JPS603531B2 - Electric discharge machining equipment - Google Patents
Electric discharge machining equipmentInfo
- Publication number
- JPS603531B2 JPS603531B2 JP11544978A JP11544978A JPS603531B2 JP S603531 B2 JPS603531 B2 JP S603531B2 JP 11544978 A JP11544978 A JP 11544978A JP 11544978 A JP11544978 A JP 11544978A JP S603531 B2 JPS603531 B2 JP S603531B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- pulse
- capacitor
- discharge
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/02—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
- B23H1/022—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明は直流電源をトランジスタ等のスイッチによりオ
ン・オフ‐して加工パルスを発生し、発生パルスを電源
と被加工体の加工間隙に供v給して加工する放電加工菱
贋の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is an electric discharge method in which a DC power source is turned on and off using a switch such as a transistor to generate machining pulses, and the generated pulses are supplied to the machining gap between the power source and the workpiece to perform machining. Concerning the improvement of processed diamond counterfeiting.
電極と被加工体の加工間隙に加工パルス電源を接続する
には通常機械装置と電源装置とが別個に構成されるので
長いケーブルをもって連結するが、ケーブルのィンダク
タンス及び抵抗のために放電々流の波高値を高くできな
い欠点がある。To connect a machining pulse power source to the machining gap between the electrode and the workpiece, a long cable is used to connect the mechanical device and the power source, which are usually constructed separately. However, due to the inductance and resistance of the cable, electrical discharge The disadvantage is that the wave height cannot be increased.
本発明はこの欠点に鑑みて提案されたもので、パルス電
源を接続した加工間隙に、間隙の近傍に、コンデンサと
放電制御スイッチを設け、該コンデンサ及び放電制御ス
イッチと、該スイッチを制御するパルス発生回路より成
るコンデンサ放電回路を前記加工間隙に並列に接続する
と共に、前記コンデンサの充電方向の整流器より成るコ
ンデンサ充電回路を前記加工間隙とコンデンサ間に直列
に接続したことを特徴とする。以下図面の一実施例によ
り本発明を説明する。The present invention has been proposed in view of this drawback, and includes providing a capacitor and a discharge control switch near the gap in a machining gap connected to a pulse power source, and a pulse power source that controls the capacitor and discharge control switch. A capacitor discharge circuit comprising a generating circuit is connected in parallel to the machining gap, and a capacitor charging circuit comprising a rectifier in the charging direction of the capacitor is connected in series between the machining gap and the capacitor. The present invention will be explained below with reference to an embodiment of the drawings.
第1図において、1は加工用電極、2は被加工体で、両
者相対向して加工間隙を形成する。3は商用公流露源を
整流した直流電源、4はトランジスタのスイッチ、5は
スイッチ制御パルスを発生するパルス発生回路、スイッ
チ4のオン・オフスィッチングによって加工用パルスを
発生するパルス電源を構成する。In FIG. 1, 1 is a machining electrode, 2 is a workpiece, and they face each other to form a machining gap. Reference numeral 3 constitutes a DC power source obtained by rectifying a commercial current exposure source, 4 a transistor switch, 5 a pulse generation circuit that generates switch control pulses, and a pulse power source that generates processing pulses by on/off switching of the switch 4.
このパルス電源はケーブル6により加工間隙に接続され
る。7は放電用コンデンサ、8は放電制御スイッチで、
少なくともこの両者7,8は加工間隙の近傍に配置し、
リード線を短か〈して加工間隙に接続するようにしてあ
る。This pulse power source is connected to the machining gap via a cable 6. 7 is a discharge capacitor, 8 is a discharge control switch,
At least these two 7, 8 are arranged near the machining gap,
The lead wire is shortened and connected to the machining gap.
9はスイッチ8制御パルスを発生する発生回路で、前記
コンデンサ7、及びスイッチ8とともにコンデンサ放電
回路を構成する。前記パルス発生回路9はパルス発生回
路5と関連制御されるように接続してあるが独立して作
動するものであってもよい。Reference numeral 9 denotes a generating circuit for generating switch 8 control pulses, which together with the capacitor 7 and switch 8 constitutes a capacitor discharge circuit. The pulse generating circuit 9 is connected to the pulse generating circuit 5 so as to be controlled in conjunction with the pulse generating circuit 5, but may operate independently.
