JPS60249708A - Flow line selector valve - Google Patents
Flow line selector valveInfo
- Publication number
- JPS60249708A JPS60249708A JP10567884A JP10567884A JPS60249708A JP S60249708 A JPS60249708 A JP S60249708A JP 10567884 A JP10567884 A JP 10567884A JP 10567884 A JP10567884 A JP 10567884A JP S60249708 A JPS60249708 A JP S60249708A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- switching valve
- hydraulic
- port
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Fluid-Driven Valves (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
a9 発明の目的
(産業上の利用分野)
この発明に係る流路切換弁は、各種液圧機械に組込まれ
る液圧シリンダ、液圧モータ等の液圧式アクチュエータ
への圧液の給排を制御するのに使用される。[Detailed Description of the Invention] a9 Purpose of the Invention (Field of Industrial Application) The flow path switching valve according to the present invention is capable of controlling pressure applied to hydraulic actuators such as hydraulic cylinders and hydraulic motors incorporated in various hydraulic machines. Used to control liquid supply and discharge.
(従来の技術)
クレーン、T作機械、プレス機械その他各種液圧機械に
は液圧シリンダ、液圧モータ等の液圧式アクチュエータ
が組込まれている。このような液圧式アクチュエータの
作動方向を変えるためには、別途設けた流路切換弁によ
り圧液の給排方向を切換える。ところが、このようにし
て圧液の給tJj方向を切換える場合、急に流路を切換
えるとアクチュエータに急激な液圧変化に伴う衝撃が発
生し、液圧機械の動作が円滑に行なわれないだけでなく
、アクチュエータや液圧機械を損傷する原因ともなって
しまう。(Prior Art) Hydraulic actuators such as hydraulic cylinders and hydraulic motors are incorporated in cranes, T-machines, press machines, and other various hydraulic machines. In order to change the operating direction of such a hydraulic actuator, the supply and discharge direction of the pressure fluid is switched using a separately provided flow path switching valve. However, when switching the pressure fluid supply direction tJj in this way, if the flow path is suddenly switched, a shock will be generated on the actuator due to the sudden change in fluid pressure, which will not only prevent the hydraulic machine from operating smoothly. Otherwise, it may cause damage to the actuator or hydraulic machine.
このため、従来がら流路切換弁を第9図に示すように構
成し、圧液の給排方向を切換える際に液圧式アクチュエ
ータに衝撃が発生しないようにしている。この流路切換
弁は、ソレノイド1a、lbの働きにより流路を切換え
られる電磁式切換弁2と、この電磁式切換弁2を通じて
送り込まれる圧液により流路を切換えられる液圧式切換
弁3とから成っている。液タンク4からポンプ5により
吸引され圧力ーヒ昇した圧液は、第一の流路6を介して
電磁式切換弁2の第一のポート7に、第二〇流路8を介
して液圧切換弁3の第一のポート9に、それぞれ通じて
いる。For this reason, the flow path switching valve is conventionally configured as shown in FIG. 9 to prevent impact from occurring on the hydraulic actuator when switching the supply/discharge direction of the pressure fluid. This flow path switching valve consists of an electromagnetic switching valve 2 whose flow path is switched by the action of solenoids 1a and lb, and a hydraulic switching valve 3 whose flow path is switched by pressure fluid sent through the electromagnetic switching valve 2. It has become. The pressure liquid that is sucked from the liquid tank 4 by the pump 5 and whose pressure has increased is transferred to the first port 7 of the electromagnetic switching valve 2 through the first flow path 6 and then through the 20th flow path 8. Each communicates with a first port 9 of the pressure switching valve 3.
いま、液圧シリンダ10に内嵌したピストン11を右行
させ、ロッド12を突出させようとする場合、電磁式切
換弁3の左側のソレノイFlaに通電することによりこ
の切換弁3のスプールを右側の圧縮ばね13bに抗して
右行させ、流路を左端の状態に切換えて、第一のポート
7と第三のポーh14と、第二のポート15と第四のポ
ート16とをそれぞれ通じさせる。このため、圧液が第
三のポート14に一端を接続された第三の流路17の途
中に絞り弁28aと並列に設けた逆止弁61aを通じて
液圧式切換弁3の左側のシリンダ部18aに送り込まれ
、この液圧式切換弁3のスプールを右側の圧縮ばね19
bに抗して右行させ、流路を左端の状態に切換える。こ
の際右側のシリンダ部18b内の液は、第四の流路2o
、電磁式切換弁2の流路を通じて液タンク4に戻される
。第四の流路20の途中には絞り弁28bが設けられて
いるため、液圧式切換弁3のスプールの移動は緩徐に行
なわれ、この液圧式切換弁の第一のポート9と第三のポ
ート21と、第二のポート22と第四のポート23とは
緩徐に連通して第五の流路24を通じて液圧シリング1
oの左室25に圧液を少しずつ送り込む。この際、液圧
シリンダ10の右室33内の液は第六の流路26、液圧
式切換弁3、第七の流路27を通じて液タンク4に戻さ
れる。Now, when the piston 11 fitted in the hydraulic cylinder 10 is moved to the right and the rod 12 is to be protruded, the spool of the switching valve 3 is moved to the right by energizing the solenoid Fla on the left side of the electromagnetic switching valve 3. The flow path is moved to the right against the compression spring 13b, and the flow path is switched to the left end state, and the first port 7 and the third port h14 are connected to the second port 15 and the fourth port 16, respectively. let For this reason, the pressure fluid passes through the left cylinder portion 18a of the hydraulic switching valve 3 through the check valve 61a provided in parallel with the throttle valve 28a in the middle of the third flow path 17 whose one end is connected to the third port 14. The spool of this hydraulic switching valve 3 is connected to the compression spring 19 on the right side.
b to the right and switch the flow path to the left end state. At this time, the liquid in the right cylinder portion 18b flows through the fourth flow path 2o.
, is returned to the liquid tank 4 through the flow path of the electromagnetic switching valve 2. Since the throttle valve 28b is provided in the middle of the fourth flow path 20, the spool of the hydraulic switching valve 3 moves slowly, and the first port 9 and the third port of the hydraulic switching valve 3 move slowly. The port 21, the second port 22, and the fourth port 23 are slowly connected to each other, and the hydraulic sill 1 is connected through the fifth flow path 24.
Pressure liquid is sent little by little into the left ventricle 25 of o. At this time, the liquid in the right chamber 33 of the hydraulic cylinder 10 is returned to the liquid tank 4 through the sixth flow path 26, the hydraulic switching valve 3, and the seventh flow path 27.
