JPS6033190B2 - Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate - Google Patents

Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate

Info

Publication number
JPS6033190B2
JPS6033190B2 JP4065481A JP4065481A JPS6033190B2 JP S6033190 B2 JPS6033190 B2 JP S6033190B2 JP 4065481 A JP4065481 A JP 4065481A JP 4065481 A JP4065481 A JP 4065481A JP S6033190 B2 JPS6033190 B2 JP S6033190B2
Authority
JP
Japan
Prior art keywords
film
metal substrate
sic
coating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4065481A
Other languages
Japanese (ja)
Other versions
JPS57155365A (en
Inventor
則文 菊池
隆之 新行内
泰雄 鈴木
幸一 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP4065481A priority Critical patent/JPS6033190B2/en
Publication of JPS57155365A publication Critical patent/JPS57155365A/en
Publication of JPS6033190B2 publication Critical patent/JPS6033190B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明はプラズマ化学蒸着法を用いて金属基体表面に
密着性のすぐれた炭化けし、素皮膜を形成する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a carbonized raw film with excellent adhesion on the surface of a metal substrate using a plasma chemical vapor deposition method.

従来、一般に木工用ドリルやノコ刃などの切削工具、ダ
イス、軸受、および繊維機械のガイドなどの耐摩部品に
は耐摩耗性を付与する目的で、またメカニカルシールな
どには酸およびアルカ川こ対する耐食性を付与する目的
で、さらに磁気テープのガイドピンやヘッド面には非磁
性と耐摩耗性を付与する目的で、それぞれその表面に、
高硬度を有し、かつ耐摩耗性および耐食性にすぐれた炭
化けし、素(以下SICで示す)を被覆することが行な
われている。
Traditionally, cutting tools such as woodworking drills and saw blades, dies, bearings, and wear-resistant parts such as guides for textile machinery have been given wear resistance, and mechanical seals have been used to resist acids and alkali. For the purpose of imparting corrosion resistance, and to impart non-magnetism and wear resistance to the guide pins and head surfaces of magnetic tapes,
Coating with carbonized carbide (hereinafter referred to as SIC), which has high hardness and excellent wear resistance and corrosion resistance, has been carried out.

このSIC被膜は、通常反応温度が低く、かつ被覆付着
性の良好なプラズマ化学蒸着法、すなわち0.1〜数ト
ルの減圧雰囲気中でグロー放電を利用して金属基体表面
に化合物を蒸着させる方法により形成されている。しか
し、SICは、熱膨張係数が4×10‐6加‐1℃‐1
と、鋼やAIなどの金属の熱膨張係数:10〜25×1
0‐6肌‐1℃‐1に比して低いために、SIC被膜の
形成を、特に良質のものを得る目的で高温反応温度で行
なわなければならない場合、熱膨張係数のかかる差によ
ってSIC被膜にクラツクが入ったり、著しい場合には
剥離を生じたりすることがいましば発生するものであっ
た。
This SIC coating is usually produced by plasma chemical vapor deposition, which has a low reaction temperature and good coating adhesion, in which a compound is deposited on the surface of a metal substrate using glow discharge in a reduced pressure atmosphere of 0.1 to several torr. It is formed by However, SIC has a thermal expansion coefficient of 4 × 10-6 +-1℃-1
And the coefficient of thermal expansion of metals such as steel and AI: 10 to 25 x 1
This difference in coefficient of thermal expansion makes it difficult for the SIC film to form, especially if the formation of the SIC film has to be carried out at high reaction temperatures for the purpose of obtaining good quality. Cracks often occur in the film, and in severe cases, peeling occurs.

