JPS6030762B2 - Hot air heating furnace for carbon fiber production - Google Patents
Hot air heating furnace for carbon fiber productionInfo
- Publication number
- JPS6030762B2 JPS6030762B2 JP57088116A JP8811682A JPS6030762B2 JP S6030762 B2 JPS6030762 B2 JP S6030762B2 JP 57088116 A JP57088116 A JP 57088116A JP 8811682 A JP8811682 A JP 8811682A JP S6030762 B2 JPS6030762 B2 JP S6030762B2
- Authority
- JP
- Japan
- Prior art keywords
- hot air
- furnace
- heating furnace
- air heating
- producing carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J13/00—Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/32—Apparatus therefor
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Tunnel Furnaces (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】
本発明は並行して走行する多糸条を均一に加熱する炭素
繊維製造用熱風加熱炉に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot-air heating furnace for producing carbon fibers that uniformly heats multiple threads running in parallel.
、繊維状物を加熱し、物理的あるいは化学的変
性を与える場合、繊維状物に熱風を接触させて熱処理を
行う方式があり、特にポリアクリロニトリル、ピッチ、
ポリビニルアルコールなどを前駆体とする炭素繊維製造
時の耐炎化工程においては、繊維状物を各々に通した温
度条件及び雰囲気条件で熱処理する際に、熱風を接触さ
せる加熱炉を用いることが一般的である。この熱処理過
程における温度履歴は品質に大きく影響する。When heating a fibrous material to give it physical or chemical modification, there is a method of heat treatment by contacting the fibrous material with hot air.In particular, polyacrylonitrile, pitch,
In the flame-retardant process during the production of carbon fibers using polyvinyl alcohol as a precursor, it is common to use a heating furnace that brings hot air into contact with the fibrous materials when heat-treating them under temperature and atmospheric conditions. It is. The temperature history during this heat treatment process greatly affects quality.
このため繊維状物を複数本のフィラメントとして並行に
走行させる、いわゆる多糸条同時処理方式では各糸条間
の温度履歴に実質的に差異がないことが必要であり、こ
れは設備上で炉内全域に渡って各糸条間の温度ばらつき
が実質的に無いことを要求される。従って、前記熱風式
加熱炉では、炉内における温度均一性を保つために、風
速の均一性が極めて重要である。For this reason, in the so-called multi-filament simultaneous processing method in which the fibrous material is run in parallel as multiple filaments, it is necessary that there is virtually no difference in the temperature history between each thread. It is required that there be substantially no temperature variation between each yarn over the entire inner area. Therefore, in the hot air heating furnace, uniformity of air velocity is extremely important in order to maintain temperature uniformity within the furnace.
にもかかわらず、熱風式加熱炉内の各糸条が受ける風速
を均一化することは現実には難しい。例えば、前記の前
駆体繊維を耐炎化する工程で用いられる熱風式加熱炉、
即ち耐炎化炉は炉内に熱風を循環するために、炉の端部
に設けた熱風吹出部と熱風吸引部とを、炉外において循
環ファンとヒーターとを介在させたダクトによって接続
させるのが普通である。しかしながら、熱風吹出部から
の熱風は特に熱風吹出面付近の形状の影響を受けて気流
が乱れ、風速が糸条間で不均一になる傾向があった。However, it is actually difficult to equalize the wind speed applied to each yarn in a hot air heating furnace. For example, a hot air heating furnace used in the process of making the precursor fiber flame resistant;
In other words, in order to circulate hot air within the furnace, a flameproofing furnace connects a hot air blowing part and a hot air suction part provided at the end of the furnace through a duct with a circulation fan and a heater interposed outside the furnace. It's normal. However, the hot air from the hot air blowing section tends to be affected by the shape of the hot air blowing surface in particular, resulting in turbulent airflow and non-uniform wind speed among the yarns.