液圧シリンダ10のロッド12を引き込む場合は、上述
の場合と逆に電磁式切換弁2の右側のソレノイド1bに
通電してこの切換弁2の流路を右端の状態に切換え、こ
れに伴って液圧式切換弁3の流路を右端の状態に切換え
る。When retracting the rod 12 of the hydraulic cylinder 10, contrary to the above case, the solenoid 1b on the right side of the electromagnetic switching valve 2 is energized to switch the flow path of this switching valve 2 to the right end state, and accordingly Switch the flow path of the hydraulic switching valve 3 to the right end state.
液圧式切換弁3は、第10図に示すように大径部29と
小径部30とを交互に連続させて成るスプール31をシ
リンダ筒の内側に液密かっ軸方向の摺動自在に嵌合させ
たもので、スプール31の位置を調節することによりシ
リンダ筒に開口させた第一〜第四のポート9.22.2
1.23の連通を制御するようにしている。大径部29
の各端縁部には、小径部30に向けて次第に断面積の広
くなるv字溝32を形成し、スプール31の移動時に各
ポートがまずこのV字溝32を介して連通し、ポート間
に最初から勢い良く圧液が流通しないようにしている。As shown in FIG. 10, the hydraulic switching valve 3 includes a spool 31, which is made up of alternating large-diameter portions 29 and small-diameter portions 30, and is fitted inside a cylinder cylinder in a liquid-tight manner so as to be slidable in the axial direction. The first to fourth ports 9.22.2 are opened in the cylinder by adjusting the position of the spool 31.
1.23 communication is controlled. Large diameter part 29
A V-shaped groove 32 whose cross-sectional area gradually increases toward the small diameter part 30 is formed in each end edge of the spool 31. When the spool 31 moves, each port first communicates through this V-shaped groove 32, and the ports are connected to each other through the V-shaped groove 32. This prevents pressure fluid from flowing vigorously from the beginning.
(発明が解決しようとする問題点)
ところが、上述のように構成され作用する従来の流路切
換弁に於いては、流路切換時に於ける衝撃防止作用が未
だ十分とは言えず、液圧式アクチュエータに若干の衝撃
が加わることが避けられなかった。(Problems to be Solved by the Invention) However, in the conventional flow path switching valve that is configured and operates as described above, the impact prevention effect when switching the flow path is still insufficient, and hydraulic type It was inevitable that some impact would be applied to the actuator.
本発明はこのような流路切換時に於ける衝撃の発生を極
めて小さくできる流路切換弁を提供することを目的とし
ている。It is an object of the present invention to provide a flow path switching valve that can minimize the occurrence of impact when switching the flow paths.
b1発明の構成
(問題を解決するための手段)
本発明の流路切換弁は、電磁切換弁から吐出された圧液
を液圧式切換弁のシリンダ部に送り込む流路の途中に一
端を接続した分岐流路の他端を液圧式切換弁を介さずに
液圧式アクチュエータに通じさせ、この分岐流路の途中
に圧液を液圧式アクチュエータに向けてのみ流す逆止弁
と、圧液の流通に対する抵抗となる制御部分とを互いに
直列に設け、必要に応じて上記シリンダ部への圧液送り
込み用の流路と分岐流路との一方に圧力補償型流!−−
制御弁を上記逆1ヒ弁と制御部分に対して直列に設けた
ことを特徴としている。b1 Configuration of the Invention (Means for Solving the Problem) The flow path switching valve of the present invention has one end connected in the middle of a flow path that sends the pressure fluid discharged from the electromagnetic switching valve to the cylinder portion of the hydraulic switching valve. The other end of the branch flow path is connected to the hydraulic actuator without going through the hydraulic switching valve, and there is a check valve in the middle of the branch flow path that allows the pressure fluid to flow only towards the hydraulic actuator, and a check valve for flowing the pressure fluid only. Control parts that act as resistance are installed in series with each other, and if necessary, a pressure compensation type flow is installed in one of the flow path for feeding pressure liquid to the cylinder part and the branch flow path! ---
The present invention is characterized in that a control valve is provided in series with the reverse 1-hi valve and the control section.
即ち第1図に示すように、電磁式切換弁2の圧液吐出側
の第三のポート14と液圧式切換弁3の一方のシリンダ
部18aとを連通させる第三の流路17の途中に一端を
接続した第一の分岐流路34の他端を、この液圧式切換
弁3の圧液吐出側の第三のポー)21と液圧シリンダ1
0等の液圧式アクチュエータの一方の給排口とを結ぶ第
五の流路24の途中に接続している。That is, as shown in FIG. 1, a third flow path 17 that communicates between the third port 14 on the pressure fluid discharge side of the electromagnetic switching valve 2 and one cylinder portion 18a of the hydraulic switching valve 3 is provided. The other end of the first branch flow path 34 connected with one end is connected to the third port 21 on the pressure fluid discharge side of the hydraulic switching valve 3 and the hydraulic cylinder 1.
It is connected in the middle of a fifth flow path 24 that connects one of the supply and discharge ports of a hydraulic actuator such as No. 0 or the like.
同様に、電磁切換弁3の圧液吐出側の第四のポート16
に一端を接続した第四の流路20の途中に一端を接続し
た第二の分岐流路35の他端を、液圧切換弁3の圧液吐
出側の第四のポートと液圧式アクチュエータの他方のポ
ートとを結ぶ第六の流路26の途中に接続している。第
三、第四の流路17.20の途中の絞り弁28a、28
bと並列に逆止弁61a、61bを設ける場合、各逆止
弁の方向は第9図に示した従来の場合と逆にするが、こ
の逆止弁は省略しても良い。Similarly, the fourth port 16 on the pressure fluid discharge side of the electromagnetic switching valve 3
The other end of the second branch channel 35, which has one end connected to the middle of the fourth channel 20, which has one end connected to the fourth channel 20, is connected to the fourth port on the pressure fluid discharge side of the hydraulic pressure switching valve 3 and the It is connected to the middle of the sixth flow path 26 that connects the other port. Throttle valves 28a, 28 in the middle of the third and fourth flow paths 17.20
When the check valves 61a and 61b are provided in parallel with the check valve 61b, the direction of each check valve is reversed from the conventional case shown in FIG. 9, but this check valve may be omitted.
第一、第二の各分岐流路34.35の途中には、圧液を
液圧式アクチュエータに向けてのみ流す逆止弁37a、
37b、各分岐管34.35を流通する圧液に対して抵
抗となる制御部分38a、38b、更に必要に応じて圧
力補償型流量制御弁36a、36bを互いに直列に設け
ている。各圧力補償型流量制御弁36a、36bは、一
定圧以下の圧液のみを後方に流すもので、各分岐流路3
4.35内に一定圧以上の圧液が送り込まれた場合には
流路を閉じ、圧液を液圧シリンダ等の液圧式アクチュエ
ータに送り込まないように作用する。但し、圧力補償型
流量制御弁36a、36bを設ける場合は、第2、第四
の流路の途中で液圧式切換弁3の第三、第四のポート2
1.23と分岐流路の分岐部分との間に設けても良く、
この場合絞り弁28a、28bを省略できる。In the middle of each of the first and second branch channels 34 and 35, there is a check valve 37a that allows the pressure liquid to flow only toward the hydraulic actuator.
