JPS6023557A - Kneading and forcibly sending method of ultra-light weight heat insulating concrete - Google Patents
Kneading and forcibly sending method of ultra-light weight heat insulating concreteInfo
- Publication number
- JPS6023557A JPS6023557A JP12985383A JP12985383A JPS6023557A JP S6023557 A JPS6023557 A JP S6023557A JP 12985383 A JP12985383 A JP 12985383A JP 12985383 A JP12985383 A JP 12985383A JP S6023557 A JPS6023557 A JP S6023557A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- ultra
- aggregate
- pumping
- kneading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(a)0発明の技術分野
本発明は、LPGやLNGタンクの断熱用等に用いられ
る超軽量断熱コンクリートの、混練方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) 0 Technical Field of the Invention The present invention relates to a method for kneading ultra-light insulating concrete used for insulating LPG or LNG tanks.
(b)、技術の背策
LPGやL N Qタンクの断熱用等に用いらiする超
軽量断熱コンクリートCよ、骨材として発泡ス東
チロール、発泡スチレン、ガラス発泡材、発i1!i作
岩等の断熱性を有する1i1it多孔性材料を用いてい
る。(b), Technological backstory Ultra-light insulating concrete C used for insulation of LPG and LNQ tanks, etc. As aggregate, East Tyrol foam, styrene foam, glass foam material, foam i1! A porous material with heat insulating properties, such as i-sakugan, is used.
貝
しかし、骨材として、ガラス発泡材、発泡ム岩等の吸水
性を有する骨材を用いると、フレツシユコンクリートを
ポンプ圧送する際に、圧送ポンプの圧力でコンクリート
中の水分が軽量多孔性材料に吸収されてしまい、コンク
リートの粘性がD(下し圧送ポンプからコンクリ−1・
を搬送する圧送管内で管内閉塞現象を起こしてしまう欠
点があった。However, if water-absorbing aggregates such as glass foam or foamed rock are used as aggregates, when pumping fresh concrete, the water in the concrete will be absorbed by the pressure of the pump into lightweight porous materials. The viscosity of the concrete is D (concrete 1.
This method has the drawback of causing a blockage phenomenon in the pressure-feeding pipe that transports the material.
しかも、圧送ポンプとして従来多用されていたスクイズ
式、ピストン式等のポンプは、圧送時の圧力変動および
最高圧力かが極めて大きいことからフレッシュコンクリ
ート中の水分の軽量多孔性材料への吸収現象を促進して
しまう不都合があった。Moreover, the squeeze-type, piston-type, and other pumps that have traditionally been widely used as pressure pumps have extremely large pressure fluctuations and maximum pressures during pumping, which promotes the absorption of water in fresh concrete into lightweight porous materials. There was an inconvenience.
また、軽量多孔性材料による骨材は軽量であるために、
圧送管内で骨材とセメントが分離してしまい、圧送打設
されたコンクリートの物性が均一でなくなる不都合もあ
った。In addition, since aggregate made from lightweight porous materials is lightweight,
There was also the problem that the aggregate and cement separated in the pressure pipe, resulting in uneven physical properties of the concrete that was placed under pressure.
従って、LPGやLNGタンクの断熱材として超軽量断
熱コンクリートを用いる場合には、管内閉塞現象及びコ
ンクリート物性の変化を避けるために、圧送ポンプを用
いることなくクレーンのパケット等により一定量ずつ間
歇的に運搬しており、極めて非能率的な作業を強いられ
ていた。Therefore, when using ultra-light insulating concrete as insulation material for LPG or LNG tanks, in order to avoid clogging phenomena in the pipes and changes in the physical properties of the concrete, it is necessary to use ultra-light insulating concrete intermittently in fixed amounts using crane packets, etc., without using a pressure pump. They were forced to carry out extremely inefficient work.