そこで、本発明者等は、上述のような観点から、クラッ
クや剥離などの発生のない、密着性のぐれたSIC被膜
を金属基体表面に形成すべく研究を行なった結果、プラ
ズマ化学蒸着法によりSIC被膜を形成するに先だって
、Si被膜を金属基体表面に予め蒸着形成してやると、
このSi被膜は結晶化していない無定形(アモルファス
状)のものであるため、結晶状のSiの熱膨張係数:6
〜7xlo‐6肌‐1℃‐1より大きい熱膨張係数:7
〜8×10‐6伽‐1℃‐1をもち、この熱膨張係数は
SIC被膜と金属基体との中間のものであるため、SI
C被膜と金属基体との間にSIC被膜形成時に熱膨張差
により発生する歪が緩和されるようになることから、ク
ラックや剥離の発生が著しく抑制されるようになり、ま
た、このSi被膜はSICに比して硬さは低いが、金属
的展延性に富むものであるため、機械的衝撃に対して緩
衝材としての作用を果し、さらにSi被膜とSIC被膜
の形成が連続的に行なわれるため、Si被膜とSIC被
膜との付着力は強く、かつSi被膜と金属基体表面との
付着力もすぐれたものであることから、全体として金属
基体表面に強固なSIC被膜を形成することができると
いう知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to form a SIC film with excellent adhesion on the surface of a metal substrate without cracking or peeling, and found that it was possible to form an SIC film on the surface of a metal substrate using plasma chemical vapor deposition. If a Si film is vapor-deposited on the surface of the metal substrate before forming the SIC film,
Since this Si film is amorphous without crystallization, the coefficient of thermal expansion of crystalline Si is 6.
~7xlo-6 skin-1℃-1 greater coefficient of thermal expansion: 7
~8×10-6ス-1℃-1, and this thermal expansion coefficient is intermediate between that of the SIC film and the metal substrate, so the SI
Since the strain that occurs due to the difference in thermal expansion during the formation of the SIC film between the C film and the metal substrate is alleviated, the occurrence of cracks and peeling is significantly suppressed. Although it has lower hardness than SIC, it has high metallic malleability, so it acts as a buffer against mechanical shock, and the formation of the Si film and SIC film is continuous. Since the adhesion between the Si film and the SIC film is strong, and the adhesion between the Si film and the surface of the metal substrate is also excellent, it is possible to form a strong SIC film on the surface of the metal substrate as a whole. I gained knowledge.

この発明は、上記知見にもとづいてなされたものである
が、Si被膜の厚さは0.5〜loAmとするのが望ま
しく、これは、その厚さが0.5仏m未満では所望の効
果を得ることができず、一方10ムmを越えた厚さにす
ると、Siのもつ軟質に原因する問題点、例えば塑性変
形などが生じ易くなるという理由によるものである。
This invention has been made based on the above knowledge, and it is desirable that the thickness of the Si film is 0.5 to 10 Am. This means that if the thickness is less than 0.5 Am, the desired effect will not be achieved. This is because if the thickness exceeds 10 mm, problems caused by the softness of Si, such as plastic deformation, tend to occur.

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

実施例 1 第1図に概略図で示されるプラズマ化学葵着装暦を用い
て実施した。
Example 1 The experiment was carried out using a plasma chemical hollywood mounting system shown schematically in FIG.

