is high, it is defined as "0", and when it is low, it is defined as "1".

まず、読み出し‘こついて説明する。スタンド/ゞィ時
はBL、BL,WLが高電位、WLwが低電位である。
次に選択されたWLRでけが低電位に落ちる。記憶情報
が“0”なら第1のMOSFETIはオンし、BLから
WLRに電流が流れ、BLの電位が下がる。一方記憶情
報が“1”なら第1のMOSFETIはオフでBLの電
位は下がらない。読み出し時BLはフロ−テイングにし
ておけば、“0”の場合のBL電位はOVまで落とす事
も可能である。この点が従来の1トランジスタ/セルと
根本的に異って本発明が秀れている点である。実際の動
作の上ではBLの電位をメモリセルのMOSFETのみ
でOVまで落とす必要はなく、ある程度まで下がったら
センスアンプによって糟幅することは十分可能である。
又、センスアンプを使う場合、ビット線BL‘こ読み出
し時にオンとなる負荷素子を設ける方法や、“1’’“
0”判別の参照レベルを与えるため、センスアンプのB
Lを反対側の入力端に、メモリセルの第1のMOSFE
TIのオン時の約1′2の電流を流すMOSFETを設
ける方法などが考えられる。再書き込みはBLを読み出
し時のBLと反対状態、即ちBLは高電位の時はBLを
低電位、BLが低電位の時にはBLを高電位にし、WL
wを高電位として第2のMOSFET2をオンにしてB
Lの電位をノード3に設定する。
First, I will explain how to read. During stand/stand mode, BL, BL, and WL are at high potential, and WLw is at low potential.
The selected WLR then drops to a low potential. If the stored information is "0", the first MOSFET I is turned on, current flows from BL to WLR, and the potential of BL decreases. On the other hand, if the stored information is "1", the first MOSFET I is off and the potential of BL does not fall. If the BL is kept floating during reading, the BL potential in the case of "0" can be lowered to OV. This point is fundamentally different from the conventional one transistor/cell and is an excellent point of the present invention. In actual operation, it is not necessary to reduce the potential of BL to OV using only the MOSFET of the memory cell, and it is quite possible to reduce the potential of BL by using a sense amplifier once it has fallen to a certain level.
In addition, when using a sense amplifier, there is a method of providing a load element that turns on when reading the bit line BL', or
In order to provide a reference level for 0” discrimination, the sense amplifier B
L to the opposite input end, the first MOSFE of the memory cell
A possible method is to provide a MOSFET that allows a current of about 1'2 to flow when the TI is on. For rewriting, the BL is set to the opposite state to the BL at the time of reading, that is, when BL is at a high potential, BL is set at a low potential, when BL is at a low potential, BL is set at a high potential, and WL is set at a high potential.
Turn on the second MOSFET2 by setting w to a high potential and turn on B.
Set the potential of L to node 3.

記憶情報が“0”の場合BLは低電位、BLは高電位と
なるのでノード3には高電位が再書き込みされる。“1
”の場合はその逆である。書き込みの場合は上記再書き
込み時にBLをそれまでの記憶情報とは無関係に書き込
みたい電位に設定することで達成される。第2図にこの
メモリセルをマトリクス配列した場合の4ビット分の等
価回路図を示す。
When the stored information is "0", BL is at a low potential and BL is at a high potential, so that a high potential is rewritten into the node 3. “1
”, the opposite is true. Writing is achieved by setting BL to the desired potential for writing, regardless of the previously stored information, at the time of rewriting. Figure 2 shows how this memory cell is arranged in a matrix. An equivalent circuit diagram for 4 bits is shown in the case of FIG.

メモリセルを構成する2個のMOSFETは通常のシリ
コンゲートプロセスを用いても勿論作ることができるが
、本発明では更に高集積化を図るべく、一方のMOSF
ETの通常のプロセスで半導体基板内にソース、ドレィ
ンおよびチャネル領域を設ける構造とし、他方のMOS
FETについては半導体基板上に設けた多結晶半導体膜
にソース、ドレィンおよびチャネル領域を設ける構造と
する。
Of course, the two MOSFETs that make up the memory cell can be made using a normal silicon gate process, but in the present invention, in order to achieve even higher integration, one of the MOSFETs
The source, drain, and channel regions are provided in the semiconductor substrate using the normal ET process, and the other MOS
The FET has a structure in which a source, drain, and channel region are provided in a polycrystalline semiconductor film provided on a semiconductor substrate.