37b, control portions 38a, 38b which serve as resistance to the pressure fluid flowing through each branch pipe 34, 35, and pressure-compensated flow control valves 36a, 36b, if necessary, are provided in series with each other. Each pressure compensation type flow control valve 36a, 36b allows only pressure liquid below a certain pressure to flow backward, and each branch flow path 3
4.35 When a pressure liquid of a certain pressure or higher is sent into the chamber, the flow path is closed and the pressure liquid is prevented from being sent to a hydraulic actuator such as a hydraulic cylinder. However, when the pressure compensation type flow control valves 36a and 36b are provided, the third and fourth ports 2 of the hydraulic switching valve 3 are connected in the middle of the second and fourth flow paths.
1.23 and the branch part of the branch flow path,
In this case, the throttle valves 28a and 28b can be omitted.
その他の構成部分については第9図に示した従来の流路
切換弁と同様であるが、次に従来と同等部分の説明を加
えつつ本発明の流路切換弁の作用について説明する。The other components are the same as the conventional flow path switching valve shown in FIG. 9. Next, the operation of the flow path switching valve of the present invention will be explained while adding a description of the parts that are equivalent to the conventional flow path switching valve.
(作 用)
液圧シリンダ10等の液圧式アクチュエータを停止させ
ておく場合には、電磁式切換弁2のいずれのソレノイド
1a、1bにも通電せず、この切換弁2を第1図に示し
た状態に保持する。このため、第一の流路6を介して電
磁式切換弁2の第一のポート7に送られた圧液は他のい
ずれのポート14.15.16にも送られず、その結果
液圧式切換弁3のいずれのシリンダ部18a、18bに
も圧液が送られることはなく、この液圧式切換弁3の第
一〜第四のポート9.21.22.24がいずれも第1
図に示した閉じられた状態となる。(Function) When a hydraulic actuator such as the hydraulic cylinder 10 is stopped, neither of the solenoids 1a and 1b of the electromagnetic switching valve 2 is energized, and the switching valve 2 is shown in FIG. hold it in the same condition. For this reason, the hydraulic fluid sent via the first flow path 6 to the first port 7 of the electromagnetic switching valve 2 is not sent to any other port 14.15.16, so that the hydraulic Pressure liquid is not sent to any of the cylinder parts 18a, 18b of the switching valve 3, and the first to fourth ports 9, 21, 22, 24 of this hydraulic switching valve 3 are all
It will be in the closed state shown in the figure.
このため、液圧シリンダ10の左右の室25.33内の
液が給排されることはなく、液圧シリンダ10のピスト
ン11が動くことはない。Therefore, the liquid in the left and right chambers 25, 33 of the hydraulic cylinder 10 is not supplied or discharged, and the piston 11 of the hydraulic cylinder 10 does not move.
次に、液圧シリンダ10のピストン11を右行させ、ロ
ッド12を突出させる場合は、電磁式切換弁2の左側の
ソレノイドlaに通電し、この切換弁2のスプールを右
側の圧縮ばね13bの弾力に抗して右行させる。このた
め、電磁式切換弁2の第一のポート7と第三のポート1
4と、第二のポート15と第四のポート16とがそれぞ
れ連通し、第一の流路を通じて上記第−のポート7に送
られた圧液が、第三のポート14から第三の流路17を
通して液圧式切換弁3の左側のシリンダ部18aに送り
込まれる。これによって、液圧式切換弁3のスプールが
右側の圧縮ばね19bに抗して右行し、第一のポート9
と第三のポート21と、第二のポート22と第四のポー
ト24とがそれぞれ連通ずる。但し、上記スプールの右
行は、このスプールの右行に伴って右側のシリンダ部l
Bb内の液を排出する第四の流路20の途中に設けた絞
り弁28b(絞り弁を省略した場合は圧力補償型流量制
御弁36b)の作用により、緩徐に行なわれるため、左
側のシリンダ部18aに、圧液を送り込まれてから上記
各ポートが連通ずるまでには若干の時間を要する。Next, when moving the piston 11 of the hydraulic cylinder 10 to the right and protruding the rod 12, the left solenoid la of the electromagnetic switching valve 2 is energized, and the spool of the switching valve 2 is moved to the right side of the compression spring 13b. Move it to the right against the elastic force. Therefore, the first port 7 and the third port 1 of the electromagnetic switching valve 2
4, a second port 15 and a fourth port 16 are in communication with each other, and the pressure liquid sent to the first port 7 through the first flow path is transferred from the third port 14 to the third flow path. It is fed into the left cylinder portion 18a of the hydraulic switching valve 3 through the passage 17. As a result, the spool of the hydraulic switching valve 3 moves to the right against the right compression spring 19b, and the first port 9
, the third port 21 , the second port 22 , and the fourth port 24 communicate with each other. However, as the spool goes to the right, the right cylinder part l
The liquid in Bb is discharged slowly due to the action of the throttle valve 28b (pressure compensation type flow control valve 36b if the throttle valve is omitted) provided in the middle of the fourth flow path 20, so that the left cylinder It takes some time after the pressurized liquid is sent into the section 18a until the ports communicate with each other.
一方、第三の流路17の途中から分岐した分岐流路34
を介して、圧液が液圧式切換弁3を介することなく直接
液圧シリンダ10の左室25内に送り込まれる。但し、
分岐流路34の途中には液の流通に対して抵抗となる制
御部分38aと場合により圧力補償型流量制御弁36a
とが設けられているため、この分岐流路34を通じて左
室25に送り込まれる圧液は流量が僅かすってしかも制
御弁36aを設けた場合は圧力も一定値以下となる。こ
のため、液圧シリンダ10のピストン11は液圧による
衝撃を受けることなる緩徐に右行を開始する。On the other hand, a branch flow path 34 branched from the middle of the third flow path 17
Pressure fluid is directly fed into the left chamber 25 of the hydraulic cylinder 10 without passing through the hydraulic switching valve 3. however,
In the middle of the branch flow path 34, there is a control portion 38a that acts as a resistance to the flow of liquid, and a pressure compensation type flow control valve 36a as the case may be.
Because of this, the flow rate of the pressurized liquid sent into the left ventricle 25 through this branch flow path 34 is small, and if the control valve 36a is provided, the pressure will also be below a certain value. Therefore, the piston 11 of the hydraulic cylinder 10 receives a shock from the hydraulic pressure and slowly starts moving to the right.