加工用パルス電源からはスイッチ4のオン・オフスイツ
チング制御によって加工用パルスを発生し、加工パルス
列を発生する。発生パルスはケーブル6を伝わって加工
間隙に供給されるが、この加工用パルスによって直接加
工が行なわれるわけではない。加工間隙にはコンデンサ
7が援縞されており、前記供給加工パルスは整流器10
を通してコンデンサ7を充電する。そしてスイッチ8が
オン導通したときコンデンサ7はスイッチ8を通して加
工間隙に放電する。放電々流はコンデンサ7が加工間隙
の近傍に配置され、短いリード線をもって接続されてい
るから、波高値lpが増大した波高値増大パルスを放電
することができる。即ち波高値lpは、lp=V旨で表
わされ、またパルス中7は、7=灯方で表わされる、L
は極力小さくIAH以下に構成され、実測によれば約0
.3仏日であった。The processing pulse power source generates processing pulses by controlling the on/off switching of the switch 4, thereby generating a processing pulse train. Although the generated pulses are supplied to the machining gap through the cable 6, machining is not directly performed by these machining pulses. A capacitor 7 is provided in the machining gap, and the supplied machining pulse is connected to a rectifier 10.
The capacitor 7 is charged through the capacitor 7. When the switch 8 is turned on, the capacitor 7 is discharged through the switch 8 into the machining gap. Since the capacitor 7 is disposed near the machining gap and connected with a short lead wire, it is possible to discharge a pulse with an increased peak value lp. That is, the peak value lp is expressed as lp=V, and 7 in the pulse is expressed as 7=Lamp.
is configured to be as small as possible and less than IAH, and according to actual measurements, it is approximately 0.
.. It was the 3rd French day.
したがってコンデンサ容量に応じて次のようになる。1
.5仏F、0.3rH、90Vの場合
丁=〇.7山Sec? lp=200A
I.仏F、0.3rH、90Vの場合
7ニ0.5仏Sec,1p:15山A
O.5仏F、0.2rH、90Vの場合
ケニ〇.3山Sec,lp=140A
このようにコンデンサ放電回路を加工間隙近くに挿入し
ておくことにより、加工パルス電源から供給される加工
用パルスを波高値増大パルスに波形変換して加工間隙に
放電させることができる。Therefore, depending on the capacitor capacity, it becomes as follows. 1
.. In the case of 5F, 0.3rH, 90V, D=〇. 7 mountains Sec? lp=200A I. In the case of French F, 0.3rH, 90V, 7 d 0.5 French Sec, 1p: 15 mountains A O. 5F, 0.2rH, 90V Keni ○. 3 peaks Sec,lp=140A By inserting the capacitor discharge circuit near the machining gap in this way, the waveform of the machining pulse supplied from the machining pulse power source is converted into a pulse with increased peak value, and the waveform is discharged into the machining gap. be able to.
パルス発生回路9の発振周波数は通常1〜10KHz程
度に設定されるが「 加工パルス電源のパルス発生回路
5と同調制御させるとすれば、加工用パルス電源から供
給される加工用パルスが全てコンデンサ放電回路によっ
て波形変換されて波高値増大パルスに変換されて放電が
行なわれ、また供給される加工用パルスの繰返し周波数
よりも低周波でスイッチ8をオン・オフ制御するとすれ
ば、加工用パルス列に少ない割合の波高値増大パルスを
組入れたパルス放電を行なうことができる。The oscillation frequency of the pulse generation circuit 9 is normally set to about 1 to 10 KHz, but if it is controlled in synchronization with the pulse generation circuit 5 of the machining pulse power source, all machining pulses supplied from the machining pulse power source are capacitor discharged. If the circuit converts the waveform into a pulse with increased peak value and discharges, and if the switch 8 is controlled on/off at a frequency lower than the repetition frequency of the supplied machining pulse, then the machining pulse train will have less It is possible to perform a pulsed discharge that incorporates a pulse that increases the peak value by a certain percentage.
勿論コンデンサ放電による波高値増大パルスは供給され
る加工用パルスに対してコンデンサ容量が充分小さけれ
ば、加工用パルスの上に波高値増大パルスが重畳したよ
うな波形の放電を行なうことになる。このようにして加
工間隙近くに設けたコンデンサ放電により加工パルス電
源から供給される加工用パルスを波形変換して波高値増
大パルスを放電することにより加工速度が著しく向上す
る。Of course, if the capacitor capacity of the peak value increasing pulse due to capacitor discharge is sufficiently small compared to the supplied machining pulse, the discharge will have a waveform such that the peak value increasing pulse is superimposed on the machining pulse. In this way, the machining speed is significantly improved by converting the waveform of the machining pulse supplied from the machining pulse power source by the capacitor discharge provided near the machining gap and discharging the wave height increasing pulse.