第1図における第1のMOSFETIを通常構造とし、
第2のMOSFET2を多結晶シリコン膜に作った場合
の模式的平面パターンを第3図に示す。第1のMOSF
ETIはp型Si基板上にゲート絶縁膜を介して形成し
た第1層多結晶シリコン膜11をゲート電極とし、この
多結晶シリコン膜11をマスクとしてn+型層12,1
3を基板内に拡散形成してソース、ドレィン領域として
いる。そして、第1のMOSFETIのゲート電極であ
る多結晶シリコン膜11の延長上に、ソース、ドレィン
およびチャネル領域をもつ第2のMOSFET2を形成
している。第2のMOSFET2ゲート電極はこの多結
晶シリコン膜11に対向してゲート絶縁膜を介して基板
内に拡散形成したn+型層14で作っている。ビット線
BLと書き込みワード線WLwは例えば第1層多結晶シ
リコン膜11を形成した上に、CVD酸化膜を介して形
成した第2層多結晶シIJコン膜により作り、更にその
上にCVD酸化膜を介してAI膜を被着してビット線B
Lと議出しワード線WLRを構成している。ビット線B
Lは第1のMOSFETIのドレィンであるn十型層1
3にコンタクトさせ、書き込みワード線WLwは第2の
MOSFET2のゲートであるn十型層14にコンタク
トさせ、論出しワード線WLRは第1のMOSFETI
のソースであるn十型層12にコンタクトさせ、ビット
線BLは多結晶シリコン膜11の第2のMOSFET2
のドレィン部分にコンタクトさせている。なお、通常の
シリコンゲートプロセスでは、多結晶シリコン膜下には
不純物拡散が端われない。
The first MOSFETI in FIG. 1 has a normal structure,
FIG. 3 shows a schematic planar pattern when the second MOSFET 2 is made of a polycrystalline silicon film. 1st MOSF
ETI uses a first layer polycrystalline silicon film 11 formed on a p-type Si substrate via a gate insulating film as a gate electrode, and uses this polycrystalline silicon film 11 as a mask to form n+-type layers 12,1.
3 is diffused into the substrate to form source and drain regions. A second MOSFET 2 having a source, a drain, and a channel region is formed on an extension of the polycrystalline silicon film 11, which is the gate electrode of the first MOSFET I. The gate electrode of the second MOSFET 2 is made of an n+ type layer 14 which is opposed to this polycrystalline silicon film 11 and is diffused into the substrate via a gate insulating film. The bit line BL and the write word line WLw are made, for example, by forming a first layer polycrystalline silicon film 11, and then forming a second layer polycrystalline silicon IJ film via a CVD oxide film, and then further forming a CVD oxide film on top of the first layer polycrystalline silicon film 11. Bit line B is formed by depositing an AI film through the film.
L constitutes the output word line WLR. Bit line B
L is the n-type layer 1 which is the drain of the first MOSFETI
The write word line WLw is in contact with the n+ type layer 14 which is the gate of the second MOSFET2, and the logic word line WLR is in contact with the first MOSFET1.
The bit line BL is connected to the second MOSFET 2 of the polycrystalline silicon film 11.
It is connected to the drain part of the Note that in a normal silicon gate process, impurity diffusion does not end under the polycrystalline silicon film.

従ってn十型層14のうち少くとも多結晶シリコン膜1
1の第2のMOSFET2直下のゲート電極として用
いる部分は、多結晶シリコン膜11を堆積する前に予め
イオン注入等により形成しておくことが必要である。以
上のような構造とすれば、多結晶シリコン膜11の一方
のMOSFETIのゲート電極になると同時にもう一方
のMOSFET2のソース、ドレインおよびチャネル領
域として用いられる結果、メモリセルの占有面積は非常
に小さいものとなる。
Therefore, at least the polycrystalline silicon film 1 of the n-type layer 14
The portion directly below the second MOSFET 2 to be used as the gate electrode needs to be formed in advance by ion implantation or the like before depositing the polycrystalline silicon film 11. With the above structure, the polycrystalline silicon film 11 is used as the gate electrode of one MOSFET I and at the same time as the source, drain and channel region of the other MOSFET 2, so the area occupied by the memory cell is extremely small. becomes.