(d)0発明の目的
本発明は、前述の欠点を解消すべ(、吸水性骨材を用い
てもコンクリート中の水分が骨材に吸収されることが少
なく、シかも、圧送ポンプによるコンクリートの圧送が
コンクリ−1・の物性を均一に保持しl二形で可能な、
超軽量断熱コンクリートの混練圧送方法を提供すること
を目的とするものである。(d) 0 Purpose of the Invention The present invention is intended to solve the above-mentioned drawbacks (even if water-absorbing aggregate is used, water in concrete is rarely absorbed by the aggregate; Pressure feeding is possible with the physical properties of concrete 1 and 2 being kept uniform,
The purpose of this invention is to provide a method for kneading and pumping ultra-light insulating concrete.
(e)0発明の構成、
即ち、本発明は、混練時に、まず骨材を投入場ると共に
無機系増粘材を前記骨材上に散布し、更に有機系混和材
を水と共に投入して所定時間水綽し、その後にセメント
を投入して混線し、更に、コンクリートの圧送手段を用
いて混練されたコンクリートを圧送するようにして構成
される。(e) Configuration of the invention 0, that is, the present invention, during kneading, first places the aggregate in an input field, sprinkles an inorganic thickener on the aggregate, and then adds an organic admixture together with water. The system is configured so that it is allowed to cool for a predetermined period of time, then cement is added and mixed, and the mixed concrete is then pumped using a concrete pumping means.
(f)0発明の実施例
以下、図面に基ずき、本発明の実施例を、具体的に説明
する。(f) 0 Embodiments of the Invention Hereinafter, embodiments of the present invention will be specifically described based on the drawings.
第1図は、本発明による超fI!量断熱コンクリートの
混練圧送方法の一例を示すフローチャート、第2図は、
本発明の実施に際して用いた超軽量断熱コンクリートの
配合例を従来の超軽址断熱コンクリートの配合例と比較
した図、第3図は、第2図に示した骨材の物性を示す図
、第4図は、第2図の配合に基ずく超軽量断熱コンクリ
ートの物性を従来の配合による超軽量断熱コンクリート
の物性と比較した図である。FIG. 1 shows the super fI! according to the present invention! Figure 2 is a flowchart showing an example of a method for kneading and pressure-feeding heat-insulating concrete.
Figure 3 is a diagram comparing the blending example of ultra-lightweight insulating concrete used in the implementation of the present invention with the blending example of conventional ultra-lightweight insulating concrete. FIG. 4 is a diagram comparing the physical properties of ultra-light insulating concrete based on the formulation shown in FIG. 2 with the physical properties of ultra-light insulating concrete based on the conventional formulation.
本発明による超軽量断熱コンクリートの混練圧送方法の
一例を、第1図に示すフローチャートに基ずいて説明す
る。即ち超rIi量断熱コンクリ−する軽量多孔性材料
からなる骨材をR#手段であるオムニミキサー等に投入
し、次いでステップS2で例えばけい酌マグネシウム系
の無機系増粘剤を、投入された骨材表面にまぶす形で添
加散布する。更に、ステップS3において、ミキサー中
に仕(脂石鹸類、すiIjニン、合成界面活性剤等の有
機系混和剤及び水を投入し、ステップS4で約−分程練
る。すると、投入された水により骨材に適度な水分が吸
収され、いわゆるプレウエッチングがなされると共に、
骨材表面に増粘剤に起因した粘性を有する水膜が形成さ
れそれ以上の水分の骨材への侵入を阻止するようになる
。An example of the method for kneading and pressure-feeding ultra-lightweight insulating concrete according to the present invention will be explained based on the flowchart shown in FIG. That is, aggregate made of a lightweight porous material for ultra-rIi insulating concrete is put into an omni mixer or the like which is an R# means, and then in step S2, an inorganic thickener such as silica magnesium is added to the injected bone. Sprinkle it on the surface of the material. Furthermore, in step S3, water and organic admixtures such as fatty soaps, soaps, synthetic surfactants, etc. are put into the mixer, and kneaded for about 1 minute in step S4. Appropriate moisture is absorbed into the aggregate, resulting in so-called pre-etching.
A water film with viscosity caused by the thickener is formed on the surface of the aggregate, which prevents further moisture from entering the aggregate.
次に、ステシブS5でミキ号−中にセメントを投入しス
テップs6で約3〜4分間RtJIする。Next, in step S5, cement is poured into the Miki tank, and in step s6, RtJI is carried out for about 3 to 4 minutes.