電磁式切換弁2の切換直後の僅かな時間が経過したなら
ば、液圧式切換弁3のスプールの右行が完了して、第二
の流路8からこの切換弁3の第一のポート9に送り込ま
れた圧液が、第三のポート21から第五の流路24を介
して上記左室25に送り込まれ、ピストン11を迅速に
右行させる。After a short period of time has passed immediately after the electromagnetic switching valve 2 is switched, the spool of the hydraulic switching valve 3 has completed its rightward movement, and the flow from the second flow path 8 to the first port 9 of the switching valve 3 has been completed. The pressurized liquid sent into the left chamber 25 is sent from the third port 21 through the fifth flow path 24, causing the piston 11 to quickly move to the right.
ピストン11の右行に伴って液圧シリンダ10の右室3
3から押し出された液は、第六の流路26、液圧式切換
弁3、第七の流路27を介して液タンク4に戻される。As the piston 11 moves to the right, the right chamber 3 of the hydraulic cylinder 10
The liquid pushed out from the liquid tank 3 is returned to the liquid tank 4 via the sixth flow path 26, the hydraulic switching valve 3, and the seventh flow path 27.
又、液圧式切換弁3のスプールの右行に伴って右側のシ
リンダ部18bから押し出された液は、第四の流路20
.電磁式切換弁2を介して液タンク4に戻される。Further, the liquid pushed out from the right cylinder portion 18b as the spool of the hydraulic switching valve 3 moves to the right flows through the fourth flow path 20.
.. The liquid is returned to the liquid tank 4 via the electromagnetic switching valve 2.
液圧シリング10のピストン11を左行させ、ロッド1
2を引込ませるためには、と述の場合と逆に電磁式切換
弁2の右側のソレノイドlbに通電し、この切換弁2の
スプールを左行させ、これに伴って液圧式切換弁3のス
プールを左行させれば、第二の流路8を通じて送られる
圧液が液圧式切換弁3、第六の流路26を介して液圧シ
リンダ10の右室33内に送り込まれ、ピストンllを
左行させる。この際にも、電磁式切換弁2の切換直後に
は第二の分岐流路35を通じて右室33内に一定圧以下
の圧液が少量ずつ送り込まれ、ピストン11の左行を緩
徐に開始する。Move the piston 11 of the hydraulic cylinder 10 to the left, and move the rod 1
2, in order to retract the hydraulic switching valve 3, the right solenoid lb of the electromagnetic switching valve 2 is energized, the spool of the switching valve 2 moves to the left, and the hydraulic switching valve 3 moves to the left. When the spool is moved to the left, the pressure fluid sent through the second flow path 8 is sent into the right chamber 33 of the hydraulic cylinder 10 via the hydraulic switching valve 3 and the sixth flow path 26, and the piston ll. move to the left. At this time, immediately after the electromagnetic switching valve 2 is switched, pressure liquid below a certain pressure is fed little by little into the right chamber 33 through the second branch flow path 35, and the piston 11 slowly starts moving to the left. .
(実 施 例) 次に、図示の実施例について説明する。(Example) Next, the illustrated embodiment will be described.
第2〜8図は本発明の流路切換弁の実施例を示している
。2 to 8 show embodiments of the flow path switching valve of the present invention.
左右両端にソレノイドta、tbを設けた電磁式切換弁
2の中央には、内側に5個所の大径部と4個所の小径部
とを交互に連続させて成るシリンダ部39を設け、この
シリンダ部39の内側にスプール40を左右方向の摺動
自在に嵌合している。このスプール40には、上記シリ
ンダ部39の小径部の内径とほぼ等しい外径を有する大
径部を2個所に互いに間隙をあけて設けており、両端面
を圧縮ばね13a、13bにより中央に向けて弾圧して
いる。このため、いずれのソレノイド1a、1bにも通
電されない場合、スプール40は第2図に示した中央位
置で停止している。At the center of the electromagnetic switching valve 2, which is provided with solenoids ta and tb at both left and right ends, there is provided a cylinder part 39, which is made up of five large diameter parts and four small diameter parts that are arranged in series alternately on the inside. A spool 40 is fitted inside the portion 39 so as to be slidable in the left and right direction. This spool 40 has two large diameter parts with an outer diameter approximately equal to the inner diameter of the small diameter part of the cylinder part 39, spaced apart from each other, and both end surfaces are directed toward the center by compression springs 13a and 13b. They are suppressing it. Therefore, when neither of the solenoids 1a and 1b is energized, the spool 40 is stopped at the central position shown in FIG.
シリンダ部39の5個所の大径部には、左側の大径部か
ら順に、排出流路60、第三の流路17、第一の流路6
、第四の流路20、排出流路60の一端がそれぞれ開口
しており、これら各流路60,17.6.20.60の
うち、排出、第一の各流路60.6.60の他端は、液
圧式切換弁3のシリンダ部41に開口し、第三、第四の
各流路17.20の他端は圧力補償型流量制御弁36a
、36bにそれぞれ通じている。The five large-diameter portions of the cylinder portion 39 include, in order from the large-diameter portion on the left side, a discharge passage 60, a third passage 17, and a first passage 6.
, the fourth passage 20, and the discharge passage 60 are open at one end, and among these passages 60, 17.6.20.60, the discharge passage and the first passage 60.6.60 are respectively open. The other end opens to the cylinder portion 41 of the hydraulic switching valve 3, and the other end of each of the third and fourth flow paths 17.20 opens to the pressure compensation type flow control valve 36a.
, 36b, respectively.
