JPS6021905A - Acrylic fiber having high strength and elastic modulus and its manufacture - Google Patents

Acrylic fiber having high strength and elastic modulus and its manufacture

Info

Publication number
JPS6021905A
JPS6021905A JP12800683A JP12800683A JPS6021905A JP S6021905 A JPS6021905 A JP S6021905A JP 12800683 A JP12800683 A JP 12800683A JP 12800683 A JP12800683 A JP 12800683A JP S6021905 A JPS6021905 A JP S6021905A
Authority
JP
Japan
Prior art keywords
spinning
dry
polymer
acrylic fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12800683A
Other languages
Japanese (ja)
Other versions
JPH0711086B2 (en
Inventor
Hiroyoshi Tanaka
宏佳 田中
Mitsuo Suzuki
三男 鈴木
Shigeru Fujii
藤井 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58128006A priority Critical patent/JPH0711086B2/en
Publication of JPS6021905A publication Critical patent/JPS6021905A/en
Publication of JPH0711086B2 publication Critical patent/JPH0711086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To manufacture an acrylic fiber having high strength and elastic modulus required for an industrial or reinforcing fiber, by carrying out the dry and wet spinning of an AN polymer having high polymerization degree under a specific condition. CONSTITUTION:An AN polymer having an intrinsic viscosity of >=2.0, preferably >3.8 is dissolved in a solvent such as DMSO to obtain a spinning dope having a solution viscosity of >=2,000 poise and usually <=15,000 poise at 45 deg.C. The dope is spun by the dry and wet spinning process (the length of the path in air is set to 1-200mm. preferably 3-20mm.), drawn about 2-10 times by the primary drawing under moist heat or steam heat condition, washed with water, dried, and drawn >=1.1 times under dry heat condition to the overall draw ratio of >=10, preferably >=12.

Description

【発明の詳細な説明】 本発明は高強度、高弾性率アクリル系繊維およびその製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high strength, high modulus acrylic fibers and methods of manufacturing the same.

従来、アクリル系繊維はその優れた耐光性、染色性およ
び高収縮性等の繊維特性並びにウール・ライクの風合い
によって、衣料用はもちろんカーテン、カーペット等の
建装用繊維素材として大量に生産、販売されている。し
かしながら、このアクリル系繊維は、ポリエステルやポ
リアミド系繊維に比べて発色性や耐光性などに優れてい
るにもかかわらず1機械的強度が低く、産業用途には殆
ど使用されていないのが現状である。
Conventionally, acrylic fibers have been produced and sold in large quantities not only for clothing but also as architectural fiber materials such as curtains and carpets due to their excellent light resistance, dyeability, high shrinkage properties, and wool-like texture. ing. However, although this acrylic fiber has excellent color development and light resistance compared to polyester and polyamide fibers, it has low mechanical strength and is currently hardly used for industrial purposes. be.

展長されたアクリル系繊維またはその製造法としては、
これまで多くの提案がなされている。
Expanded acrylic fibers and their manufacturing methods include:
Many proposals have been made so far.

例えば、特開昭51−75119号公報には、紡糸原液
として、アクリルニトリル(以下ANと略す)とそのコ
モノマを無機塩濃厚水溶液に熔解し、触媒の存在下、紫
外線を照射して重合せしめて得られたAN系重合体(以
下、AN系ポリマと云う)溶液を用い、このポリマ溶液
を湿式紡糸し、凝固時に延伸する。具体的には、紡糸口
金の開口部の総断面積に対する単位時間に吐出されるポ
リマの量(即ち、紡糸ドラフト〉を1:3〜4と大きく
することによって2表皮部分に方向性組織を生成させた
12g / d以上、最大16g / dに達する高強
度アクリル系繊維が得られることが開示されている。
For example, JP-A-51-75119 discloses that, as a spinning stock solution, acrylonitrile (hereinafter abbreviated as AN) and its comonomer are dissolved in a concentrated aqueous solution of an inorganic salt, and polymerized by irradiation with ultraviolet rays in the presence of a catalyst. Using the obtained AN-based polymer (hereinafter referred to as AN-based polymer) solution, this polymer solution is wet-spun and stretched upon solidification. Specifically, by increasing the amount of polymer discharged per unit time (i.e., spinning draft) to the total cross-sectional area of the spinneret opening to 1:3 to 4, a directional structure is generated in the two skin parts. It is disclosed that high-strength acrylic fibers with a yield of 12 g/d or more, reaching a maximum of 16 g/d, can be obtained.