既に骨材表面には水膜が形成されているので、セメント
を投入して混練しても、セメント中の水分が骨材中に侵
入することは余り無く、コンクリートの粘性は適性な値
に保tコれる。また、増粘材の増粘効果により骨材相互
間及び骨材とセメント粒子間の粘性が増大するので、比
重の小さな骨材がセメントから分離してしまうことも無
い。Since a water film has already formed on the surface of the aggregate, even when cement is added and mixed, the moisture in the cement does not penetrate into the aggregate, and the viscosity of the concrete is maintained at an appropriate value. I can do it. In addition, the viscosity between the aggregates and between the aggregate and cement particles increases due to the thickening effect of the thickener, so that aggregates with low specific gravity will not separate from the cement.
こうして混練が完了したところで、ステップS7で、混
線の完了したコンクリートをモーノポンプ等の均一な圧
送圧力を有するコンクリートの圧送手段によりコンクリ
ートの打設場所まで圧送する。この際、既に述べたよう
に、増粘剤の増粘効果により、骨材相互間及び骨材とセ
メント粒子間の粘性が増大しているので、圧送管内で骨
材とセメントが分離してしまうことはない。When the mixing is completed in this manner, in step S7, the mixed concrete is pumped to a concrete placement site using concrete pumping means having uniform pumping pressure, such as a Mono pump. At this time, as already mentioned, the viscosity between the aggregates and between the aggregate and cement particles increases due to the thickening effect of the thickener, so the aggregate and cement separate in the pumping pipe. Never.
なお、参考として、本発明に用いtこコンクリートの配
合例を従来の配合例と比較したものを第2図に示すが、
本配合例は、−例であり種々の配合が考えられることは
勿論であるdまた、第3図には、本発明に用いtコガラ
ス発泡剤系の骨材の物性値を示し、第4図には、第2図
の配合に基ずく超軽量断熱コンクリートの物性を従来の
配合による超軽量断熱コンクリートの物性と比較した物
理的性質を示す。図からも分かるように、従来・の超軽
量断熱コンクリ−1・と比べて、より軽くより良好な断
熱性能を有している。なお、コンクリートの強度として
の圧縮強度においては、若干化る点があるがMJIiI
量断熱コンクリートは、本来断熱用として用いられるも
のであり、構造部材として用いることは無いので強度が
多少劣っていてもそれ程問題とはならない。For reference, Fig. 2 shows a comparison of a mixing example of the concrete used in the present invention with a conventional mixing example.
This blending example is just an example, and it goes without saying that various blends are possible.Furthermore, Fig. 3 shows the physical property values of the glass blowing agent-based aggregate used in the present invention, and Fig. 4 Figure 2 shows the physical properties of ultra-light insulating concrete based on the formulation shown in Figure 2 compared with the physical properties of ultra-light insulating concrete based on the conventional formulation. As can be seen from the figure, it is lighter and has better insulation performance than the conventional ultra-light insulation concrete 1. Although there are some differences in compressive strength as the strength of concrete, MJIiI
Insulating concrete is originally used for heat insulation and is not used as a structural member, so even if its strength is somewhat inferior, it is not a big problem.
ついて述べtコが、本発明は、発泡スチロール、発泡ス
チl〜ン等の吸水性を有さない骨軽多孔性骨材について
も適用し得ることは勿論である。この場合、コンクリー
ト圧送時における骨材とセメントの分離現象の発生を未
然に防止することができる。However, it goes without saying that the present invention can also be applied to bone light porous aggregates that do not have water absorption properties, such as expanded polystyrene and expanded polystyrene. In this case, it is possible to prevent the separation of aggregate and cement from occurring during concrete pumping.
(g)0発明の効果
以上、説明したように、本発明によれば、超軽量断熱コ
ンクリートの混株圧送に際して、まず骨材を投入した後
に無機系増粘材を骨材十に散布し、更に水及び有機系混
和材を投入して、水練した後にセメントを投入して31
!!するようにしたのでセメントとの沢練時には既に骨
材は粘性をイIする水膜でその表面が覆われそれ以上の
水の骨材への侵入が阻止され、セメント中の水が必要以
」〕に骨材中に吸収されることがなくなりコンクリート
は良好な粘度に保持される。(g) 0 Effects of the Invention As explained above, according to the present invention, when pumping a mixture of ultra-light insulating concrete, aggregate is first added, and then an inorganic thickener is sprinkled on the aggregate. Furthermore, water and organic admixtures were added, and after mixing with water, cement was added.
