JPS6022799A - Programmable monolithic integrated circuit - Google Patents
Programmable monolithic integrated circuitInfo
- Publication number
- JPS6022799A JPS6022799A JP58130655A JP13065583A JPS6022799A JP S6022799 A JPS6022799 A JP S6022799A JP 58130655 A JP58130655 A JP 58130655A JP 13065583 A JP13065583 A JP 13065583A JP S6022799 A JPS6022799 A JP S6022799A
- Authority
- JP
- Japan
- Prior art keywords
- current
- transistor
- circuit
- turned
- monolithic integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/06—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using diode elements
Landscapes
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
- Logic Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はプログラマブルモノリシック集積回路に関し、
詳しくは、プログラム可能な読出し専用メモリ(以下−
FROMという)の各メモリセルを電流によシ導通状態
(短絡)あるいは非導通状態(開放)にすることによシ
情報の書込みを行なうプログラマブルモノリシック集積
回路のデコーダ回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a programmable monolithic integrated circuit;
For more information, see Programmable Read-Only Memory
The present invention relates to a decoder circuit of a programmable monolithic integrated circuit in which information is written by making each memory cell of a "FROM" conductive state (short-circuited) or non-conductive state (opened state) with a current.
一般に、FROMはアドレスインバータ、デコーダ、メ
モリセル、アウトプットバッファ、プログラミング回路
等で構成されておシ、メモリセルはワード線とと、ト線
の各交点にそれぞれ接続され、書込電流による発熱でエ
ミ、り・ベース接合を短絡させる接合破壊型あるいは書
込電流によシ蒸着金属や多結晶シリコンを溶断するヒー
−ズ型に分けられる。Generally, a FROM is composed of an address inverter, a decoder, a memory cell, an output buffer, a programming circuit, etc. The memory cell is connected to each intersection of the word line and the T line, and generates heat due to the write current. There are two types: the junction destruction type, which shorts the emitter/reverse/base junction, and the heat type, which fuses the vapor-deposited metal or polycrystalline silicon with a write current.
この様なプログラマブル・モノリシック集積回路におい
ては、記憶容量の増大に伴なってメモリセル部の縮少化
と共にデコーダ回路の簡易化、縮小化を図る必要がある
。In such programmable monolithic integrated circuits, as storage capacity increases, it is necessary to reduce the size of the memory cell portion and to simplify and downsize the decoder circuit.
第1図は従来のプログラマブル・モノリシック集積回路
、特に接合破壊型P几OMの一回路例を示す図である。FIG. 1 is a diagram showing an example of a conventional programmable monolithic integrated circuit, particularly a junction breakdown type P-OM.
図において、Gatel 〜Gate4はインバータ、
L1〜L4はアドレス信号線、1はデコーダ回路、Q
t〜Q4はトランジスタ、几、〜RIIは抵抗、Dlは
ダイオード、2はメモリセル部、Qll〜Q、 、 −
Q。In the figure, Gatel to Gate4 are inverters,
L1 to L4 are address signal lines, 1 is a decoder circuit, Q
t~Q4 is a transistor, ~RII is a resistor, Dl is a diode, 2 is a memory cell section, Qll~Q, , -
Q.
〜Q□は(mXn)個のメモリセル、wI、、 〜’W
L mはワード線、DL1〜DL、はビット線を示す。~Q□ is (mXn) memory cells, wI,, ~'W
Lm indicates a word line, and DL1 to DL indicate bit lines.
まずこめ回路の書込み動作をメモリセル部2のメモリセ
ルQ1mのエミッタ・ベース接合を短絡して情報を書込
む場合を例にして説明する。First, the write operation of the write circuit will be described using as an example a case where information is written by shorting the emitter-base junction of the memory cell Q1m of the memory cell section 2.
アドレス信号がインバータGa t e 1とGa t
e 3の入力端子搗とA、に印加されるとアトにス信
号線り。Address signal is inverter Ga t e 1 and Ga t
When applied to input terminals 3 and 3, the signal line goes to at.
〜L4にはAoとA、の信号レベルに応じたレベルに設
定される。すなわち、AoがLowレベル、A。~L4 is set to a level corresponding to the signal levels of Ao and A. That is, Ao is at a low level.