参考のため、第1、第2のMOSFET1,2を共に通
常のシリコンゲートプロセスで形成した場合の模式的平
面パターンを第4図に示す。第1のMOSFETIは多
結晶シリコン膜21をゲート電極、基板内に拡散形成し
たび型層22,23をソース、ドレィン領域とし、同じ
ように第2のMOSFET2も多結晶シリコン膜24を
ゲート電極、基板内に拡散形成したn十型層25,26
をソース、ドレィン領域としている。ビット線BLと書
き込みワード線W−を第2層多結晶シリコン膜で形成し
、ビット線BLと謙出しワード線WLRをAI膜で形成
することは第3図の場合と同様である。第4図の場合、
2つのMOSFET共に同じ構造であるため、第1のM
OSFETIのゲ−トである多結晶シリコン膜21と第
1のMOSFET2のソースであるn+型層25をコン
タクトさせるためのコンタクトホール27を非要とする
点で第3図の場合に比べて集積度向上にとって不利にな
る。
For reference, FIG. 4 shows a schematic planar pattern when both the first and second MOSFETs 1 and 2 are formed by a normal silicon gate process. The first MOSFET 2 uses the polycrystalline silicon film 21 as the gate electrode, and the layers 22 and 23 diffused into the substrate as the source and drain regions.Similarly, the second MOSFET 2 uses the polycrystalline silicon film 24 as the gate electrode, and the mold layers 22 and 23 as the source and drain regions. n-type layers 25 and 26 diffused into the substrate
are used as the source and drain regions. As in the case of FIG. 3, the bit line BL and the write word line W- are formed of the second layer polycrystalline silicon film, and the bit line BL and the exposed word line WLR are formed of the AI film. In the case of Figure 4,
Since both MOSFETs have the same structure, the first M
The degree of integration is higher than in the case of FIG. 3 in that the contact hole 27 for contacting the polycrystalline silicon film 21, which is the gate of the OSFETI, and the n+ type layer 25, which is the source of the first MOSFET 2, is not required. This will be detrimental to improvement.

即ち、第3図と第4図の破線で囲んだ1メモリセル領域
A,Bを比較して明らかなように、第3図ではコンタク
トホール27を必要としない分だけ占有面積が小さく、
第4図に比して約50%減となつている。第5図は、第
3図とは逆に、第2のMOSFET2を通常のシリコン
ゲートプロセスによる構造とし、第1のMOSFETI
を多結晶シリコン膜に作りつけた場合の模式的平面パタ
ーンを示している。
That is, as is clear from a comparison of one memory cell area A and B surrounded by broken lines in FIG. 3 and FIG. 4, the occupied area is smaller in FIG.
This is about a 50% decrease compared to Figure 4. In FIG. 5, contrary to FIG. 3, the second MOSFET 2 has a structure formed by a normal silicon gate process, and the first MOSFET I
This figure shows a schematic planar pattern when fabricated on a polycrystalline silicon film.