上記液圧式切換弁3のシリンダ部41は、6個所の小径
部と5個所の大径部とを交互に連続させたもので、上記
排出流路60.60は左右両端の大径部に、第一の流路
は中央の大径部にそれぞれ開口している。又、左から2
番目の大径部には液圧式アクチュエータの一方の圧液給
排口に通じる第五の流路24が、右から2番目の大径部
には液圧式アクチュエータの他方の圧液給排口に通じる
第六の流路26が、中央の大径部には第一の流路6とと
もに第二の流路8がそれぞれ開口している。更に、この
シリンダ部41には、上記6個所の小径部の内径と一致
する外径を有する円管状のスリーブ42を内嵌して、こ
のスリーブ42の外周面と前記5個所の大径部の内周面
との間に短円筒状の間隙43a〜43eを形成している
。スリーブ42には、第7図に示すように大小多数の通
孔44.44が穿設されており、この通孔44.44に
よって上記間隙43a〜43eとスリーブ42の内側と
を連通させている。このスリーブ42の内側には、通腋
路切換用のスプール45が左右方向の摺動自在に嵌合さ
れている。このスプール45の外周面の2個所には小径
部46a、46bが互いに間隔をあけて形成されており
、各小径部46a、46bに一端を開口した細通路47
a、47b(第1図に於ける分岐流路36a、36bに
相当する。)の他端がそれぞれスプール45の両端面に
開口している。両線通路47a、47bの断面積は他の
流路の断面積よりも小さく、液が通過する際の抵抗とな
るもので、第1図に於ける制御部分38a、38bに相
当する。両線通路47a、47bの両端開口部近くは内
径を少し大きく形成し、この大径部分に奥から順に圧縮
ばね48、鋼球49を挿入し、最後に円管状のスリーブ
50を圧入し固定して逆止弁37a、37bをそれぞれ
構成している。The cylinder portion 41 of the hydraulic switching valve 3 is made up of six small diameter portions and five large diameter portions that are alternately continuous, and the discharge passages 60 and 60 are provided in the large diameter portions at both left and right ends. The first flow passages each open at the central large-diameter portion. Also, 2 from the left
The fifth large diameter section has a fifth flow path 24 leading to one pressure fluid supply/discharge port of the hydraulic actuator, and the second large diameter section from the right has a fifth flow path 24 leading to the other pressure fluid supply/discharge port of the hydraulic actuator. A sixth flow path 26 communicates with the first flow path 6 and a second flow path 8 opening in the large diameter portion at the center. Furthermore, a cylindrical sleeve 42 having an outer diameter matching the inner diameter of the six small diameter portions is fitted into the cylinder portion 41, so that the outer peripheral surface of the sleeve 42 and the five large diameter portions are connected to each other. Short cylindrical gaps 43a to 43e are formed with the inner peripheral surface. As shown in FIG. 7, the sleeve 42 is provided with a large number of through holes 44.44, which are large and small, and these through holes 44.44 allow the gaps 43a to 43e to communicate with the inside of the sleeve 42. . A spool 45 for switching the axillary passage is fitted inside the sleeve 42 so as to be slidable in the left-right direction. Small diameter portions 46a and 46b are formed at two locations on the outer circumferential surface of the spool 45 with an interval between them, and a narrow passage 47 is formed with one end opened in each of the small diameter portions 46a and 46b.
The other ends of a and 47b (corresponding to the branch channels 36a and 36b in FIG. 1) are open to both end surfaces of the spool 45, respectively. The cross-sectional areas of the two-line passages 47a and 47b are smaller than the cross-sectional areas of the other channels, and serve as resistance when liquid passes through, and correspond to the control portions 38a and 38b in FIG. 1. The inner diameters of both wire passages 47a and 47b are made slightly larger near the openings at both ends, and the compression springs 48 and steel balls 49 are inserted into these larger diameter portions in order from the back, and finally a circular tubular sleeve 50 is press-fitted and fixed. These constitute check valves 37a and 37b, respectively.
このような逆止弁37a、37bを内蔵したスプール4
5の左右両端部分を囲むようにして設けたシリンダ部1
8a、18bの端面と、スプール45の両端部分に遊嵌
した環体51との間には圧縮ばね19a、19bを設け
、いずれのシリンダ部18a、18bにも圧液が送り込
まれない場合、スプール45が第2図に示した中立位置
に保持されるようにしている。A spool 4 incorporating such check valves 37a and 37b
Cylinder part 1 provided so as to surround both left and right end portions of 5.
Compression springs 19a, 19b are provided between the end faces of 8a, 18b and the ring body 51 loosely fitted to both end portions of the spool 45, and when no pressure liquid is sent to any of the cylinder parts 18a, 18b, the spool 45 is maintained in the neutral position shown in FIG.
このような両シリンダ部18a、18bと隣接して、第
8図に詳示するような圧力補償型流量制御弁36a、3
6bが設けられている。この流量制御弁36a(36b
も同構成)は、第三(又は第四)の流路17の端部が開
口したシリンダ部52に左右方向の摺動自在に嵌合させ
たピストン53により、液圧式切換弁3のシリンダ部1
8a(又は18b)に通じる通孔54の開閉を制御する
ものである。全体を円筒状に形成され、一端開口部にオ
リフィス状部55を設けたピストン53と、上記シリン
ダ部52の端部開口に螺着した中空のブラケット56の
端面との間に圧縮ばね57を設け、ピストン53に流路
17に向けて通孔54を開く方向の弾力を付与している
。ブラケット56の中心孔58には、先端を先細にテー
パさせたニードル59が螺入されている。このニードル
59の先端の先細テーパ部分は、上記ピストン53のオ
リフィス状部55の内側に挿入されている。このように
構成される圧力補償型流量制御弁36aに第一分岐流路
34の側から圧液が送り込まれると、ニードル59の先
端部外周面とオリフィス状部55の内周縁との間の隙間
が狭いため、ピストン53の左側の圧力が上昇するのに
少し時間を要し、圧液に押されてピストン53が左行し
て通孔54が閉じられる。少し時間が経過するとピスト
ン53の左側の圧力が上昇しこのピストン53は圧縮ば
ね57の弾力により右行して通孔54が開かれる。この
ため、ピストン53の左側の圧液が通孔54を通ってシ
リンダ部18aに送られるが、この通孔54の断面積は
上記したニードルの先端部外周面とオリフィン状部55
の内周縁との間の隙間の断面積よりも大きいため、通孔
54が全開するとピストン53の左側からの圧液の排出
に流路17側からの圧液の供給が追いつかず、ピストン
53の左側の圧力が降下して再びピストン53が左行し
ようとする。このような−動作を行なった後、ピストン
53は、ニードルとオリフィス状部との間の隙間の断面
積と通孔54の開口面積と圧縮ばね57の弾力とを吊り
合わせた状態でほぼ停止し、通孔54からは一定圧の圧
液が少量ずつシリンダ部18aに向けて送られる。シリ
ンダ部54に向けて送られる圧液の量の調節はニードル
59を回転させ図面左右方向に移動させることで古島に
行なえる。Adjacent to these two cylinder parts 18a, 18b, pressure compensation type flow control valves 36a, 3 as shown in detail in FIG.