がLOWレベルトスルトL1ハハイ(High)レベル
、L、はロー(Low)レベル、L、はHighレベル
、L4はLowレベルとなる。選択すべきメモリセルQ
1□が接続されるワード線WL、が連なるデコーダ回路
において、入力段のマルチエミッタトランジスタQ1の
エミッタはアドレス信号線L1とL3に接続されていて
、いづれもH”レベルとなるために、トランジスタQ1
はオフして電源vecから抵抗几1ヲ介してトランジス
タQ、のペースに電流が供給されるので、トランジスタ
Q2はオンしこれによシトランジスタQsおよびQlが
オン、すなわちWLIが選択される。この時メモリセル
Q+tに200mA程度の書込電流をDLi−Ql、−
q−GNDの経路で流し、メモリセルQ11のエミッタ
ーペース接合を短絡し、書込みを行なう。この際、デコ
ーダ回路のR終段トランジスタQ4には書込電流約20
0mAを吸収するに充分な大きさのベース電流が流れ、
そのトランジスタQ4のベース電流はトランジスタQ*
、 Qs Kよシ供給されている。is the LOW level tosult L1 is at the high level, L is at the low level, L is at the high level, and L4 is at the low level. Memory cell Q to be selected
In a decoder circuit in which word lines WL to which 1□ are connected are connected, the emitters of multi-emitter transistor Q1 in the input stage are connected to address signal lines L1 and L3, and both are at H" level, so transistor Q1
is turned off and current is supplied from the power supply vec to the base of transistor Q through resistor 1, so transistor Q2 is turned on and transistors Qs and Ql are turned on, that is, WLI is selected. At this time, a write current of about 200 mA is applied to the memory cell Q+t, DLi-Ql, -
q-GND path, the emitter paste junction of memory cell Q11 is short-circuited, and writing is performed. At this time, a write current of approximately 20
A base current large enough to absorb 0mA flows,
The base current of the transistor Q4 is the transistor Q*
, Qs K is supplied.
次に、この回路の読み出し動作を上記の様にして情報が
書き込まれたメモリセルQ11について説明する。情報
の読出しはメモリセルQll K電流が流れるか否かを
検出すればよいので、ビット線には上記の書込み時のよ
うな大電流を流す必要はない。即ち、読出し時にAoに
Lowレベル、AtKLowレベルが印加され、これに
よりトランジスタQ、がオフ、トランジスタQ、、 Q
、、 Qlがオンとなることは書込み時と同じであるが
、ビット@DLlオヨびワード線WL1には書込み時よ
シはるかに小さい0.5 mA程度の読出し1)F a
カD L IQ II−Ql−GNDの経路で流れる
。この際、上記書込み時傾けWL、が高電位のためオフ
状態であったダイオードD1 は読み出し時にWL、が
低電位であるのでオン状態とな’)、V((からRoを
介して供給されるQ、のベース電流は書込み時よシ小さ
く、従って。番のベース電流も0.5 mA程度の電流
をWL、よシ引込むに充分な程度の小電流となる。Next, the read operation of this circuit will be described for the memory cell Q11 in which information is written as described above. To read information, it is sufficient to detect whether or not the memory cell QllK current flows, so there is no need to flow a large current through the bit line as in the above writing. That is, at the time of reading, a low level and an AtKlow level are applied to Ao, which turns off transistor Q, and transistors Q, , Q
,, Ql is turned on in the same way as during writing, but bit @DLl and word line WL1 have a read current of about 0.5 mA, which is much smaller than that during writing.
It flows along the path of DL IQ II-Ql-GND. At this time, the diode D1, which was off due to the high potential of the inclination WL during writing, is turned on during the read because WL is at a low potential. The base current of Q is smaller than that during writing, and therefore the base current of Q is small enough to draw a current of about 0.5 mA to WL.