第1図に示される装置は、外周側面をヒーター6により
取り巻かれた真空チャンバー7と、この真空チャンバー
内に収納され、絶縁物5を通って電源(高周波または直
流)4のe側に連結された電極2と、真空チャンバー内
に開孔する排気ポンプ3と、同じく流量計8を介して真
空チャンバ−内に開孔するC2日2源,Ar源,日2源
,およびSiH4源とを備えたものからなっている。す
なわち、第1図に示される装置において、まず、電極2
の上にSUS304製コンテナを介して金属基体たるS
KD−11製ダィスーを置いた後、真空チャンバー7内
の温度を30000に上昇させると共に、排気ポンプ3
にて5×10‐4トルまで減圧脱気し、ついでArを流
入させて真空チャンバ−内の圧力を5×10‐2トルと
すると共に、電極2に負の電圧で−700Vを印加して
グロー放電を発生させて、ダイス表面を5分間エッチン
グし、引続いて〜を排気することなく真空チャンバー内
にSiH4と日2とを流入させてチャンバ−内の圧力を
0.3トルに調節した状態で、一450Vの電圧を印カ
ロしてグロー放電を発生させ、30分間の反応を行なう
ことによつてダィスーの表面にSi被膜を蒸着形成し、
さらに引続いて真空チャンバー内にC2日2を、Si比
:C2日2のモル比を1:2に調節しながら流入させて
2時間の反応を行ない、Si被膜の上にSIC被膜を蒸
着形成した。この結果、金属基体たるダイス表面に形成
された被覆は、厚さ:1りmのS三層と同4払mのSI
C層からなると共に、結晶化していない無定形(アモル
ファス状)のものであり、マイクロビツカース硬さ(H
v:10雌荷重):3200k9/地を示すものであっ
た。また、上記チャンバー内に同時に挿入した上記ダイ
スと同じ材質のSKD−11製試験片を用い、この試験
片の彼膜蒸着面にェポキシ系接着材にて同寸法にして同
材質の試験片を接着し、引張試験を行なったところ、5
00k9/孫の引張強ごで接着材と被覆との境界面で剥
離が生じた。
The apparatus shown in FIG. 1 includes a vacuum chamber 7 surrounded by a heater 6 on the outer peripheral side, and a vacuum chamber 7 housed within the vacuum chamber and connected to the e side of a power source (high frequency or direct current) 4 through an insulator 5. an exhaust pump 3 that opens into the vacuum chamber, and a C2 source, an Ar source, a 2 source, and a SiH4 source that also open into the vacuum chamber via a flow meter 8. It consists of things. That is, in the apparatus shown in FIG.
The metal base S is placed on top of the SUS304 container.
After placing the KD-11 dice, the temperature inside the vacuum chamber 7 is raised to 30,000, and the exhaust pump 3 is turned on.
The pressure in the vacuum chamber was reduced to 5 x 10-4 Torr, and then Ar was introduced to bring the pressure inside the vacuum chamber to 5 x 10-2 Torr, and a negative voltage of -700 V was applied to the electrode 2. A glow discharge was generated to etch the die surface for 5 minutes, followed by flowing SiH4 into the vacuum chamber without evacuating ~ and adjusting the pressure inside the chamber to 0.3 Torr. In this state, a voltage of -450 V was applied to generate a glow discharge, and a reaction was carried out for 30 minutes to form a Si film on the surface of the die.
Subsequently, C2 was introduced into the vacuum chamber while adjusting the molar ratio of Si to C2 to 1:2, and a reaction was carried out for 2 hours to form a SIC film on the Si film. did. As a result, the coating formed on the surface of the die, which is a metal base, consists of three layers of S with a thickness of 1 m and an SI layer with a thickness of 4 m.
It consists of a C layer, is amorphous, and has a microvitkers hardness (H
v: 10 female load): 3200k9/ground. In addition, a test piece made of SKD-11 made of the same material as the above-mentioned die was inserted into the above-mentioned chamber at the same time, and a test piece of the same size and made of the same material was bonded to the film-deposited surface of this test piece using an epoxy adhesive. However, when a tensile test was performed, 5
Peeling occurred at the interface between the adhesive and the coating due to the tensile strength of 00k9/Son.

このことから、ダイス基体に対する上記被膜の付着強度
は500k9/の以上であることが明らかである。さら
に、この結果のSj被膜およびSIC被膜形成のダイス
を粉末冶金における圧粉体成形に用いたところ、Si被
膜を介在させない以外は同条件で、直接Sic被膜を形
成したダイスに比して約3倍の使用寿命を示した。なお
、前記Si被膜の介在がないダイスにおいては、SIC
被膜とダイス基体表面との付着強度はわずかに200k
9/地を示すにすぎなかつた。実施例 2 金属基体の材質をTiとし、かCSiC被膜形成のため
の反応時間を3時間として、その厚さを6仏mとする以
外は、実施例1におけると同一の条件でTi材の表面に
厚さ6ムmのSIC被膜を厚さ:1仏mのSi被膜を介
して形成した。
From this, it is clear that the adhesion strength of the coating to the die substrate is 500k9/ or more. Furthermore, when the resulting die with the Sj coating and the SIC coating was used for green compact compacting in powder metallurgy, it was found that under the same conditions except that the Si coating was not interposed, the die was approximately 3 times smaller than the die with the Si coating directly formed. It showed twice the service life. Note that in the die without the Si coating, the SIC
The adhesion strength between the coating and the die base surface is only 200K.
9/ It was just a sign of the earth. Example 2 The surface of the Ti material was prepared under the same conditions as in Example 1, except that the material of the metal substrate was Ti, the reaction time for forming the CSiC film was 3 hours, and the thickness was 6 mm. A SIC film with a thickness of 6 mm was formed via a Si film with a thickness of 1 mm.