6b is provided. This flow control valve 36a (36b
The cylinder section of the hydraulic switching valve 3 is operated by a piston 53 that is slidably fitted in the left-right direction into a cylinder section 52 in which the end of the third (or fourth) flow path 17 is open. 1
It controls the opening and closing of the through hole 54 communicating with 8a (or 18b). A compression spring 57 is provided between the piston 53, which is formed entirely in a cylindrical shape and has an orifice-shaped portion 55 at one end opening, and the end surface of a hollow bracket 56 screwed onto the end opening of the cylinder portion 52. , elasticity is imparted to the piston 53 in the direction of opening the through hole 54 toward the flow path 17. A needle 59 having a tapered tip is screwed into the center hole 58 of the bracket 56 . A tapered end portion of the needle 59 is inserted into the orifice-shaped portion 55 of the piston 53. When pressure liquid is sent from the first branch flow path 34 side to the pressure compensation type flow control valve 36a configured as described above, a gap between the outer circumferential surface of the tip of the needle 59 and the inner circumferential edge of the orifice-shaped portion 55 increases. Since it is narrow, it takes some time for the pressure on the left side of the piston 53 to rise, and the piston 53 is pushed by the pressure fluid to move to the left and the through hole 54 is closed. After a short period of time, the pressure on the left side of the piston 53 increases, and the piston 53 moves to the right due to the elasticity of the compression spring 57, opening the through hole 54. Therefore, the pressure liquid on the left side of the piston 53 is sent to the cylinder portion 18a through the through hole 54, but the cross-sectional area of the through hole 54 is equal to the outer peripheral surface of the tip of the needle described above and the orifice-shaped portion 55.
When the through hole 54 is fully opened, the supply of pressure fluid from the flow path 17 side cannot keep up with the discharge of pressure fluid from the left side of the piston 53. The pressure on the left side decreases and the piston 53 tries to move to the left again. After performing such an operation, the piston 53 almost stops in a state where the cross-sectional area of the gap between the needle and the orifice, the opening area of the through hole 54, and the elasticity of the compression spring 57 are balanced. From the through hole 54, a constant pressure liquid is sent little by little toward the cylinder portion 18a. The amount of pressurized liquid sent toward the cylinder portion 54 can be adjusted by rotating the needle 59 and moving it in the left-right direction in the drawing.
このように構成され作用する圧力補償型流量制御弁36
a、36bを組込んだ流路切換弁の作用は次の通りであ
る。Pressure compensated flow control valve 36 configured and operated in this manner
The operation of the flow path switching valve incorporating elements a and 36b is as follows.
ます液圧式アクチュエータを停止状態に保持する場合、
いずれのソレノイド1a、■bにも通電せず、電磁式切
換弁2のスプール40を第2図の状態に保持する。これ
により、圧液は第一、第二の流路6.8の先のいずれの
流路にも送られず、液圧式アクチュータは停止状態に保
持される。When holding a hydraulic actuator in a stopped state,
Neither of the solenoids 1a and 1b is energized, and the spool 40 of the electromagnetic switching valve 2 is maintained in the state shown in FIG. As a result, the pressure liquid is not sent to any of the flow paths beyond the first and second flow paths 6.8, and the hydraulic actuator is held in a stopped state.
次に、液圧式アクチュエータを動かす場合(第1図に於
ける液圧シリンダ10のロッド12を引込める場合)、
いずれかのソレノイドlbに通電し、?f、磁式切換弁
2のスプール40を第3閲に示すように右行させる。こ
れにより、第一の#路6と第四の流路20とが連通し、
圧液が第一の流路6から第四の流路20、圧力補償型流
量制御弁36b、シリンダ部18b、逆止弁37、細通
路47b、スリーブ42の通孔44、第六の流路26を
通って液圧式アクチュエータに送られ、このアクチュエ
ータを緩徐に起動させる。Next, when moving the hydraulic actuator (when retracting the rod 12 of the hydraulic cylinder 10 in FIG. 1),
Energize either solenoid lb? f. Move the spool 40 of the magnetic switching valve 2 to the right as shown in the third view. As a result, the first #path 6 and the fourth flow path 20 communicate with each other,
The pressure liquid flows from the first flow path 6 to the fourth flow path 20, the pressure compensated flow control valve 36b, the cylinder portion 18b, the check valve 37, the narrow passage 47b, the through hole 44 of the sleeve 42, and the sixth flow path. 26 to a hydraulic actuator, which slowly activates the actuator.
シリンダ部18bに圧液が送り込まれることにより、液
圧式切換弁3のスプール45が左側の圧縮ばね19aの
弾力に抗して左行し、それに伴ってこの切換弁3の左側
のシリンダ部りga内の液が、第4図に矢印で示すよう
に、一部は圧力補償型流量制御弁36a、第三の流路1
7、排出流路60を介して液タンクに戻され、残部が逆
止弁37a、第五の流路24を介して液圧式アクチュエ
ータに送られる。但し、第五の流路24内の圧力は直ち
にシリンダ部り8a内の圧力よりも高くなるため、逆止
弁37aは早期に閉じられる。By feeding pressure fluid into the cylinder portion 18b, the spool 45 of the hydraulic switching valve 3 moves to the left against the elasticity of the left compression spring 19a, and accordingly, the left cylinder portion of the switching valve 3 moves to the left. As shown by the arrow in FIG.
7. The liquid is returned to the liquid tank via the discharge channel 60, and the remainder is sent to the hydraulic actuator via the check valve 37a and the fifth channel 24. However, since the pressure in the fifth flow path 24 immediately becomes higher than the pressure in the cylinder portion 8a, the check valve 37a is closed early.
液圧式切換弁3のスプール45が第5図に示すように更
に左行すると、このスプール45の小径部外周面とスリ
ーブ42の内周面との間の隙間、及びスリーブに穿設し
た通孔44.44を介して第二の流路8と液圧式アクチ
ュエータの一方の給排口に通じる第六の流路26とが連
通ずると同時に、液圧式アクチュエータの他方の給排口
に通じる第五の流路24と液タンクに通じる第七の流路
27とが連通ずる。これにより、液圧式アクチュエータ
の一方の給排口から圧液が送り込まれ、他方の給排口か
ら液が排出されて上記アクチュエータが迅速に駆動され
る。When the spool 45 of the hydraulic switching valve 3 moves further to the left as shown in FIG. 44. At the same time, the second flow path 8 and the sixth flow path 26 communicating with one of the supply and discharge ports of the hydraulic actuator are communicated via The flow path 24 communicates with a seventh flow path 27 leading to the liquid tank. As a result, pressurized liquid is sent from one supply/discharge port of the hydraulic actuator, and liquid is discharged from the other supply/discharge port, thereby rapidly driving the actuator.
液圧式アクチュエータを移動させた後の状態で停止させ
る場合、それまで継続していた電磁式切換弁2のソレノ
イド1bへの通電を停止し、この切換弁2のスプール4
0を第6図に示すように中立位置に復帰させる。これに
より、それまで液圧式切換弁3の右側のシリンダ部18
b内に送り込まれていた圧液が圧力補償型流量調整弁3
6b、第四の流路20、電磁式切換弁2、排出流路60
を介して液タンクに戻される。又、左側のシリンダ室1
8a内には、排出流路60.第三の流路17、圧力補償
型流量制御弁36aを介して液が送り込まれる。このた
め、液圧式流路切換弁3のスプール45が直ちに第2図
に示した状態に複位し、液圧式アクチュエータの給排口
に通じる第五、第六の流路24.26と他の流路との連
通を断つ。When stopping the hydraulic actuator after it has been moved, the energization to the solenoid 1b of the electromagnetic switching valve 2 that had been continued until then is stopped, and the spool 4 of this switching valve 2 is stopped.