即ち、第1層多結晶シリコン膜31をゲート電極とし、
p型Si基板に拡散形成したn+型層32,33をソー
ス、ドレィン領域として第2のMOSFET2を構成し
、この第2のMOSFET2のソースであるn+型層3
2と連続的に形成されたn十型層部分をゲート電極とし
てその上にゲート絶縁を介して配談した別の第1層多結
晶シリコン膜34にソース、ドレィンおよびチャネル領
域を形成して第1のMOSFETIを構成している。ビ
ット線BLを書き込みワード線W★を例えば第2層多結
晶シリコン膜で形成し、ビット像BLを読出しワード線
WLRを山膜で形成することは第3図の場合と同様であ
る。このような構造としても、第2のMOSFET2の
ソース領域を第1のMOSFETIのゲート電極に共通
のn+型層32を用いる結果、第4図におけるコンタク
トホール27が不要であり、メモリセル領域Cは第3図
と同様占有面積が小さいものとなる。
That is, the first layer polycrystalline silicon film 31 is used as a gate electrode,
A second MOSFET 2 is configured using n+ type layers 32 and 33 diffused in a p-type Si substrate as source and drain regions, and an n+ type layer 3 serving as a source of this second MOSFET 2
A source, a drain, and a channel region are formed on another first layer polycrystalline silicon film 34 which is disposed on the n-type layer portion formed continuously with the second layer as a gate electrode through a gate insulator. 1 MOSFETI is configured. It is the same as in the case of FIG. 3 that the bit line BL is written and the word line W* is formed of, for example, a second layer polycrystalline silicon film, and the bit image BL is read and the word line WLR is formed of a mountain film. Even with this structure, as a result of using the common n+ type layer 32 for the source region of the second MOSFET 2 and the gate electrode of the first MOSFET I, the contact hole 27 in FIG. 4 is unnecessary, and the memory cell area C is As in FIG. 3, the occupied area is small.

なお、第3図、第5図においては、多結晶シリコン膜に
ソース、ドレィンおよびチャネル領域を形成するMOS
FETのゲート電極として基板内に拡散形成したび型層
を用いたが、n+型層に限る必要はなく、多結晶シリコ
ン膜あるいはAI膜等をゲート電極として用いてもよい
Note that in FIGS. 3 and 5, MOS transistors are shown in which source, drain, and channel regions are formed in a polycrystalline silicon film.
Although a polycrystalline layer diffused into the substrate is used as the gate electrode of the FET, it is not limited to an n+ type layer, and a polycrystalline silicon film, an AI film, or the like may be used as the gate electrode.

また第2層多結晶シリコン膜の部分にMo膜、MoSi
2膜、AI膜などを用いる変形も可能である。第6図に
本発明の他の実施例のメモリセルの等価回路図を示す。
In addition, Mo film, MoSi
Modifications using two films, an AI film, etc. are also possible. FIG. 6 shows an equivalent circuit diagram of a memory cell according to another embodiment of the present invention.

本実施例では第2のMOSFET2のドレィンを第1の
MOSFETIのドレィンと共にビット線BLに共通接
続し、先の実施例のビット線BLを省している。MOS
FET1,2を共にNチャネル素子で形成した場合、読
み出し時は第1図に示す実施例と同じだが、再書き込み
時にBLの電位を読み出された時の逆、即ち読み出し時
BLが高電位なら再書き込み時は低電位に、読み出し時
BLが低電位なら再書き時は高電位に設定するようにし
てやる必要がある。この意味で動作上第1図の実施例よ
りも複雑にはなるが、第1図の実施例で必要だったBL
の配線が不要となり、更に高集積化が可能となる。なお
、この場合、第1のMOSFETIをPチャネル、第2
のMOSFET2をNチャネルで作れば、共にNチャネ
ルMOSFETで作った時のような動作上の複雑さも回
避できる。
In this embodiment, the drain of the second MOSFET 2 and the drain of the first MOSFET I are commonly connected to the bit line BL, and the bit line BL of the previous embodiment is omitted. M.O.S.
When both FETs 1 and 2 are formed of N-channel elements, the reading operation is the same as the embodiment shown in FIG. 1, but when rewriting, the potential of BL is the opposite of the readout, that is, if BL is at a high potential during reading. It is necessary to set the potential to a low potential during rewriting, and to set the potential to a high potential during rewriting if BL is a low potential during reading. In this sense, the operation is more complicated than the embodiment shown in FIG. 1, but the BL required in the embodiment shown in FIG.
This eliminates the need for wiring, allowing even higher integration. Note that in this case, the first MOSFETI is a P channel, the second MOSFETI is
By making MOSFET 2 of N-channel, it is possible to avoid the operational complexity that would occur if both were made of N-channel MOSFET.