つまシ書込電流と読み出し電流とが200mAと0.5
mAのように大きく異なるFROMにおいては読み出し
時においても読み出し電流を引込むトランジスタQ4の
ベース電流を、書込み時の書込み電流200mAを引込
むに充分な大きさのベース電流を流してしまうとベース
電流が過剰な状態とな勺、トランジスタQ4が飽和して
ベースに過剰な電荷が蓄積され、Qlがオフする際のオ
フ時間が長くなって高速動作に適さなくなる。そこでこ
れを防止するために従来のデコーダ回路では、ダイオー
ドD1を有する帰還回路を設けて書込み時と読み出し時
とでそれぞれ適当なベース電流がQlに供給されるよう
にしていた。しかしながら、このような帰還回路を設け
ることは回路構成を複雑化し、回路の高集積化にとって
好ましいものではない。The write current and read current are 200mA and 0.5
In FROM, which has a large difference in A, such as mA, if the base current of transistor Q4, which draws a read current even during reading, is made to flow with a base current large enough to draw a write current of 200 mA during writing, the base current will be excessive. In this case, the transistor Q4 becomes saturated and excessive charge is accumulated in the base, which lengthens the off time when Ql turns off, making it unsuitable for high-speed operation. In order to prevent this, in the conventional decoder circuit, a feedback circuit having a diode D1 is provided so that appropriate base currents are supplied to Ql during writing and reading, respectively. However, providing such a feedback circuit complicates the circuit configuration, which is not preferable for increasing the degree of circuit integration.
また第1図に明らかなように帰還回路線トランジスタQ
2のコレクタとトランジスタQ4のコレクタをダイオー
ドDIを介して接続するだめにトランジスタQ8の配線
を越えなけれはならないので、配線が複雑になるなどの
欠点もあった。もちろん、この様な帰還回路を設けずに
電源■。0を書込み時と読み出し時とで切替えることも
考えられるが、電源VCCはデコーダのみならず他の回
路にも供給される電圧であるから、vccを切替えるこ
とは他の回路設計との兼合せて限界がある。Also, as shown in Figure 1, the feedback circuit line transistor Q
In order to connect the collector of transistor Q2 and the collector of transistor Q4 via the diode DI, it is necessary to cross the wiring of transistor Q8, which has the disadvantage of complicating the wiring. Of course, the power supply ■ does not require such a feedback circuit. It is also possible to switch 0 between writing and reading, but since the power supply VCC is a voltage that is supplied not only to the decoder but also to other circuits, switching VCC should be done in conjunction with other circuit designs. There is a limit.
本発明は従来のこのような欠点を解決し、回路構成が簡
単で高集積化を図ることのできるプログラマブル・モノ
リシ、り集積回路を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional drawbacks and provide a programmable monolithic integrated circuit that has a simple circuit configuration and can be highly integrated.
本発明の特徴は各メモリセルを導通状態あるいは非導通
状態とすることによシ情報を書き込むプロゲラiプル・
モノリシック集積回路において、ワード線に連なるデコ
ーダ回路の最終段トランジスタのベース電流を供給する
トランジスタのエレクタ側に、選択されたメモリセルの
読み出し時には電流の印加を行なわず、書込み時には最
終段トランジスタが書込み電流を吸収するに充分な大き
さのベース電流となる様な電流の印加をすることにある
。The feature of the present invention is that the progera i pull
In a monolithic integrated circuit, when reading a selected memory cell, no current is applied to the erector side of the transistor that supplies the base current of the final stage transistor of the decoder circuit connected to the word line, and when writing, the final stage transistor applies the write current. The goal is to apply a current that will create a base current large enough to absorb the current.
以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.
第2図は本発明によるプログラマフル・モノリシック集
積回路の特にワード線WLlが連なるデコーダ回路の一
実施例を示したもので、第1図と同じ符号は同じものを
示す。尚QIs以外のメモリセルは図示していないが、
第1図と同様に存在する。FIG. 2 shows an embodiment of a programmable monolithic integrated circuit according to the present invention, particularly a decoder circuit in which word lines WLl are connected, and the same reference numerals as in FIG. 1 indicate the same elements. Although memory cells other than QIs are not shown,
It exists in the same way as in Figure 1.
本夾施例回路の特徴←トランジスタQ、と、ダイオード
DIを介した帰還回路をなくシ、最終段トランジスタQ
4にベース電流を供給するトランジスタQ、のコレクタ
部に抵抗R6〜R1いトランジスタQ、、Q、、Q、ツ
ェナーダイオード島を介して外部端子EXTを設けたこ
とにある。Features of this example circuit ← No transistor Q and feedback circuit via diode DI, final stage transistor Q
The external terminal EXT is provided at the collector portion of the transistor Q, which supplies the base current to the transistor Q4, via the transistors Q, Q, Q, Q, which have resistors R6 to R1, and the Zener diode island.