この場合も前記被膜は500k9/雌以上の付着強度を
示した。実施例 3金属基体を山製繊維機械ガイドとし
、真空チャンバ−内の加熱温度を200q0とする以外
は、実施例1におけると同一の条件で前記ガイド表面に
厚さ:0.8仏mのSi層と厚さ:3.5山mのSIC
層とを蓮続蒸着形成した。
In this case as well, the coating showed an adhesion strength of 500k9/female or more. Example 3 A textile machine guide made of wood was used as the metal base, and Si with a thickness of 0.8 cm was coated on the guide surface under the same conditions as in Example 1, except that the heating temperature in the vacuum chamber was 200q0. Layer and thickness: 3.5 m SIC
The layers were formed by successive vapor deposition.

この結果形成された被膜は、ピッカース硬さ:3000
k9/域を示し、かつ500k9/鮒以上の付着強度を
示した。なお、Si層を形成しない以外は同一の条件で
SIC層の形成を試みたが、剥離が生じ、満足なSIC
層を形成することができなかった。また、このSi被膜
およびSIC被膜形成のAI製繊維機械ガイドを実機に
組み込み使用したところ、アルミナ(AI203)溶射
のものに比して約3倍の使用寿命を示した。実施例 4 金属基体をゲートバルブの摺動プレート (SUS304製)とし、電極には13.58MHZの
高周波を印加し、かつエッチング出力を200W、被膜
形成のための反応出力を70Wとする以外は、実施例1
におけると同一の条件にて、前記摺動プレートの表面に
厚さ:2仏mのSi層と厚さ:6仏mのSIC層とから
なる被膜を蓮続蒸着形成した。
The resulting film has a Pickers hardness of 3000
It showed a k9/range and an adhesion strength of 500k9/carp or more. Although we attempted to form a SIC layer under the same conditions except that no Si layer was formed, peeling occurred and it was not possible to form a satisfactory SIC layer.
It was not possible to form a layer. Furthermore, when this AI-made textile machine guide with Si coating and SIC coating was incorporated into an actual machine, it exhibited a service life approximately three times longer than that of an alumina (AI203) thermally sprayed guide. Example 4 The metal substrate was a gate valve sliding plate (made of SUS304), a high frequency of 13.58 MHZ was applied to the electrode, the etching output was 200 W, and the reaction output for film formation was 70 W. Example 1
Under the same conditions as in , a coating consisting of a Si layer with a thickness of 2 meters and a SIC layer with a thickness of 6 meters was formed by continuous vapor deposition on the surface of the sliding plate.

この被膜も500k9/雌以上の付着強度を有し、かつ
ビッカース硬さ:3200k9/柵を示すものであった
。この結果の摺動プレートを徴粉炭輸送管に用いたとこ
ろ、従来の表面窒化したものに比して約3倍の使用寿命
を示した。実施例 5 被膜形成のための反応ガスとして日2を使用せず、かつ
被膜形成時の真空チャンバー内の圧力を0.2トルとす
る以外は、実施例1におけると同一の条件にて、金属基
体たるSKD−11製ダイス表面に、厚さ:0.8仏m
のSi層と厚さ:3.5仏mのSIC層とからなる被膜
を蒸着形成した。
This coating also had an adhesion strength of 500k9/female or more and a Vickers hardness of 3200k9/fence. When the resulting sliding plate was used in a pulverized coal transport pipe, it exhibited a service life approximately three times longer than that of a conventional surface nitrided plate. Example 5 Metals were prepared under the same conditions as in Example 1, except that the reaction gas for film formation was not used and the pressure in the vacuum chamber during film formation was 0.2 Torr. The surface of the SKD-11 die, which is the base, has a thickness of 0.8 mm.
A film consisting of a Si layer of 3.5 m thick and a SIC layer of 3.5 m thick was formed by vapor deposition.