即ち波高値増大パルスに変換した放電、または波高値増
大パルスの加工パルス中への組入れによってサーボ制御
される加工間隙を広げることができる。このため加工肩
排除効果が向上し、加工間隙の加工屑等の不動態化物、
被加工体表面の放電頃山等を溶断除去することができ、
放電がパルス的に安定しアーク等の発生もなくなり、し
たがってこの安定加工により加工速度が向上する。これ
は例えば実験によれば、加工用パルス電源から供給する
パルスが90V,720仏sec,lp50Aのパルス
とし、Fe材電極でFe材の加工をするときト加工間隙
近くに1舷Fのコンデンサを放電回路のィンダクタンス
0.3仏日で接続し、放電回路に挿入したスイッチを前
記パルス電源から供給する加工用パルスと同期的にオン
・オフスィツチングしてコンデンサ放電を行なうように
したとき、加工速度はコンデンサを接続しない場合の約
3倍に増大し、電極消耗比E/Wは3%となった。That is, the servo-controlled machining gap can be widened by converting the electric discharge into a pulse with increased peak value or by incorporating the pulse with increased peak value into the machining pulse. As a result, the machining shoulder removal effect is improved, and passivated materials such as machining debris in the machining gap are removed.
It is possible to melt and remove the discharge peaks etc. on the surface of the workpiece.
The electric discharge is stabilized in a pulsed manner, and arcs and the like are no longer generated. Therefore, this stable machining improves the machining speed. For example, according to experiments, when the pulses supplied from the processing pulse power source are 90V, 720F sec, and 50A pulses, and when processing Fe material with an Fe material electrode, a 1F capacitor is placed near the processing gap. When the discharge circuit is connected with an inductance of 0.3 and the switch inserted in the discharge circuit is turned on and off synchronously with the processing pulse supplied from the pulse power source to perform capacitor discharge, The processing speed increased to about three times that of the case without a capacitor connected, and the electrode consumption ratio E/W was 3%.
なおコンデンサを設けない場合のE/Wは18%であっ
た。このように加工間隙の近くに放電制御されるコンデ
ンサを設けるだけで加工速度が著しく向上することが確
認された。第2図は変更例で、第1図と同符号の部分は
同一部分を示す。Note that the E/W when no capacitor was provided was 18%. In this way, it was confirmed that the machining speed was significantly improved simply by providing a discharge-controlled capacitor near the machining gap. FIG. 2 shows a modified example, and parts with the same symbols as those in FIG. 1 indicate the same parts.
この回路においてはコンデンサ7はスイッチ8を介して
加工間隙に接続され、整流器IDを介して加工パルス電
源に接続されているので「加工間隙にはコンデンサ放電
以外の直接加工用パルスによる放電はなくなり「全てコ
ンデンサ放電により加工間隙には放電が行なわれる。パ
ルス発生回路9はコンデンサ7の充露々圧を信号として
作動し、所要の充電が行なわれる毎に制御パルスを発し
スイッチ8をオンして放電を行なうようにしている。こ
の回路装置によってもパルス電源から供給する加工パル
スェネルギに対してコンデンサ7容量を設定して1パル
ス1放電が行なわれるようにすることによって各加工用
パルスが波高値増大パルスに波形変換されて放電し、波
高値を増大することによって加工速度を高めることがで
きる。In this circuit, the capacitor 7 is connected to the machining gap via the switch 8, and connected to the machining pulse power source via the rectifier ID, so that there is no discharge in the machining gap due to direct machining pulses other than capacitor discharge. All of the discharge occurs in the machining gap by capacitor discharge.The pulse generation circuit 9 operates using the charging and dew pressure of the capacitor 7 as a signal, and every time the required charging is performed, it emits a control pulse and turns on the switch 8 to discharge. With this circuit device, the capacity of the capacitor 7 is set for the machining pulse energy supplied from the pulse power source so that one discharge is performed per pulse, so that each machining pulse becomes a peak value increasing pulse. The machining speed can be increased by converting the waveform into electric discharge and increasing the wave height value.