この様な回路において、読み出し時には、外部m子E
X ’I’ Kftalji電圧域内(−0,5V〜+
5.sV)ノ!圧の印加であれば、ツェナーダイオード
D、によシミ流の流入社阻止され、トランジスタQ6は
オフ、トランジスタQyがオンし、トランジスタQ5は
オフする。従ってVCCから抵抗R+1 )ランジスタ
Q1を介して流れる電流とVCCから、抵抗R,,)ラ
ンジスタQ3を介して流れる電流とによって供給される
ベース電流のみによってトランジスタQ4を動作させW
L、から0.5mA程度の読み出し電流を引き込む。一
方書込み時には論理電圧域内以上の電圧(例えば12■
)をEXTに印加することによシ、ツェナーダイオード
がオンし、抵抗几9を介し電流がトランジスタQ6のベ
ース電流として供給され、トランジスタQ6がオンしト
ランジスタQyはオフ、トランジスタQsはオンする。In such a circuit, when reading, the external m
X 'I' Kftalji within voltage range (-0,5V~+
5. sV)ノ! If pressure is applied, the Zener diode D blocks the inflow of the current, turning off the transistor Q6, turning on the transistor Qy, and turning off the transistor Q5. Therefore, the transistor Q4 is operated only by the base current supplied by the current flowing from VCC through the resistor R+1) transistor Q1 and the current flowing from VCC through the resistor R,,) transistor Q3.
A read current of about 0.5 mA is drawn from L. On the other hand, during writing, the voltage is higher than the logic voltage range (for example, 12
) is applied to EXT, the Zener diode is turned on, and a current is supplied as the base current of the transistor Q6 through the resistor 9, turning on the transistor Q6, turning off the transistor Qy, and turning on the transistor Qs.
従って電源VCCよりトランジスタQs1抵抗R6を通
じて電流が流れ込み最終段トランジスタQ4が200m
A程匿の′電流を〜VL、よシ引き込むのに充分な大き
さのベース電流がトランジスタQ3を介して供給ちれる
。Therefore, current flows from the power supply VCC through the transistor Qs1 and the resistor R6, and the final stage transistor Q4 is 200 m
A base current of sufficient magnitude to draw a current of ~VL as much as A is supplied through transistor Q3.
このように1込み時に最終段トランジスタQ4のベース
電流を供給することによシ従来回路のような帰還回路が
不要となるうえに、デコーダ回路以外よシミ流を供給す
るため段数を増やして電流増幅を行なう必要がなく、段
数も減らせる。In this way, by supplying the base current of the final stage transistor Q4 at the time of 1 loading, a feedback circuit like the conventional circuit is not required, and the number of stages is increased to supply a stain current other than the decoder circuit and the current can be amplified. There is no need to perform this process, and the number of stages can be reduced.
しかしながら、本発明による一実施例を示した第2図に
おいては、読み出し動作に杜外部端子EXTに論理電圧
域内の電圧を印加させればよいことよfiEXTは端子
数節約の為入力端子と共有することができ、従来のFR
OMと同様な読み出し動作が出来るが、書込動作時には
従来のFROMの書込仕様に加え外部端子EXTに論理
電圧域内よシ高い電圧を印加せねばならず、従来のFR
OMと書込み仕様が異なるという欠点を有する。However, in FIG. 2 showing an embodiment according to the present invention, it is sufficient to apply a voltage within the logical voltage range to the external terminal EXT for the read operation.FIEXT is shared with the input terminal in order to save the number of terminals. Can be used with conventional FR
A read operation similar to an OM is possible, but in addition to the write specifications of a conventional FROM, a voltage higher than the logic voltage range must be applied to the external terminal EXT during a write operation.
It has the disadvantage that the write specifications are different from OM.
本発明では、かかる欠点を克服する為に、書込電流の1
部(例えt!、xmA)をバイノくスする為のノ(イパ
ス回路を設け、そのバイパス回路からのコントロールに
より読み出し動作時に社トランジスタQllをオフさせ
書込み動作時にはトランジスタQsをオンさせれは、読
み出し時、書込み時共従来のFROMと同様な読み出し
動作と書き込み仕様が可能となることに注目した。In the present invention, in order to overcome this drawback, the write current is
A pass circuit is provided to bypass the circuit (for example, t!, Attention was paid to the fact that the read operation and write specifications similar to those of conventional FROM are possible at both time and write.