即ちノード3が高電位の時を“1”、低電位の時を“0
”と定義すると、スタンド/ゞィ時BL,WLは高電位
、WLwは低電位である。読み出し時はWLRが低電位
となる。“1”の時はMOSFETIはオフしているの
でBLの電位は下がらない。“0”の時MOSFETI
がオンになりBLからWLRに電流が流れBLの電位が
下がる。読み出し後はBLは“1”の時は高電位、“0
”の時は低電位となる。従って再書き込みはW★を高電
位にしてノード3に電位を書いてやればよい。単なる書
き込みは再書き込み時にBLを書き込みたい電位に設定
してやればよい。第7図は第6図のメモリセルをマトリ
クス配列した場合の4ビット分の等価回路図を示す。
In other words, it is “1” when node 3 is at high potential, and “0” when it is at low potential.
”, BL and WL are at high potential and WLw is at low potential during stand/stand.WLR is at low potential during reading.When it is “1”, MOSFETI is off, so the potential of BL is does not fall.When it is “0”, MOSFETI
turns on, current flows from BL to WLR, and the potential of BL decreases. After reading, BL is at a high potential when it is “1”, and is “0”.
", the potential is low. Therefore, for rewriting, set W★ to a high potential and write a potential to node 3. For simple writing, set BL to the potential you want to write at the time of rewriting. Seventh The figure shows an equivalent circuit diagram for 4 bits when the memory cells of FIG. 6 are arranged in a matrix.

この実施例の場合も先の実施例を同様に、MOSFET
の一方を通常のシリコンゲートプロセスによる構造とし
、もう一方を多結晶半導体膜につくることにより、占有
面積を非常に4・さくすることができる。
In this embodiment, similarly to the previous embodiment, the MOSFET
By making one of them a structure using a normal silicon gate process and making the other a polycrystalline semiconductor film, the occupied area can be significantly reduced by 4.

以上、実施例を挙げて述べたように、本発明によれば、
メモリセルの第1のMOSFETを通じて電流を流すの
でビット線に伝達される信号はキャバシタの電荷を読出
す従来の1トランジスタ/セルにくらべて非常に大きく
とれる。本発明によるメモリセルを用いた場合でもセン
スアンプを共用した方がメモリの動作は円滑に行なわれ
ると考えられるが、この場合、センスアンプへの入力信
号が大きくとれるので、センスアンプでの感度は従来例
ほど鋭敏なものである必要はなくなり、従って1本のビ
ット線に従来より多数のメモリセルを接続することも可
能になり、集積度を上げることができる。又、センスア
ンプの感度に従来ほどの鋭敏さが要求されないので、そ
れだけセンスに関する周辺回路も簡略化され、ひいては
高速化、低消費電力化が実現されることになる。また、
本発明によれば、2個のMOSFETの一方を多結晶半
導体膜を用いて形成するため、通常のシリコンゲートプ
ロセスによる場合に比べてメモリセル面積で約50%減
になる。
As described above with reference to the embodiments, according to the present invention,
Since the current flows through the first MOSFET of the memory cell, the signal transmitted to the bit line can be much larger than the conventional one transistor/cell that reads the charge of the capacitor. Even when using the memory cell according to the present invention, it is thought that the memory operates more smoothly if the sense amplifier is shared, but in this case, the input signal to the sense amplifier can be large, so the sensitivity of the sense amplifier is It is no longer necessary to be as sensitive as in the conventional example, and therefore it becomes possible to connect a larger number of memory cells to one bit line than in the past, thereby increasing the degree of integration. Furthermore, since the sensitivity of the sense amplifier is not required to be as sharp as in the past, peripheral circuits related to sensing can be simplified accordingly, resulting in higher speed and lower power consumption. Also,
According to the present invention, since one of the two MOSFETs is formed using a polycrystalline semiconductor film, the memory cell area is reduced by about 50% compared to the case using a normal silicon gate process.