0 is returned to the neutral position as shown in FIG. As a result, the right cylinder section 18 of the hydraulic switching valve 3
The pressure fluid sent into the pressure compensation type flow regulating valve 3
6b, fourth flow path 20, electromagnetic switching valve 2, discharge flow path 60
is returned to the liquid tank via the Also, the left cylinder chamber 1
8a includes a discharge channel 60. Liquid is sent through the third flow path 17 and the pressure-compensated flow control valve 36a. For this reason, the spool 45 of the hydraulic flow path switching valve 3 immediately doubles into the state shown in FIG. Cut off communication with the flow path.
液圧式アクチュエータを他の方向に移動させる場合、電
磁式切換弁2の他のソレノイドlaに通電すれば良い。When moving the hydraulic actuator in another direction, the other solenoid la of the electromagnetic switching valve 2 may be energized.
C1発明の効果
本発明の流路切換弁は以上に述べた通り構成され作用す
るので、液圧式アクチュエータの起動時に流路の切換え
に伴って発生する衝撃を僅少に抑えることができ、各種
液圧作動機械の動きを円滑にして耐久性を向上させるこ
とができる。C1 Effects of the Invention Since the flow path switching valve of the present invention is configured and operates as described above, it is possible to minimize the impact generated by switching the flow path when starting the hydraulic actuator, and to control various hydraulic pressures. It is possible to improve the durability of working machines by smoothing their movement.
第1図は本発明の流路切換弁の回路図、第2〜6図は本
発明の流路切換弁の実施例を、作勤行程別に示す断面図
、第7図は円管状のスリーブを展開して示す図、第8図
は圧力補償型流量制御弁を拡大して示す図、第9図は従
来の流路切換弁の回路面、第1O図は従来のスプールの
部分斜視図である。
la、1b:ソレノイド、2:電磁式切換弁、3:液圧
式切換弁、4:液タンク、5:ポンプ、6:第一の流路
、7:第一のポート、8:第二の流路、9:第一のポー
ト、10:液圧シリンダ、11:ピストン、12:ロッ
ド、13a、13b:圧縮ばね、14:@三のポート、
15:第二のポート、16:第四のポート、17:第三
の流路、18a、18bニジリンダ部、19a、19b
:圧縮ばね、20:第四の流路、21:第三のポート、
22:第二のポート、23:第四のポート、24:第五
の流路、25:左室、26:第六の流路、27:第七の
流路、28a、28b:絞り弁、29:大径部、30:
小径部、31ニスプール、32:7字溝、33:右室、
34:第一の分岐流路、35:第二の分岐流路、36a
、36b:圧力補償型流量制御弁、37a、37b:逆
止弁、38a、38b=制御部分、39ニジリンダ部、
40ニスプール、41ニジリンダ部、42ニスリーブ、
43a〜43e:間隙、44:通孔、45ニスプール、
46a、46b:小径部、47a、47b:細通路、4
8:圧縮ばね、49:鋼球、50ニスリーブ、51:環
体、52ニジリンダ部、53:ピストン、54:通孔、
55ニオリフイス状部、56:ブラケット、57:圧縮
ばね、58:中心孔、59:ニードル、60:排出流路
、61a、61b:逆止弁。
特許出願人 コーシン・ラシン株式会社代 理 人 小
山 欽造(ほか1名)第5図
第6図
λ1244aB26
第7図
第8図Fig. 1 is a circuit diagram of the flow path switching valve of the present invention, Figs. 2 to 6 are cross-sectional views showing embodiments of the flow path switching valve of the present invention according to the operation stroke, and Fig. 7 is a circuit diagram of the flow path switching valve of the present invention. FIG. 8 is an enlarged view of a pressure compensation type flow control valve, FIG. 9 is a circuit diagram of a conventional flow path switching valve, and FIG. 1O is a partial perspective view of a conventional spool. . la, 1b: solenoid, 2: electromagnetic switching valve, 3: hydraulic switching valve, 4: liquid tank, 5: pump, 6: first flow path, 7: first port, 8: second flow path, 9: first port, 10: hydraulic cylinder, 11: piston, 12: rod, 13a, 13b: compression spring, 14: @ third port,
15: second port, 16: fourth port, 17: third flow path, 18a, 18b cylinder part, 19a, 19b
: compression spring, 20: fourth flow path, 21: third port,
22: second port, 23: fourth port, 24: fifth flow path, 25: left ventricle, 26: sixth flow path, 27: seventh flow path, 28a, 28b: throttle valve, 29: Large diameter part, 30:
Small diameter part, 31 varnish spool, 32: 7-shaped groove, 33: right ventricle,
34: First branch flow path, 35: Second branch flow path, 36a
, 36b: pressure compensation type flow control valve, 37a, 37b: check valve, 38a, 38b = control part, 39 cylinder part,
40 nis spool, 41 niji cylinder part, 42 nis sleeve,
43a to 43e: gap, 44: through hole, 45 varnish spool,
46a, 46b: Small diameter part, 47a, 47b: Narrow passage, 4
8: compression spring, 49: steel ball, 50 sleeve, 51: ring body, 52 cylinder part, 53: piston, 54: through hole,
55 Niorifice-shaped part, 56: Bracket, 57: Compression spring, 58: Center hole, 59: Needle, 60: Discharge channel, 61a, 61b: Check valve. Patent applicant: Koshin Rashin Co., Ltd. Agent: Kinzo Koyama (and one other person) Figure 5 Figure 6 λ1244aB26 Figure 7 Figure 8
Claims (1)
第三、第四のポートとの連通をソレノイドにより制御し
、第一のポートに送られた圧液を第三、第四のポートの
いずれかに送るか、或はいずれのポートにも送らない状
態に切換える電磁式切換弁の第三、第四のポートにそれ
ぞれ一端を接続した流路の他端を、液圧によりスプール
を移動させて液圧式アクチュエータの給排口と圧液供給
装置との連通状態を切換える液圧式切換弁のスプール両
端に対向させて設けたシリンダ部に接続して成る流路切
換弁に於いて、両シリンダ部と上記電磁式切換弁の第三
、第四のポートとを結ぶ流路の途中に一端を接続した分
岐流路の他端を液圧式切換弁を介さずに上記液圧式アク
チュエータの給排口に連通させ、この分岐流路の途中に
、圧液をアクチュエータの給排口に向けてのみ流す逆止
弁と、分岐流路を流通ずる圧液に対する抵抗となる制御
部分とを互いに直列に設けたことを特徴とする流路切換
弁。 2)l側に設けた第一、第二のポートと他側に設けた第
三、第四のポートとの連通をソレノイドにより制御し、
第一のポートに送られた圧液を第三、第四のポートのい
ずれかに送るか、或はいずれのポートにも送らない状態
に切換える電磁式切換弁の第三、第四のポートにそれぞ
れ一端を接続した流路の他端を、液圧によりスプールを
移動させて液圧式アクチュエータの給排口と圧液供給装
置との連通状態を切換える液圧式切換弁のスプール両端
に対向させて設けたシリンダ部に接続して成る流路切換
弁に於いて、両シリンダ部と上記電磁式切換弁の第三、
第四のポートとを結ぶ流路の途中に一端を接続した分岐
流路の他端を液圧式切換弁を介さずに上記液圧式アクチ
ュエータの給排口に連通させ、この分岐流路の途中に、
圧液をアクチュエータの給排口に向けてのみ流す逆止弁
と、分岐流路を流通ずる圧液に対する抵抗となる制御部
分とを互いに直列に設は分岐流路と上記第三、第四のポ
ートに通じる流路との一方に圧力補償型流量制御弁を上
記逆止弁と制御部分とに対して直列に設けたことを特徴