このことを本発明の第2の実施例會示す第3図を用いて
説明する。なお第3図は、インバーターや91m以外の
メモリセル社図示していないが、第1図と同様である。This will be explained using FIG. 3, which shows a second embodiment of the present invention. Although FIG. 3 does not show the inverter or memory cells other than 91m, it is similar to FIG. 1.
読み出し動作時には、トランジスタQ6がオフ、トラン
ジスタQ、がオンする様にそして書込み時には出力端子
よシ印加される書込電流の1部がPNP)ランジスタQ
ttに流れ、ツェナーダイオードDマをオンさせ、トラ
ンジスタQso y Quをオンさせ抵抗R1,、、R
11!に流れ込む、その時の抵抗R12の電位差がトラ
ンジスタQ6のしきい値となるようにトランジスタQ、
−Q□、抵抗R11〜R0,。During a read operation, transistor Q6 is turned off and transistor Q is turned on, and during a write operation, a portion of the write current applied to the output terminal is transferred to the PNP transistor Q.
tt, turns on the Zener diode D, turns on the transistor Qso y Qu, and turns on the resistors R1,..., R.
11! Transistor Q, so that the potential difference across resistor R12 at that time, flowing into
-Q□, resistances R11 to R0,.
ダイオードD1、ツェナーダイオードD、を設定すると
書込時にはトランジスタQ6がオンし、トランジスタQ
、はオンし、読み出し時にはトランジスタQ6がオフし
、トランジスタQ、はオンする。When diode D1 and Zener diode D are set, transistor Q6 turns on during writing, and transistor Q
, is turned on, and during reading, transistor Q6 is turned off and transistor Q is turned on.
従って、読み出し時にはトランジスタQ、がオフし、v
ccから抵抗几1、トランジスタQ1を介して流れる電
流とVCCから抵抗I(!、トランジスタQ。Therefore, during reading, transistor Q is turned off and v
Current flows from cc through resistor 1 and transistor Q1, and from VCC through resistor I (!, transistor Q.
を介して流れる電流とによって供給されるベース電流の
みによってトランジスタQ4を動作させWLlから0.
5mA程度の読み出し′電流を引き込む。一方、書込み
時にはトランジスタQ、がオンし、電源VCCよシトラ
ンジスタQs、抵抗kL、を通じ電流が流れ込み最終段
トランジスタQ4が200mA程度の電流をWLlよシ
引き込むに十分な大きさのベース電流がトランジスタQ
8を介して供給される。Transistor Q4 is operated only by the base current supplied by the current flowing through WLl to 0.
A readout current of about 5mA is drawn. On the other hand, during writing, the transistor Q is turned on, and current flows from the power supply VCC through the transistor Qs and the resistor kL, and the base current of the transistor Q is large enough for the final stage transistor Q4 to draw a current of about 200 mA from the transistor Q.
8.
以上説明したように、本発明によれば書込み時と読み出
し時とてデコーダ回路の最終段トランジスタのベース%
L流を切替えるための帰還回路が不要となるので、回路
構成や製造時のマスクデザインが簡単で集積度の高いプ
ログラマブル・モノリシック集積回路を得ることが出来
、本発明の効果は甚大である。As explained above, according to the present invention, the base percentage of the final stage transistor of the decoder circuit is
Since a feedback circuit for switching the L current is not required, a programmable monolithic integrated circuit with a simple circuit configuration and mask design during manufacturing and a high degree of integration can be obtained, and the effects of the present invention are enormous.
第1図は従来のプログラマブル・モノリシック集積回路
の一例を示す図、第2図は不発明の実施例を示す図、第
3図は本発明の第2の実施例を示す図である。
Q、〜Q4・・・・・・トランジスタ、DI・・・・・
・ダイオード。FIG. 1 shows an example of a conventional programmable monolithic integrated circuit, FIG. 2 shows a non-inventive embodiment, and FIG. 3 shows a second embodiment of the present invention. Q, ~Q4...Transistor, DI...
·diode.