従って本発明による2トランジスタ/セルは同程度のパ
ターン設計規則による1トランジスタ/セルの1.3〜
1.4倍のメモリセル面積となる。この程度まで面積を
縮少すれば、1トランジスタ/セルの代りに使うことが
できる。何故なら、本発明の2トランジスタ/セルは1
トランジスタ/セルに比べて論出しの信号量が大きいの
で、これを検出したり増幅したりする周辺回路を簡単化
できるである。そしてまた、周辺回路の簡単化は消費電
力の低減という別の効果をもたらす。
Therefore, 2 transistors/cell according to the present invention is 1.3 to 1 transistor/cell with similar pattern design rules.
The memory cell area is 1.4 times larger. If the area is reduced to this extent, it can be used in place of one transistor/cell. This is because the two transistors/cell of the present invention
Since the logic signal amount is larger than that of a transistor/cell, the peripheral circuits for detecting and amplifying it can be simplified. Furthermore, the simplification of peripheral circuits brings about another effect of reducing power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のメモリセルの等価回路図、
第2図はこれをマトリクス配例した場合の4ビット分の
等価回路図、第3図は第1図のメモリセルの本発明によ
る具体的な構造例を示す模式的平面パターン、第4図は
同じく第1図のメモリセルの従来プロセスによる構造例
を示す模式的平面パターン、第5図は同じく本発明によ
る別の構造例を示す模式的平面パターン、第6図は本発
明の別の実施例のメモリセルの等価回路図、第7図はこ
れをマトリクス配列した場合の4ビット分の等価回路図
である。 1・・・・・・第1のMOSFET、2・・・・・・第
2のMOSFET、WLw…・・・書き込みワード線、
WL・・・…読み出しワード線、BL,BL・・・・・
・ビット線、11,31,34・・・・・・多結晶シリ
コン膜、12,13,14,32,33…・・・n十型
層。 第1図 第2図 第3図 第6図 第4図 第5図 第7図
FIG. 1 is an equivalent circuit diagram of a memory cell according to an embodiment of the present invention;
Fig. 2 is an equivalent circuit diagram for 4 bits when this is arranged in a matrix, Fig. 3 is a schematic planar pattern showing a specific structural example of the memory cell of Fig. 1 according to the present invention, and Fig. 4 is a diagram. Similarly, FIG. 1 is a schematic planar pattern showing an example of a structure of a memory cell according to a conventional process, FIG. 5 is a schematic planar pattern showing another example of a structure according to the present invention, and FIG. 6 is another embodiment of the present invention. FIG. 7 is an equivalent circuit diagram of 4 bits when these memory cells are arranged in a matrix. 1...First MOSFET, 2...Second MOSFET, WLw...Write word line,
WL...Read word line, BL, BL...
- Bit line, 11, 31, 34... polycrystalline silicon film, 12, 13, 14, 32, 33... n-type layer. Figure 1 Figure 2 Figure 3 Figure 6 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】 1 半導体基板に集積された第1のMOS電界効果トラ
ンジスタのゲートと第2のMOS電界効果トランジスタ
のソースを接続してこの接続点を情報記憶ノードとする
メモリセルを用い、前記第2のMOS電界効果トランジ
スタを導通させてそのドレインに印加する電圧の制御に
より前記情報記憶ノードを所定の電位に設定することで
情報書き込みを行い、前記第1のMOS電界効果トラン
ジスタのドレイン・ソース間に電圧を印加したときに流
れる電流の大小により情報読出しを行うようにした半導
体記憶装置であつて、前記第1、第2のMOS電界効果
トランジスタの一方は半導体基板内にソース、ドレイン
およびチヤネル領域を有し、他方は半導体基板上に設け
られた多結晶半導体膜内にソース、ドレインおよびチヤ
ネル領域を有することを特徴とする半導体記憶装置。 2 第1のMOS電界効果トランジスタは半導体基板内
にソース、ドレインおよびチヤネル領域を有し、このチ
ヤネル領域上にゲート絶縁膜を介して多結晶半導体膜か
らなるゲート電極を有し、第2のMOS電界効果トラン
ジスタは第1のMOS電界効果トランジスタのゲート電
極と連続的に形成された多結晶半導体膜内にソース、ド
レインおよびチヤネル領域を有するものである特許請求
の範囲第1項記載の半導体記憶装置。 3 第2のMOS電界効果トランジスタは半導体基板内
にソース、ドレインおよびチヤネル領域を有し、第1の
MOS電界効果トランジスタは第2のMOS電界効果ト
ランジスタのソース領域と連続的に形成された半導体基
板内の不純物添加層をゲート電極とし、このゲート電極
上にゲート絶縁膜を介して設けられた多結晶半導体膜内
にソース、ドレインおよびチヤネル領域を有するもので
ある特許請求の範囲第1項記載の半導体記憶装置。 4 メモリセルをマトリクス配列し、各メモリセルの第
1のMOS電界効果トランジスタのソースを読み出しワ
ード線に、ドレインを第1のビツト線にそれぞれ接続し
、第2のMOS電界効果トランジスタのゲートを書き込
みワード線に、ドレインを第2のビツト線にそれぞれ接
続してなる特許請求の範囲第1項記載の半導体記憶装置
。 5 メモリセルをマトリクスを配列し、各メモリセルの
第1のMOS電界効果トランジスタのソースを読み出し
ワード線に接続し、第2のMOS電界効果トランジスタ
のゲートを書き込みワード線に接続し、第1のMOS電
界効果トランジスタのドレインと第2のMOS電界効果
トランジスタのドレインを共通にビツト線に接続してな
る特許請求の範囲第1項記載の半導体記憶装置。 6 読み出しワード線をスタンドバイ時にプリチヤージ
しておき、読み出し時に、選ばれた読み出しワード線の
みをデイスチヤージするようにした特許請求の範囲第2
項または第3項記載の半導体記憶装置。