! ! As a result, when the aggregate is mixed with cement, the surface of the aggregate is already covered with a water film that increases viscosity, preventing further water from entering the aggregate, and reducing the amount of water in the cement. ] is not absorbed into the aggregate, and the concrete maintains a good viscosity.
しかも、増粘剤により、骨材相互間及び骨材とセメント
粒子間の粘性が増大することがら、圧送中にセメントと
骨材が分離してしまうことがなく、圧送打設されたコン
クリート物性を均一で良好な状態に維持することができ
る。Moreover, since the thickener increases the viscosity between aggregates and between aggregate and cement particles, cement and aggregates do not separate during pumping, and the physical properties of concrete that is pumped are improved. It can be maintained in a uniform and good condition.
しかも、コンクリートの圧送に際してモーノポンプ等の
均一な圧送圧力を有するコンクリ−1−の圧送手段によ
り圧送するようにした場合には、圧送管内のコンクリー
トに加わる圧力は均一化され、従来のスクイズ式、ピス
トン式等の圧送ポンプのように極端に大きな圧力がコン
クリートに作用することがなく、従ってコンクリート中
の骨材にセメント中の水分が吸収され、管内閉塞現象が
生じるような乙ともない。Moreover, when the concrete is pumped by a concrete pumping means having a uniform pumping pressure such as a mono pump, the pressure applied to the concrete in the pumping pipe is equalized, and the pressure applied to the concrete in the pumping pipe is equalized, and the pressure applied to the concrete in the pumping pipe is equalized. Extremely large pressure is not applied to the concrete unlike with other pressure pumps, and therefore there is no possibility that water in the cement will be absorbed by the aggregate in the concrete, causing blockage inside the pipe.
また、圧送ポンプが使用出来ることから超軽量断熱コン
クリートの打設を従来のパケットによる間歇的なものか
ら連続的なものとする乙とができるので打設作業を通常
のコンクリートと同様に能率良く行うことが可能となる
。In addition, since a pressure pump can be used, the pouring of ultra-light insulating concrete can be done continuously instead of intermittent with conventional packets, making the pouring work as efficient as regular concrete. becomes possible.
第1図は、本発明による超軽量断熱コンクリートの混練
圧送方法の一例を示すフローチャート、第2図は、本発
明の実施に際して用いた超軽量断熱コンクリートの配合
例を従来の超軽量断熱コンクリートの配合例と比較した
図、第3図は、第2図に示しtコ骨材の物性を示す図、
第4図は、第2図の配合に基ずく超軽量断熱コンクリー
トの物性を従来の配合による超軽量断熱コンクリートの
物性と比較した図である。
287Fig. 1 is a flowchart showing an example of a method for kneading and pumping ultra-light insulating concrete according to the present invention, and Fig. 2 shows a mixing example of ultra-light insulating concrete used in carrying out the present invention compared to a conventional ultra-light insulating concrete mix. Figure 3 is a diagram showing the physical properties of the aggregate shown in Figure 2, which compares with the example.
FIG. 4 is a diagram comparing the physical properties of ultra-light insulating concrete based on the formulation shown in FIG. 2 with those of ultra-light insulating concrete based on a conventional formulation. 287
Claims (2)
い、それ等骨材と有機系混和剤をセメントと共に混練す
ることにより超軽量断熱コンクリートを得る超軽量断熱
コンクリートの混練圧送方法において、混練時に、まず
骨材を投入すると共に無機系増粘材を前記骨材上に散布
し、更に前記有機系混和材を水と共に投入して所定時間
水練し、その後にセメントを投入して混練し、更に、コ
ンクリートの圧送手段を用いて混練されたコンクリート
を圧送するようにして構成した超軽量断熱コンクリート
の混練圧送方法。(1) In a method of kneading and pumping ultra-light insulating concrete, ultra-light insulating concrete is obtained by using a lightweight porous material with heat-insulating properties as aggregate and kneading the aggregate and an organic admixture with cement, At the time of kneading, first the aggregate is added and an inorganic thickener is sprinkled on the aggregate, then the organic admixture is added together with water and kneaded with water for a predetermined period of time, and then cement is added and kneaded. Further, there is provided a method for mixing and pumping ultra-light heat insulating concrete, comprising pumping the mixed concrete using a concrete pumping means.