第3図は加工用パルス電圧を検出抵抗11で検出し、こ
の検出信号とコンデンサ7の充電々圧によって作動する
パルス発生回路9の出力制御パルスをアンドゲート!2
で結合してスイッチ8を制御するようにしたもので、パ
ルス電源から加工用パルスが供給されているときのみス
イッチ8がオンしてコンデンサ放電が行なわれるように
してある。この場合の加工間隙の放電波形は加工用パル
スにコンデンサ放電が重畳するように放電し、パルス発
生回路9の位相差制御によりコンデンサ放電の時期を任
意に制御することができる。第4図は複数個のコンデン
サ、スイッチ、パルス発生回路等より成るコンデンサ放
電回路を設け、これをリングカウンタ13等で順次放電
を行なうように制御したものである。In FIG. 3, the processing pulse voltage is detected by the detection resistor 11, and the output control pulse of the pulse generation circuit 9 activated by this detection signal and the charging pressure of the capacitor 7 is AND gated! 2
The switch 8 is connected to control the switch 8, and the switch 8 is turned on and capacitor discharge is performed only when processing pulses are being supplied from the pulse power source. In this case, the discharge waveform of the machining gap is such that the capacitor discharge is superimposed on the machining pulse, and the timing of the capacitor discharge can be arbitrarily controlled by controlling the phase difference of the pulse generating circuit 9. FIG. 4 shows a capacitor discharging circuit comprising a plurality of capacitors, switches, pulse generating circuits, etc., which is controlled by a ring counter 13 or the like so as to sequentially discharge the capacitor.
第5図はコンデンサ7の充電回路に供給される加工用パ
ルスに重畳するように充電電源14を挿入し、充電速度
を早め、加工用パルスより更に高電圧に充電できるよう
にしたものである。In FIG. 5, a charging power source 14 is inserted so as to be superimposed on the machining pulse supplied to the charging circuit of the capacitor 7, thereby accelerating the charging speed and making it possible to charge to a higher voltage than the machining pulse.
じ上の各実施例におけるコンデンサ放電回路は1つのケ
ースに収納し、出力端子を加工間隙に接続するようにコ
ンパクトに構成できる。The capacitor discharge circuit in each of the above embodiments can be housed in one case and configured compactly by connecting the output terminal to the machining gap.
なお以上の実施例以外にも諸種な回路構成の放電回路を
利用することができるが、加工用パルスをコンデンサ放
電によって波高値増大パルスによって波高増大パルスに
波形変換して加工間隙に放電するようにしているので、
容易に波高値を増大させることができ、加工速度を著し
く向上させることができる。It should be noted that discharge circuits with various circuit configurations other than the above embodiments can be used, but the waveform of the machining pulse is converted into a pulse height increasing pulse by a capacitor discharge, and the pulse is discharged into the machining gap. Because
The wave height value can be easily increased, and the processing speed can be significantly improved.
第1図は本発明の−実施例回路構成図、第2図乃至第5
図は他の実施例回路構成図である。
1は電極、2は被加工体、3は直流電源、4はスイッチ
、5はパルス発生回路、6はケーブル、7はコンデンサ
、8はスイッチ、9はパルス発生回路、1川ま整流器で
ある。
オ」鼠
才21霧
オ31頬
矛4鼠
オ5鼠FIG. 1 is a circuit configuration diagram of an embodiment of the present invention, and FIGS.