[Claims] 1. Using a memory cell in which the gate of a first MOS field effect transistor integrated on a semiconductor substrate and the source of a second MOS field effect transistor are connected and this connection point serves as an information storage node, Information is written by making the second MOS field effect transistor conductive and controlling the voltage applied to its drain to set the information storage node to a predetermined potential. A semiconductor memory device in which information is read based on the magnitude of a current flowing when a voltage is applied between sources, wherein one of the first and second MOS field effect transistors has a source, a drain and 1. A semiconductor memory device having a channel region, the other having a source, a drain, and a channel region in a polycrystalline semiconductor film provided on a semiconductor substrate. 2. The first MOS field effect transistor has a source, a drain, and a channel region in a semiconductor substrate, and has a gate electrode made of a polycrystalline semiconductor film on this channel region with a gate insulating film interposed therebetween. The semiconductor memory device according to claim 1, wherein the field effect transistor has a source, a drain, and a channel region in a polycrystalline semiconductor film formed continuously with the gate electrode of the first MOS field effect transistor. . 3. The second MOS field effect transistor has a source, drain and channel region in the semiconductor substrate, and the first MOS field effect transistor has a semiconductor substrate formed continuously with the source region of the second MOS field effect transistor. Claim 1, wherein the impurity doped layer in the polycrystalline semiconductor film is used as a gate electrode, and the source, drain, and channel regions are provided in a polycrystalline semiconductor film provided on the gate electrode via a gate insulating film. Semiconductor storage device. 4 Arrange the memory cells in a matrix, connect the source of the first MOS field effect transistor of each memory cell to the read word line, connect the drain to the first bit line, and connect the gate of the second MOS field effect transistor to the write word line. 2. A semiconductor memory device according to claim 1, wherein the word line is connected to the second bit line, and the drain is connected to the second bit line. 5 Arrange the memory cells in a matrix, connect the source of the first MOS field effect transistor of each memory cell to the read word line, connect the gate of the second MOS field effect transistor to the write word line, and connect the source of the first MOS field effect transistor of each memory cell to the write word line. 2. A semiconductor memory device according to claim 1, wherein the drain of the MOS field effect transistor and the drain of the second MOS field effect transistor are commonly connected to a bit line. 6. Claim 2 in which the read word line is precharged during standby and only the selected read word line is discharged during read.
3. The semiconductor storage device according to item 3.
JP54160522A 1979-12-11 1979-12-11 semiconductor storage device Expired JPS6037620B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54160522A JPS6037620B2 (en) 1979-12-11 1979-12-11 semiconductor storage device
US06/212,103 US4398267A (en) 1979-12-11 1980-12-02 Semiconductor memory device
DE3046376A DE3046376C2 (en) 1979-12-11 1980-12-09 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54160522A JPS6037620B2 (en) 1979-12-11 1979-12-11 semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS5683060A JPS5683060A (en) 1981-07-07
JPS6037620B2 true JPS6037620B2 (en) 1985-08-27