この結果、炉内温度が糸条群間で不均一となって品質の
ばらつきを大きくし、一方該風速斑に起因する糸条の絡
み合い、糸切れ、及びローラ巻付き等が発生し易く、こ
れらのことが場合によっては炭素繊維製造上の特有の問
題である被処理糸条がいきなり炉内で燃焼する、いわゆ
る‘1バーン現象”を惹起するという問題があった。本
発明の目的はかかる従来技術の問題点を解消し、加熱炉
内を並行して走行する各糸条に対して吹き付ける熱風の
風速を均一にし、かつ炉内での温度ばらつきを少なくす
ることによって、炭素繊維品質の向上と操業上のトラブ
ルを未然に防止し得る熱風式加熱炉を提供せんとするも
のである。As a result, the temperature inside the furnace becomes non-uniform among the yarn groups, increasing the variation in quality, and on the other hand, yarn entanglement, yarn breakage, roller winding, etc. due to uneven wind speed are likely to occur. In some cases, this may cause the so-called '1 burn phenomenon' in which the yarn to be treated suddenly burns in the furnace, which is a particular problem in the production of carbon fibers. By solving the technical problems, uniformizing the speed of hot air blown onto each yarn running in parallel in the heating furnace, and reducing temperature variations in the furnace, we have improved the quality of carbon fiber. It is an object of the present invention to provide a hot air heating furnace that can prevent operational troubles.
かかる目的を達成する本発明の構成は、並行して走行す
る多糸条を処理する炭素繊維製造用熱風式加熱炉におい
て、該走行糸条群面に沿って熱風を吹出すための熱風吹
出面、該熱風吹出面に対して熱風を向わせるための方向
変換用案内羽根とその前後の一方もしくは双方に開孔率
30〜50%の整流用多孔板または金網とを配した熱風
吹出部を装備し、炉外の熱風循環用ダクトから供給され
る熱風を前記熱風吹出部内の方向変換案内羽根とその前
後の一方もしくは双方の整流用多孔板または金網を経て
熱風吹出面から炉内に向って吹出させることを特徴とす
るものである。以下、本発明の炭素繊維製造用熱風式加
熱炉、特にポリアクリロニトリルを焼成する耐炎化炉に
ついて、図面に基づき具体的に説明する。The configuration of the present invention that achieves this object is that in a hot air heating furnace for manufacturing carbon fibers that processes multi-filament threads running in parallel, a hot air blowing surface for blowing hot air along the surface of the running thread group is provided. , a hot air blowing section comprising a direction changing guide vane for directing the hot air to the hot air blowing surface, and a rectifying perforated plate or wire mesh with a porosity of 30 to 50% on one or both of the front and rear sides thereof. The hot air supplied from the hot air circulation duct outside the furnace is directed from the hot air blowing surface into the furnace through the direction changing guide vane in the hot air blowing section and one or both of the front and rear rectifying perforated plates or wire meshes. It is characterized by blowing out air. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hot air heating furnace for producing carbon fibers according to the present invention, particularly a flameproofing furnace for firing polyacrylonitrile, will be specifically described with reference to the drawings.
第1図は本発明の一実施態様である炭素繊維製造用耐炎
化炉の概略正面断面図であり、また第2図は第1図の概
略側面図である。FIG. 1 is a schematic front sectional view of a flameproofing furnace for producing carbon fibers, which is an embodiment of the present invention, and FIG. 2 is a schematic side view of FIG. 1.
図において、糸条2は熱処理室1の下方及び上方に設け
られた複数対の案内ローラ3a,3b,・・・・・・3
eへ順次移送され、その間に糸条2の熱処理が行われる
。In the figure, the thread 2 is a plurality of pairs of guide rollers 3a, 3b, . . . 3 provided below and above the heat treatment chamber 1.
The yarn 2 is sequentially transferred to the storage section e, during which the yarn 2 is heat-treated.
熱処理室1には、その下部に熱風吹出部4が吹出面4′
を上部ローラ3b,3dに向けるように設けられ、その
吹出面4′から熱風が該糸条1面に沿って吹出すように
なっている。室内の熱風は上部に設けた熱風吸引部5(
5′:吸弓l面)を介して排出させている。前記の熱風
吹出部4及び熱風吸引部5は、炉外ローラ型式(案内ロ
ーラが炉の外に設けられているもの)の耐炎化炉では、
糸条2の熱処理室1に出入する回数に見合う個数分設け
られ、特に、本態様では熱処理室1の下部に熱風吹出部
4を、熱処理室1の上部に熱風吸引部5を設けているた
め、熱処理室1内の熱風の流れは下から上へ糸条2の糸
条群面に対してほぼ並行となっている。The heat treatment chamber 1 has a hot air blowing section 4 at the bottom thereof with a blowing surface 4'.
are provided so as to face the upper rollers 3b and 3d, and hot air is blown out from the blowing surface 4' along the yarn 1 surface. The hot air in the room is removed from the hot air suction unit 5 (
5': discharged through the suction bow l surface). The hot air blowing part 4 and the hot air suction part 5 are of the outside-furnace roller type (a guide roller is provided outside the furnace) flameproofing furnace.