The figure is a circuit configuration diagram of another embodiment. 1 is an electrode, 2 is a workpiece, 3 is a DC power source, 4 is a switch, 5 is a pulse generation circuit, 6 is a cable, 7 is a capacitor, 8 is a switch, 9 is a pulse generation circuit, and 1 is a rectifier. O” Nezumi 21 Mist O 31 Cheek Spear 4 Nezumi O 5 Nezumi
Claims (1)
・オフスイツチ及び該スイツチを制御するバルス発生回
路より成るパルス電源をケーブルで接続し、且つ前記加
工間隙の近傍にコンデンサと放電スイツチとを設け、該
コンデンサ及び放電スイツチと該スイツチを製御するパ
ルス発生回路より成るコンデンサ放電回路を前記加工間
隙に並列に接合すると共に、前記コンデンサの充電方向
の整流器より成るコンデンサ充電回路を前記加工間隙と
コンデンサ間に直列に接続したことを特徴とする放電加
工装置。1 A pulse power source consisting of a DC electrode, an on/off switch, and a pulse generation circuit that controls the switch is connected to the machining gap between the machining electrode and the workpiece by a cable, and a capacitor and a discharge switch are installed near the machining gap. A capacitor discharge circuit consisting of the capacitor, a discharge switch, and a pulse generation circuit for controlling the switch is connected in parallel to the machining gap, and a capacitor charging circuit consisting of a rectifier in the charging direction of the capacitor is connected to the machining gap. An electric discharge machining device characterized by connecting capacitors in series.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11544978A JPS603531B2 (en) | 1978-09-20 | 1978-09-20 | Electric discharge machining equipment |
US06/045,177 US4516009A (en) | 1978-06-14 | 1979-06-04 | Capacitor-type HF power supply for electrical machining |
IT49405/79A IT1116248B (en) | 1978-06-14 | 1979-06-13 | CAPACITIVE HIGH FREQUENCY POWER SUPPLY |
FR7915304A FR2428494A1 (en) | 1978-06-14 | 1979-06-14 | ELECTRIC POWER SUPPLY DEVICE FOR MACHINERY MACHINES BY ELECTRIC SHOCK |
GB7920811A GB2026921B (en) | 1978-06-14 | 1979-06-14 | Power supply |
DE2954545A DE2954545C2 (en) | 1978-06-14 | 1979-06-15 | |
DE19792924170 DE2924170A1 (en) | 1978-06-14 | 1979-06-15 | CAPACITOR POWER SUPPLY FOR ELECTRICAL MACHINING |
US06/682,060 US4659894A (en) | 1978-06-14 | 1984-12-14 | Capacitor-type HF power supply for electrical machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11544978A JPS603531B2 (en) | 1978-09-20 | 1978-09-20 | Electric discharge machining equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5542749A JPS5542749A (en) | 1980-03-26 |
JPS603531B2 true JPS603531B2 (en) | 1985-01-29 |
Family
ID=14662819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11544978A Expired JPS603531B2 (en) | 1978-06-14 | 1978-09-20 | Electric discharge machining equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603531B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62281217A (en) * | 1986-05-29 | 1987-12-07 | 株式会社東芝 | Multi-polar/one tank type gas breaker |
JPH021833U (en) * | 1988-06-15 | 1990-01-09 |
-
1978
- 1978-09-20 JP JP11544978A patent/JPS603531B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62281217A (en) * | 1986-05-29 | 1987-12-07 | 株式会社東芝 | Multi-polar/one tank type gas breaker |
JPH021833U (en) * | 1988-06-15 | 1990-01-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS5542749A (en) | 1980-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0661100B1 (en) | Electric dust collector | |
IE781295L (en) | Generation of pulses | |
JPS6055249B2 (en) | Electric discharge machining equipment | |
KR100215374B1 (en) | Pulse generating method and device for discharge machining | |
GB782443A (en) | Improvements in electrical spark machining devices | |
JPS603531B2 (en) | Electric discharge machining equipment | |
KR100288645B1 (en) | Arc start aid | |
GB1423856A (en) | Electric discharge machining circuit | |
JPS56119318A (en) | Electric discharge machining apparatus | |
JPS63154B2 (en) | ||
SE9703299D0 (en) | Ways of regulating power supply to an electrostatic dust separator | |
RU2207191C2 (en) | Way to supply power to electric filter and facility for its realization | |
SU666023A1 (en) | Unipolar pulse generator | |
GB1459509A (en) | Supplying electric power for electro-erosion | |
SU1382493A1 (en) | Apparatus for feeding electric precipitator with alternate voltage | |
JPS6043254B2 (en) | Electric discharge machining equipment | |
JPS56134131A (en) | Electric discharge machining apparatus | |
JP2004055442A (en) | Static eliminator | |
SU980188A1 (en) | Device for control of contact-free switching apparatus | |
RU2050682C1 (en) | Storage capacitor charger | |
SU1148644A1 (en) | Device for switching off power supply unit of electric wave filter | |
JPH0638714B2 (en) | High voltage ultra short pulse power supply | |
JPH0547272B2 (en) | ||
JPS598497B2 (en) | Electric discharge machining equipment | |
JPS6339724A (en) | Electric discharge machining device |