この結果の被膜は500k9/仇以上の付着強度と30
00k9/磯のビッカース硬さを有するものであった。
実施例 6 被膜形成のための反応ガスとしてArを使用せず、すな
わちエッチング処理後、真空チャンバーからArを完全
に排気する以外は、実施例4におけると同一の条件にて
、金属基体たるゲートバルブの摺動プレート表面に、厚
さ:0.8仏mのSi層と厚さ:3.5仏mのSIC層
とからなる被膜を形成した。
The resulting coating has an adhesion strength of over 500k9/m
It had a Vickers hardness of 00k9/Iso.
Example 6 A gate valve with a metal substrate was prepared under the same conditions as in Example 4, except that Ar was not used as a reactive gas for film formation, that is, Ar was completely exhausted from the vacuum chamber after the etching process. A coating consisting of a Si layer with a thickness of 0.8 mm and an SIC layer with a thickness of 3.5 mm was formed on the surface of the sliding plate.

この結果の被膜は、500kg/の以上の付着強度と3
100k9/柵のビッカース硬さを示した。実施例 7
金属基体をSKH−9製木工用ドリルとし、かつ、SI
C層形成に際しては、当初の30分間の反応ガス組成を
Si比:C2日2のモル比を1:1とし、引続いてC2
日2の流入量を増加させてゆき、1.5時間後には同1
:3となるように変化させる以外は、実施例1における
と同一の条件にて、前記木工用ドリルお表面に、厚さ:
1仏mのSi層と厚さ:4仏mのSIC層からなる被膜
を形成した。
The resulting coating has an adhesion strength of over 500 kg/3
100k9/indicated the Vickers hardness of the fence. Example 7
The metal base is a woodworking drill made of SKH-9, and the SI
When forming the C layer, the reaction gas composition for the initial 30 minutes was set to a molar ratio of Si to C2 of 1:1, and then C2
The amount of inflow on day 2 was increased, and 1.5 hours later, the amount of inflow was 1.
The thickness of the woodworking drill was applied to the surface of the woodworking drill under the same conditions as in Example 1 except that the thickness was changed to:
A film consisting of a Si layer of 1 m thick and an SIC layer of 4 m thick was formed.

なお、この結果形成された被膜のSIC層においては、
Si層との境界付近でビッカース硬さ:1500k9/
地の硬さを示し、この硬さは被膜表面部に向うにしたが
って増大し、その表面でビッカース硬さ:3600k9
/磯を示した。また、前記被膜も500k9/地の付着
強度をもつものであった。さらに、この表面被膜ドリル
を実用に供したところ、被膜形成のないドリルに比して
4倍の使用寿命を示した。上述のように、この発明の方
法によれば、被膜形成時にクラツクや剥離の発生がなく
、かつきわめてすぐれた密着度を有するSIC被膜を金
属基体表面に形成することができるのである。
In addition, in the SIC layer of the film formed as a result,
Vickers hardness near the boundary with the Si layer: 1500k9/
This hardness increases toward the surface of the coating, and the Vickers hardness at that surface is 3600k9.
/ Pointed to the seashore. The coating also had an adhesion strength of 500k9/base. Furthermore, when this drill with a surface coating was put into practical use, it showed a service life four times longer than that of a drill without coating. As described above, according to the method of the present invention, it is possible to form an SIC film on the surface of a metal substrate without cracking or peeling during film formation and having extremely high adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマ化学黍着装置の概略図である。 図面において、1・・・・・・金属基体、2・・・・・
・電極、3・・・・・・排気ポンプ、4…・・・電源、
5……絶縁物、6……ヒーター、7……真空チヤンバー
、8・・・・・・流量計。
FIG. 1 is a schematic diagram of a plasma chemical spraying apparatus. In the drawings, 1...metal base, 2...
・Electrode, 3...exhaust pump, 4...power supply,
5...Insulator, 6...Heater, 7...Vacuum chamber, 8...Flowmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 金属基体表面にプラズマ化学蒸着法により炭化けい
素皮膜を形成するに際して、まずSi被膜を蒸着形成し
、ついで炭化けい素皮膜を蒸着形成することを特徴とす
る金属基体表面に密着性のすぐれた炭化けい素皮膜を形
成する方法。
1. When forming a silicon carbide film on the surface of a metal substrate by plasma chemical vapor deposition, a Si film is first vapor-deposited and then a silicon carbide film is formed by vapor deposition. Method of forming silicon carbide film.
JP4065481A 1981-03-20 1981-03-20 Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate Expired JPS6033190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065481A JPS6033190B2 (en) 1981-03-20 1981-03-20 Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065481A JPS6033190B2 (en) 1981-03-20 1981-03-20 Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate

Publications (2)

Publication Number Publication Date
JPS57155365A JPS57155365A (en) 1982-09-25
JPS6033190B2 true JPS6033190B2 (en) 1985-08-01

Family

ID=12586533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065481A Expired JPS6033190B2 (en) 1981-03-20 1981-03-20 Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate

Country Status (1)

Country Link
JP (1) JPS6033190B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704339A (en) * 1982-10-12 1987-11-03 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Infra-red transparent optical components
JPS6075577A (en) * 1983-09-30 1985-04-27 Toshiba Corp Back ornamental article
JPS60177179A (en) * 1984-02-23 1985-09-11 Toshiba Corp Black ornamental article
JPS60213838A (en) * 1984-04-09 1985-10-26 Tokyo Electric Co Ltd Load cell
US4869929A (en) * 1987-11-10 1989-09-26 Air Products And Chemicals, Inc. Process for preparing sic protective films on metallic or metal impregnated substrates
JPS6418161U (en) * 1988-07-13 1989-01-30
DE4429380C1 (en) * 1994-08-15 1996-04-25 Biotronik Mess & Therapieg Method for producing a non-collapsing intravascular vascular prosthesis (stent)
US5664504A (en) * 1994-10-27 1997-09-09 Kobayashi; Shizuo Combustion apparatus having inverse temperature distribution by forced convection
US9663374B2 (en) * 2011-04-21 2017-05-30 The United States Of America, As Represented By The Secretary Of The Navy Situ grown SiC coatings on carbon materials

Also Published As

Publication number Publication date
JPS57155365A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
CN109338300B (en) high-hardness material of high-entropy alloy nitride coating and preparation method thereof
JP3150024B2 (en) Method for producing synthetic diamond film
WO2013099752A1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
US5346719A (en) Tungsten metallization of CVD diamond
JPS6033190B2 (en) Method for forming a silicon carbide film with excellent adhesion on the surface of a metal substrate
CN100537805C (en) Wear-resistant and corrosion-resistant spare part and surface treatment process thereof
US4062660A (en) Method of producing nickel coated diamond particles
JPH06173009A (en) Coated cemented carbide excellent in wear resistance and its production
CN110541152B (en) Tantalum/steel bimetal composite material and preparation method thereof
JP2659825B2 (en) Wear-resistant alloy powder and components
US5254369A (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
EP0509907B1 (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
CN1020476C (en) Process for applying nitride layers to titanium
JPH04238896A (en) Production of diamond plate by vapor process
JP2001316819A (en) Hard amorphous carbon film and production method therefor
Yamashita et al. Adhesion and structure of c-BN films produced by ion-beam-assisted deposition
CN113802112B (en) Deposition method of high interface strength DLC film with bonding layer and transition layer
CN108411265A (en) A kind of preparation method of low stress dense coating
JPH0558070B2 (en)
EP0635871A2 (en) High heat conductive insulated substrate and method of manufacturing the same
JPH03260069A (en) Artificial diamond-coated hard sintered tool member having high adhesive strength
JPH11172361A (en) Surface-coated cemented carbide and its production
Yoshizawa et al. Temperature dependence of residual stress in TiC coated Mo
JPS63102801A (en) Diamond tool
JPH0582473B2 (en)