Claims (3)
ことによシ情報を書き込むプログラマブル・モノリシッ
ク集積回路において、ワード線に連なるデコーダ回路の
最終段トランジスタのベース電流を供給するトランジス
タのコレクタ部に対応するメモリセルの書込み時にのみ
電流を供給する回路を設けたことを特徴とするプログラ
マブル・モノリシ、り集積回路。(1) Corresponds to the collector section of the transistor that supplies the base current of the final stage transistor of the decoder circuit connected to the word line in a programmable monolithic integrated circuit that writes information by making the memory cell conductive or non-conductive. A programmable monolithic integrated circuit characterized by having a circuit that supplies current only when writing to a memory cell.
報を書き込む為にプログラム電力を印加する端子以外の
外部端子にてコントロールすることを特徴とする特許請
求範囲第(1)項記載のプログラマブル・モノリシ、り
集積回路。(2) The current and the supply circuit are controlled by an external terminal other than the terminal to which programming power is applied in order to write information to the memory cell/L-. Programmable monolithic integrated circuit.
き込む為にプログラム電力を印加する端子にてコントロ
ールすることを特徴とする特許請求範囲第(1)項記載
のプログラマブル・モノリシ、り集積回路。(3) The programmable monolithic integrated circuit according to claim (1), wherein the circuit for supplying the current is controlled by a terminal that applies programming power to write information to the memory cell. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58130655A JPS6022799A (en) | 1983-07-18 | 1983-07-18 | Programmable monolithic integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58130655A JPS6022799A (en) | 1983-07-18 | 1983-07-18 | Programmable monolithic integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6022799A true JPS6022799A (en) | 1985-02-05 |
Family
ID=15039440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58130655A Pending JPS6022799A (en) | 1983-07-18 | 1983-07-18 | Programmable monolithic integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022799A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257598A (en) * | 1986-05-01 | 1987-11-10 | オムロン株式会社 | Traffic signal controller |
US9071055B2 (en) | 2006-10-21 | 2015-06-30 | Advanced Analogic Technologies Incorporated | Charging scheme |
US9225239B2 (en) | 2007-08-08 | 2015-12-29 | Advanced Analogic Technologies, Incorporated | Multiple output charge pump with multiple flying capacitors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55146691A (en) * | 1979-04-27 | 1980-11-15 | Fujitsu Ltd | Semiconductor memory device |
-
1983
- 1983-07-18 JP JP58130655A patent/JPS6022799A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55146691A (en) * | 1979-04-27 | 1980-11-15 | Fujitsu Ltd | Semiconductor memory device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257598A (en) * | 1986-05-01 | 1987-11-10 | オムロン株式会社 | Traffic signal controller |
US9071055B2 (en) | 2006-10-21 | 2015-06-30 | Advanced Analogic Technologies Incorporated | Charging scheme |
US9225239B2 (en) | 2007-08-08 | 2015-12-29 | Advanced Analogic Technologies, Incorporated | Multiple output charge pump with multiple flying capacitors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6161198B2 (en) | ||
US4424582A (en) | Semiconductor memory device | |
JPS5856286B2 (en) | output buffer circuit | |
JP2735435B2 (en) | Memory card memory control circuit | |
US4127899A (en) | Self-quenching memory cell | |
JPS6022799A (en) | Programmable monolithic integrated circuit | |
JPS582437B2 (en) | Three-state output circuit | |
US4313179A (en) | Integrated semiconductor memory and method of operating same | |
JPS58146088A (en) | Memory circuit | |
US4635231A (en) | Semiconductor memory with constant readout capability | |
JPS62129996A (en) | Memory cell having variable excitation | |
KR830001005B1 (en) | Decoder circuit | |
US5268864A (en) | Programmable memory device having programming current absorbing transistors | |
JPH0152834B2 (en) | ||
JPS6273498A (en) | Programmable monolithic integrated circuit | |
JPH05151781A (en) | Word line driver circuit and switching circuit | |
KR840001460B1 (en) | Semiconductor memory device | |
JPH0378715B2 (en) | ||
JPS6223394B2 (en) | ||
JPS5919295A (en) | Bipolar type prom | |
JPH05315902A (en) | Ecl latch circuit | |
JPH066202A (en) | Semiconductor integrated circuit | |
JPS6020837B2 (en) | Storage device | |
JPS5915217B2 (en) | logic circuit | |
JPH06325577A (en) | Semiconductor storage device |