Family

ID=15716769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54160522A Expired JPS6037620B2 (en) 1979-12-11 1979-12-11 semiconductor storage device

Country Status (3)

Country Link
US (1) US4398267A (en)
JP (1) JPS6037620B2 (en)
DE (1) DE3046376C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583192A (en) * 1981-06-30 1983-01-08 Fujitsu Ltd Read only memory
JPH0636423B2 (en) * 1982-06-22 1994-05-11 株式会社日立製作所 Three-dimensional structure semiconductor device
DE3671124D1 (en) * 1985-02-13 1990-06-13 Toshiba Kawasaki Kk SEMICONDUCTOR MEMORY CELL.
US5024993A (en) * 1990-05-02 1991-06-18 Microelectronics & Computer Technology Corporation Superconducting-semiconducting circuits, devices and systems
US6759870B2 (en) 1991-09-03 2004-07-06 Altera Corporation Programmable logic array integrated circuits
US5883850A (en) * 1991-09-03 1999-03-16 Altera Corporation Programmable logic array integrated circuits
US5436575A (en) * 1991-09-03 1995-07-25 Altera Corporation Programmable logic array integrated circuits
US5260610A (en) * 1991-09-03 1993-11-09 Altera Corporation Programmable logic element interconnections for programmable logic array integrated circuits
US5371422A (en) * 1991-09-03 1994-12-06 Altera Corporation Programmable logic device having multiplexers and demultiplexers randomly connected to global conductors for interconnections between logic elements
US5483178A (en) * 1993-03-29 1996-01-09 Altera Corporation Programmable logic device with logic block outputs coupled to adjacent logic block output multiplexers
KR100215866B1 (en) * 1996-04-12 1999-08-16 구본준 Dram of nothing capacitor and its fabrication method
KR101862823B1 (en) * 2010-02-05 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of driving semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387286A (en) * 1967-07-14 1968-06-04 Ibm Field-effect transistor memory
DE2503864C3 (en) * 1975-01-30 1981-09-24 Siemens AG, 1000 Berlin und 8000 München Semiconductor component
NL7701172A (en) * 1977-02-04 1978-08-08 Philips Nv SEMICONDUCTOR MEMORY DEVICE.
US4139786A (en) * 1977-05-31 1979-02-13 Texas Instruments Incorporated Static MOS memory cell using inverted N-channel field-effect transistor

Also Published As

Publication number Publication date
DE3046376C2 (en) 1986-05-22
US4398267A (en) 1983-08-09
JPS5683060A (en) 1981-07-07
DE3046376A1 (en) 1981-09-10

Similar Documents

Publication Publication Date Title
US6560142B1 (en) Capacitorless DRAM gain cell
US6317357B1 (en) Vertical bipolar read access for low voltage memory cell
US6381168B2 (en) Circuits and methods for a memory cell with a trench plate trench capacitor and a vertical bipolar read device
JP2905647B2 (en) Static random access memory device
JPS6037620B2 (en) semiconductor storage device
US4498154A (en) Monolithically integrated semiconductor memory
US5282162A (en) Semiconductor memory device having capacitor of thin film transistor structure
JPH0316789B2 (en)
JPH07176184A (en) Semiconductor memory and writing and reading method for data in the semiconductor memory
US5835403A (en) Multiplication of storage capacitance in memory cells by using the Miller effect
JPH06326272A (en) Semiconductor memory
US5995410A (en) Multiplication of storage capacitance in memory cells by using the Miller effect
US5563434A (en) Semiconductor memory device having capacitor of thin film transistor structure
JPS6235559A (en) Semiconductor memory
JPS60258793A (en) Dynamic type semiconductor storage device
JPH0936318A (en) Dynamic memory
JP2002269975A (en) Semiconductor memory
JPH01145850A (en) Semiconductor memory device
JPS6370558A (en) Semiconductor memory cell
JPH0462966A (en) Mosfet masked rom
JP3402641B2 (en) Dynamic semiconductor memory device
JPH06334142A (en) Semiconductor memory device and its manufacture
JP3158281B2 (en) Memory device
JPH0370877B2 (en)
JPH0334922Y2 (en)