The number of hot air blowing units 4 is provided in accordance with the number of times the yarn 2 enters and exits the heat treatment chamber 1, and in particular, in this embodiment, the hot air blowing unit 4 is provided at the bottom of the heat treatment chamber 1, and the hot air suction unit 5 is provided at the top of the heat treatment chamber 1. The flow of hot air in the heat treatment chamber 1 is almost parallel to the yarn group surface of the yarn 2 from bottom to top.
また、熱風吹出部4に熱風を供尊信するダクト6は熱風
吸引部5より熱風を排出するダクト7へ、外に設けた熱
風を循環させるファン9及び熱風を所定の温度に加熱す
るヒーター8を介して接続されている。本発明の特徴は
、上記熱風吹出部4の構造にある。In addition, the duct 6 that supplies hot air to the hot air blowing unit 4 is connected to a duct 7 that discharges hot air from the hot air suction unit 5, and a fan 9 that is provided outside to circulate the hot air and a heater 8 that heats the hot air to a predetermined temperature. connected via. The feature of the present invention lies in the structure of the hot air blowing section 4.
すなわち、第3図に示すように、熱風吹出部4では、そ
こに熱風循環用ダクト6からの熱風がまずパンチングメ
タルのような多孔板10(熱風供給口に該当)によって
整流される。ここでの多孔板10は、整流機能をもたす
ために関孔率を30〜50%とすべきであり、このため
孔径を3〜8肌程度とし、その上で孔は板に対して均等
に開けられたものが望ましい。That is, as shown in FIG. 3, in the hot air blowing section 4, the hot air from the hot air circulation duct 6 is first rectified by a perforated plate 10 (corresponding to a hot air supply port) such as a punched metal. The perforated plate 10 here should have a porosity of 30 to 50% in order to have a rectifying function, so the pore diameter should be about 3 to 8 inches, and the holes should be made relative to the plate. Preferably one that is evenly spaced.
この際、もし関孔率が30%未満であると整流効果が高
まる半面、熱風の圧力損失が増大し、運転コストの上昇
を来たすようになる。At this time, if the porosity is less than 30%, although the rectification effect will be enhanced, the pressure loss of the hot air will increase, leading to an increase in operating costs.
一方50%を越えると、熱風の整流効果が不十分となっ
て、主に風速斑に基づく被処理糸条の絡み合いや、糸揺
れに基づく糸条の切断など、操業上のトラブルを招くよ
うになる。なお、ここでは熱風の整流用として多孔板1
0を示したが、この他、熱風に対して所望の整流効果を
有する整流用金網に直換えてもよい。On the other hand, if it exceeds 50%, the hot air rectification effect becomes insufficient, leading to operational troubles such as entanglement of the yarn to be treated due to uneven wind speed and yarn breakage due to yarn sway. Become. In addition, here, a perforated plate 1 is used for rectifying hot air.
0 is shown, but in addition to this, it may be replaced directly with a rectifying wire mesh having a desired rectifying effect on hot air.
ただ談整流用金網についても多孔板10と同様に開孔率
を30〜50%の範囲に保持すべきである。多孔板10
‘こよって整流された熱風は、吹出部4の内部空間12
の中に設けられている方向変換用案内羽根13によりほ
ぼ直角方向に変換させられる。該案内羽根13はダクト
6からの熱風を方向変換したい位置に複数個設けられて
いる。However, similarly to the perforated plate 10, the porosity of the wire mesh for flow straightening should be maintained within the range of 30 to 50%. perforated plate 10
'Thus, the rectified hot air is
The direction is changed to a substantially right angle direction by a direction changing guide vane 13 provided inside. A plurality of guide vanes 13 are provided at positions where it is desired to change the direction of the hot air from the duct 6.
また該案内羽根13は、糸条の全幅に対して熱風が方向
変換されるように、案内羽根をダクトの最も近い位置に
おいて最上部に、遠い位置において最下部になるように
漸次段階状に配設してあるが、配談はこの逆でもよい。Further, the guide vanes 13 are arranged in gradual steps such that the guide vanes are at the top at the position closest to the duct and at the bottom at the farthest position so that the direction of the hot air is changed over the entire width of the yarn. However, the arrangement can be done in the opposite way.