とする流路切換弁。[Claims] 1) Communication between the first and second ports provided on the l side and the third and fourth ports provided on the other side is controlled by a solenoid, and the A flow path whose one end is connected to the third and fourth ports of an electromagnetic switching valve that switches the state of sending pressure liquid to either the third or fourth port or not sending it to either port. The other end is connected to a cylinder section provided opposite to both ends of the spool of a hydraulic switching valve that moves the spool using hydraulic pressure to switch the communication state between the supply/discharge port of the hydraulic actuator and the pressure fluid supply device. In the flow path switching valve, one end of the branch flow path is connected in the middle of the flow path connecting both cylinders and the third and fourth ports of the electromagnetic type switching valve, and the other end is connected via a hydraulic type switching valve. A check valve is provided in the middle of this branch flow path to allow pressure fluid to flow only towards the supply and discharge port of the actuator, and a resistance against the pressure fluid flowing through the branch flow path is provided. A flow path switching valve characterized in that a control part and a control part are provided in series with each other. 2) Using a solenoid to control communication between the first and second ports provided on the l side and the third and fourth ports provided on the other side,
To the third and fourth ports of the electromagnetic switching valve that switches the pressure liquid sent to the first port to either the third or fourth port or not to send it to either port. The other ends of the channels, each connected at one end, are provided opposite to both ends of the spool of a hydraulic switching valve that moves the spool using hydraulic pressure to switch the communication state between the supply/discharge port of the hydraulic actuator and the pressure fluid supply device. In a flow path switching valve connected to a cylinder section, both cylinder sections and the third solenoid switching valve,
The other end of the branch flow path, one end of which is connected to the middle of the flow path connecting the fourth port, is connected to the supply/discharge port of the hydraulic actuator without going through the hydraulic switching valve. ,
A check valve that allows pressure fluid to flow only toward the supply/discharge port of the actuator, and a control portion that provides resistance to the pressure fluid flowing through the branch flow path are installed in series with each other. A flow path switching valve characterized in that a pressure compensation type flow control valve is provided on one side of the flow path leading to the port in series with the check valve and the control section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10567884A JPS60249708A (en) | 1984-05-26 | 1984-05-26 | Flow line selector valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10567884A JPS60249708A (en) | 1984-05-26 | 1984-05-26 | Flow line selector valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60249708A true JPS60249708A (en) | 1985-12-10 |
JPH0456882B2 JPH0456882B2 (en) | 1992-09-09 |
Family
ID=14414086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10567884A Granted JPS60249708A (en) | 1984-05-26 | 1984-05-26 | Flow line selector valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60249708A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04106505U (en) * | 1991-02-27 | 1992-09-14 | 甲南電機株式会社 | solenoid valve monitor |
US7243591B2 (en) | 2004-10-15 | 2007-07-17 | Sauer-Danfoss Aps | Hydraulic valve arrangement |
KR100837956B1 (en) * | 2001-12-31 | 2008-06-13 | 두산인프라코어 주식회사 | cylinder impact absorbing device |
-
1984
- 1984-05-26 JP JP10567884A patent/JPS60249708A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04106505U (en) * | 1991-02-27 | 1992-09-14 | 甲南電機株式会社 | solenoid valve monitor |
KR100837956B1 (en) * | 2001-12-31 | 2008-06-13 | 두산인프라코어 주식회사 | cylinder impact absorbing device |
US7243591B2 (en) | 2004-10-15 | 2007-07-17 | Sauer-Danfoss Aps | Hydraulic valve arrangement |
Also Published As
Publication number | Publication date |
---|---|
JPH0456882B2 (en) | 1992-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8678033B2 (en) | Proportional valve employing simultaneous and hybrid actuation | |
JP3220682B2 (en) | Solenoid operated double spool control valve | |
USRE38355E1 (en) | Electrohydraulic control device for double-acting consumer | |
EP0753669A3 (en) | Hydraulic servovalve | |
JP2551538Y2 (en) | Pilot valve | |
KR920702470A (en) | Hydraulic Drive and Valve Unit | |
JPS60249708A (en) | Flow line selector valve | |
JP2784836B2 (en) | Solenoid switching valve | |
JP2001504198A (en) | Valve assembly | |
US6802330B2 (en) | Auto-relieving pressure modulating valve | |
CA2224214A1 (en) | Hydraulic valve to maintain control in fluid-loss condition | |
US4570672A (en) | Hydraulic control valve with independently operable bypass valve | |
JPH0242290A (en) | Safety valve | |
JPH0432538Y2 (en) | ||
JPH07198054A (en) | Solenoid valve | |
JP3634412B2 (en) | Fluid control device | |
JPS5921337Y2 (en) | electro pneumatic proportional valve | |
JP3764583B2 (en) | Automatic reciprocating mechanism | |
JP3764819B2 (en) | Automatic reciprocating mechanism | |
JPS6338703A (en) | Electropneumatic ratio valve | |
JP4610116B2 (en) | Valve device | |
JP4087928B2 (en) | Switching valve | |
JP2586869Y2 (en) | Stacked throttle check valve | |
JPH0542293Y2 (en) | ||
KR20210028096A (en) | Control valve, hydraulic circuit, hydraulic equipment and construction machine |