を有する圧送ポンプを用いたことを特徴とする特許請求
の範囲第1項記載の超軽量断熱コンクリートの混練圧送
方法。(2) The method for kneading and pumping ultra-light heat insulating concrete according to claim 1, characterized in that a pressure pump having a uniform pumping pressure is used as the means for pumping the concrete.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12985383A JPS6023557A (en) | 1983-07-15 | 1983-07-15 | Kneading and forcibly sending method of ultra-light weight heat insulating concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12985383A JPS6023557A (en) | 1983-07-15 | 1983-07-15 | Kneading and forcibly sending method of ultra-light weight heat insulating concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6023557A true JPS6023557A (en) | 1985-02-06 |
JPH0325580B2 JPH0325580B2 (en) | 1991-04-08 |
Family
ID=15019872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12985383A Granted JPS6023557A (en) | 1983-07-15 | 1983-07-15 | Kneading and forcibly sending method of ultra-light weight heat insulating concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6023557A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109095799A (en) * | 2018-08-16 | 2018-12-28 | 山东大学 | A kind of method that gangue coating modification prepares ecological aggregate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57144067A (en) * | 1981-03-04 | 1982-09-06 | Asahi Ishiwata Kogyo Kk | Spraying method for light inorganic fiber formed body |
-
1983
- 1983-07-15 JP JP12985383A patent/JPS6023557A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57144067A (en) * | 1981-03-04 | 1982-09-06 | Asahi Ishiwata Kogyo Kk | Spraying method for light inorganic fiber formed body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109095799A (en) * | 2018-08-16 | 2018-12-28 | 山东大学 | A kind of method that gangue coating modification prepares ecological aggregate |
CN109095799B (en) * | 2018-08-16 | 2020-11-06 | 山东大学 | Method for preparing ecological aggregate by coating modification of coal gangue |
Also Published As
Publication number | Publication date |
---|---|
JPH0325580B2 (en) | 1991-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4373955A (en) | Lightweight insulating concrete | |
NO115278B (en) | ||
US4767461A (en) | Method for manufacturing concrete | |
CN112624671A (en) | On-site preparation method of underwater foam light soil | |
US4161855A (en) | Thermal insulation material and process for making the same | |
US4245054A (en) | Process for the manufacture of a dry mixture for insulating stucco or plaster | |
JPS6023557A (en) | Kneading and forcibly sending method of ultra-light weight heat insulating concrete | |
US2153837A (en) | Insulating concrete construction | |
CN103319191B (en) | A kind of earth-filling method and a kind of foaming mixture slurry | |
JPH02102162A (en) | Grouting material | |
KR840001881B1 (en) | Porous artificial stone | |
JP2900261B2 (en) | Hydraulic lightweight composition and method for producing hydraulic lightweight molded article | |
JP2001151552A (en) | Premixed concrete material and concrete using the same | |
JPS62199407A (en) | Kneading method of concrete-mortar | |
JPH10316460A (en) | Production of regenerated aggregate and production of concrete containing regenerated aggregate | |
JPS62212275A (en) | High strength lightweight concrete heat insulator and manufacture | |
RU2135435C1 (en) | Method of manufacturing porous expanded clay concrete | |
JPH0142907B2 (en) | ||
JPS593062A (en) | Aggregate for heat insulative concrete | |
JPS62197365A (en) | Manufacture of inorganic board | |
JPH09110553A (en) | Production of ultra-lightweight cellular concrete | |
JPH11100286A (en) | Foaming agent for lightweight aerated concrete | |
JP2529558B2 (en) | Admixture for plasterers | |
JP2550445B2 (en) | Inorganic thermal insulation / refractory material for spraying and method for producing the same | |
JP2846565B2 (en) | Grout material manufacturing method |