さらに、案内羽根13は熱風吹出部4の内側に近接した
幅を有することが好ましい。通常、案内羽根13は例え
ば1/4円弧の形状であって、その配置はほぼ等間隔に
なされるが、形状、配置間隔などは特に限定されるもの
ではない。Further, it is preferable that the guide blade 13 has a width close to the inside of the hot air blowing part 4. Normally, the guide vanes 13 have a quarter-arc shape, for example, and are arranged at approximately equal intervals, but the shape, arrangement interval, etc. are not particularly limited.
ただ、議案内羽根13はその構造を方向変換自在として
おくと、熱処理室1内の風速を糸条2の品質上から所望
どおりの調整に好都合である。案内羽根13により直角
方向に変換された熱風は、さらに該案内羽根13の後方
に設けられた多孔板10′(整流用金網でもよい)から
なる整流機能を持った熱風吹出面4rから熱処理室1へ
、しかも糸条群面に沿うように吹出され、前記被処理糸
条の熱処理を行なうことになる。次に本発明における熱
嵐吹出部の他の実施態様について説明する。However, if the guide blade 13 is structured so that its direction can be changed freely, it is convenient to adjust the wind speed in the heat treatment chamber 1 as desired from the viewpoint of the quality of the yarn 2. The hot air converted in the right angle direction by the guide vanes 13 is further directed to the heat treatment chamber 1 from the hot air blowing surface 4r having a rectifying function, which is made up of a perforated plate 10' (a rectifying wire mesh may also be used) provided behind the guide vanes 13. In addition, the yarn is blown out along the yarn group surface, and the yarn to be treated is heat-treated. Next, another embodiment of the thermal storm outlet according to the present invention will be described.
すなわち、第4図に示す熱風吹出部は、方向変換用案内
羽根13の前後に多孔板10,10′ならびに整流用金
網11,11′を取付けている。That is, the hot air blowing section shown in FIG. 4 has perforated plates 10, 10' and rectifying wire meshes 11, 11' attached before and after the direction changing guide vane 13.
また第5図に示す熱風吹出部4は第1図における耐炎化
炉端部に限って適用できる構造で、方向変換用案内羽根
13とその前後に配した多孔板10,10′とで構成し
ている。これらの働きは第3図に示した熱風吹出部と全
く同様であるのは勿論である。なお、本発明では熱風の
吸引部5においても、吹出部4と同様、方向変換用案内
羽根及び多孔板を設ければその効果がさらに増大するが
、本発明の効果は王に吹出部の構造によって満足される
。The hot air blowing section 4 shown in FIG. 5 has a structure that can be applied only to the end of the flameproofing furnace shown in FIG. There is. Of course, these functions are exactly the same as the hot air blowing section shown in FIG. In addition, in the present invention, if the hot air suction part 5 is also provided with a guide vane for direction change and a perforated plate in the same way as the blowing part 4, the effect will be further increased, but the effect of the present invention is mainly due to the structure of the blowing part. satisfied by.
また図示していないが、熱処理室1内に、さらに糸条2
の走行に支障のないような整流用金網等を設けて、一層
の風速均一効果を増大することもできる。上述の様に、
炭素繊維製造用熱風式加熱炉における熱風吹出部として
、方向変換用案内羽根13と、その前後に多孔板10,
10′(及び/または整流用金網)を配置したことによ
り、炉内の風速均一性は従来に比較して極めて良好とな
り、例えば炉内の平均風速が2m/secである場合、
そのばらつきを1.5〜2.5m/sec内に容易に調
整可能となった。Although not shown, there is also a yarn 2 inside the heat treatment chamber 1.
It is also possible to further increase the effect of uniform wind speed by providing a rectifying wire mesh or the like that does not impede the running of the vehicle. As mentioned above,
As a hot air blowing part in a hot air heating furnace for producing carbon fibers, a direction changing guide vane 13, a perforated plate 10 in front and behind the direction changing guide vane 13,
10' (and/or rectifying wire mesh), the uniformity of the wind speed inside the furnace is much better than before. For example, when the average wind speed inside the furnace is 2 m/sec,
It became possible to easily adjust the variation within 1.5 to 2.5 m/sec.
このような風速ばらつきが大幅に減少したことで、炉内
の温度ばらつきも対応して減少し、熱処理される糸条の
品質のばらつきが大幅に改善されるばかりか、風速斑に
起因する糸条の絡み合い、糸切れ、ローラ巻き付き等が
著しく減少し、ひいては炭素繊維製造上の特有の問題で
ある被処理糸条の“バーン現象”が禾然に防止できると
いう極めて顕著な効果を奏する。This drastic reduction in wind speed variation has a corresponding reduction in temperature variation in the furnace, which not only greatly improves the quality variation of heat-treated yarns, but also improves the quality of yarns caused by wind speed unevenness. Entanglement, yarn breakage, roller wrapping, etc. are significantly reduced, and the "burn phenomenon" of treated yarns, which is a particular problem in carbon fiber production, can be completely prevented, which is an extremely remarkable effect.
第1図は本発明の一実施態様を示す炭素繊維製造用耐炎
化炉の概略正面断面図、第2図は第1図における耐炎化
炉の概略側面図である。
また第3図及び第4図は熱風吹出部の見取図、さらに第
5図は第1図における耐炎化炉端部付近の見取図である
。1:熱処理室、2:糸条、3a〜3e:案内ローラ、
4:熱風吹出部、5:熱風吸引部、6,7:熱風循環用
ダクト、8:ヒーター、9:ファン、10,10′:多
孔板、11,11′金網、12:熱風吹出部の内部空間
、13:案内羽根。
第2図第1図
第3図
第4図
第5図FIG. 1 is a schematic front sectional view of a flameproofing furnace for producing carbon fibers showing one embodiment of the present invention, and FIG. 2 is a schematic side view of the flameproofing furnace in FIG. 1. Further, FIGS. 3 and 4 are sketches of the hot air blowing section, and FIG. 5 is a sketch of the vicinity of the end of the flame-resistant furnace in FIG. 1. 1: Heat treatment chamber, 2: Yarn, 3a to 3e: Guide roller,
4: Hot air blowing section, 5: Hot air suction section, 6, 7: Hot air circulation duct, 8: Heater, 9: Fan, 10, 10': Perforated plate, 11, 11' Wire mesh, 12: Inside of hot air blowing section Space, 13: Guide vane. Figure 2 Figure 1 Figure 3 Figure 4 Figure 5
Claims (1)
熱風式加熱炉において、該走行糸条群面に沿つて熱風を
吹出すための熱風吹出面、該熱風吹出面に対して熱風を
向わせるための方向変換用案内羽根とその前後の一方も
しくは双方に開孔率30〜50%の整流用多孔板または
金網とを配した熱風吹出部を装備し、炉外の熱風循環用
ダクトから供給される熱風を前記熱風吹出部内の方向変
換用案内羽根とその前後の一方もしくは双方の整流用多
孔板または金網を経て熱風吹出面から炉内に向つて吹出
させることを特徴とする炭素繊維製造用熱風式加熱炉。 2 方向変換用案内羽根が方向変換自在である特許請求
の範囲第1項記載の炭素繊維製造用熱風式加熱炉。3
炭素繊維製造用熱風加熱炉が耐炎化炉である特許請求の
範囲第1項記載の炭素繊維製造用熱風式加熱炉。[Scope of Claims] 1. A hot air blowing surface for blowing out hot air along the surface of a group of running yarns in a hot air heating furnace for producing carbon fibers that processes multi-filaments running in parallel; The furnace is equipped with a hot air blowing section that has direction changing guide vanes for directing the hot air toward the exit surface, and a rectifying perforated plate or wire mesh with a porosity of 30 to 50% on either or both of the front and rear sides. The hot air supplied from the outside hot air circulation duct is blown into the furnace from the hot air blowing surface through the direction changing guide vane in the hot air blowing part and one or both of the front and rear rectifying perforated plates or wire meshes. A hot air heating furnace for producing carbon fiber. 2. The hot-air heating furnace for producing carbon fibers according to claim 1, wherein the direction-changing guide vanes are direction-changeable. 3
The hot air heating furnace for producing carbon fibers according to claim 1, wherein the hot air heating furnace for producing carbon fibers is a flame-retardant furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57088116A JPS6030762B2 (en) | 1982-05-26 | 1982-05-26 | Hot air heating furnace for carbon fiber production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57088116A JPS6030762B2 (en) | 1982-05-26 | 1982-05-26 | Hot air heating furnace for carbon fiber production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58208433A JPS58208433A (en) | 1983-12-05 |
JPS6030762B2 true JPS6030762B2 (en) | 1985-07-18 |
Family
ID=13933915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57088116A Expired JPS6030762B2 (en) | 1982-05-26 | 1982-05-26 | Hot air heating furnace for carbon fiber production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6030762B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007169A1 (en) * | 2012-07-02 | 2014-01-09 | 三菱レイヨン株式会社 | Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle |
EP3026151A4 (en) * | 2013-07-23 | 2016-08-03 | Mitsubishi Rayon Co | Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006037703B4 (en) * | 2006-08-11 | 2013-04-18 | Eisenmann Ag | Convection Oven |
JP4961256B2 (en) * | 2007-05-10 | 2012-06-27 | 三菱レイヨン株式会社 | Flameproof heat treatment equipment |
DE102014009244B4 (en) * | 2014-06-20 | 2016-07-28 | Eisenmann Se | oxidation furnace |
US10458710B2 (en) * | 2014-11-07 | 2019-10-29 | Illinois Tool Works Inc. | Supply plenum for center-to-ends fiber oxidation oven |
JP7272347B2 (en) * | 2019-03-19 | 2023-05-12 | 東レ株式会社 | Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725462A (en) * | 1980-07-18 | 1982-02-10 | Mitsubishi Rayon Co | Shaft type flame proofness imparting treatment apparatus |
-
1982
- 1982-05-26 JP JP57088116A patent/JPS6030762B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725462A (en) * | 1980-07-18 | 1982-02-10 | Mitsubishi Rayon Co | Shaft type flame proofness imparting treatment apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007169A1 (en) * | 2012-07-02 | 2014-01-09 | 三菱レイヨン株式会社 | Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle |
CN104428456A (en) * | 2012-07-02 | 2015-03-18 | 三菱丽阳株式会社 | Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle |
EP3026151A4 (en) * | 2013-07-23 | 2016-08-03 | Mitsubishi Rayon Co | Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same |
US10472738B2 (en) | 2013-07-23 | 2019-11-12 | Mitsubishi Chemical Corporation | Gas supply blowout nozzle and method of producing flame-proofed fiber and carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS58208433A (en) | 1983-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1563068A (en) | Method and apparatus for producing glass fibres | |
JPH059527B2 (en) | ||
JP2010100967A (en) | Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber | |
JPH10237723A (en) | The treatment furnace and production of carbon fiber | |
JPS6030762B2 (en) | Hot air heating furnace for carbon fiber production | |
JP2007247130A (en) | Heat-treating furnace and method for producing carbon fiber | |
JP5037978B2 (en) | Flameproof furnace and flameproofing method | |
JP5207796B2 (en) | Flame resistant treatment apparatus and precursor fiber bundle flame resistant treatment method | |
US4545762A (en) | Apparatus for producing oxidized filaments | |
JPH034832B2 (en) | ||
JP2000088464A (en) | Heat treatment furnace and manufacture of carbon fiber using it | |
JP4572460B2 (en) | Heat treatment furnace and method for producing carbon fiber using the same | |
KR20220146497A (en) | Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace | |
JP2002194627A (en) | Heat-treating oven and method for producing carbon fiber by use of the same | |
JP5812205B2 (en) | Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same | |
JP2004124310A (en) | Flameproofing furnace | |
JP2009074183A (en) | Heat treatment furnace and method for producing carbon fiber using the same | |
JP2002105766A (en) | Method for flame resisting | |
JP4236316B2 (en) | Flame-resistant heat treatment equipment for yarn | |
TW202035811A (en) | Flame resistance heat treatment oven, flame-resistant fiber bundles, and method for manufacturing carbon-fiber bundles | |
JPS5982414A (en) | Heat-treatment apparatus for manufacture of carbon fiber | |
JPS59112063A (en) | Heat treatment apparatus for preparing flame resistant yarn | |
JPH034834B2 (en) | ||
JP2014221956A (en) | Heat treatment apparatus, and method for producing flame-resistant fiber by using the same | |
JP5037977B2 (en) | Flameproofing furnace and method for producing flameproofed fiber |