しかしながら、上記特開昭に記載されているように、A
N系ポリマの平均重合度が大きくなると得られるアクリ
ル系繊維の強度は、向上するが。
However, as described in the above-mentioned Japanese Patent Application Publication No.
However, as the average degree of polymerization of the N-based polymer increases, the strength of the resulting acrylic fiber improves.

重合度の増大はポリマの溶液粘度を増大させるために、
技術的に溶液の取扱いが難しくなり、紡糸が困難に成る
という問題がある。本発明者らの検討によると、この方
法はポリマ溶液(紡糸原液)の製造手段として塩化亜鉛
と塩化ナトリウム水溶液中で紫外線照射ラジカル重合と
いう特殊な重合法を採用しているため、ガラスライニン
グを施した耐蝕性の重合槽を必要とすること及び重合熱
を除去するために特殊な手段、設備を必要とすることな
どの理由で工業的には実際上採用された例はない。さら
に、湿式紡糸に際して紡糸ドラフトを上記のように大き
くすると、紡糸原液中のポリマ濃度を小さくシ、溶液帖
度を低下させない限り。
Since increasing the degree of polymerization increases the solution viscosity of the polymer,
There is a problem in that it becomes technically difficult to handle the solution, making spinning difficult. According to the studies conducted by the present inventors, this method uses a special polymerization method called ultraviolet irradiation radical polymerization in an aqueous solution of zinc chloride and sodium chloride as a means of producing the polymer solution (spinning dope), so glass lining is not required. This method has never been used industrially because it requires a corrosion-resistant polymerization tank and requires special means and equipment to remove the heat of polymerization. Furthermore, when the spinning draft is increased as described above during wet spinning, the polymer concentration in the spinning dope can be reduced unless the solution volume is reduced.

安定した紡糸ができないこと特に9重合度が増大すると
、溶液粘度が急激に増大するために、これに対応して紡
糸原液のポリマ濃度を低下せしめる。
Inability to perform stable spinning. In particular, when the degree of polymerization increases, the viscosity of the solution increases rapidly, so the polymer concentration of the spinning stock solution must be correspondingly reduced.

必要がある。そして、このような紡糸原液のポリマ濃度
の減少は、得られる繊維を失透化させたり内部に多数の
ボイドを発生させやす(なるため。
There is a need. Such a decrease in the polymer concentration of the spinning stock solution tends to cause the resulting fiber to devitrify or generate a large number of voids inside.

必ずしも高強度化をもたらすものではないのである。This does not necessarily lead to higher strength.

さらに、上記特開昭の方法で得られるアクリル系繊維は
、炭素繊維製造用を一つの主用途にしており、当然のこ
とながら、熱水中で一次延伸し。
Furthermore, the acrylic fiber obtained by the method of JP-A-Sho is primarily used for producing carbon fibers, and as a matter of course, it is primarily drawn in hot water.

乾燥した後、無張力下、加熱ロールを通過させ。After drying, pass through heated rolls under no tension.

弛緩乾熱処理することを要件としているため弾性率の向
上は望めないという欠点がある。
Since it requires a relaxation dry heat treatment, it has the disadvantage that no improvement in elastic modulus can be expected.

また、特開昭57−51810号および同57−161
117号公報には、溶液の相対粘度が2.5〜6.0(
極限粘度で約1.2〜3.3)の範囲内であるアクリル
ニトリル系重合体(以下、AN系ポリマという)を湿式
紡糸もしくは乾式紡糸し、湿式延伸した後、緊張下に加
熱ロール上で乾燥し1次いで140〜200℃の乾熱下
に少なくと4t:t、5の延伸(接触延伸)を行い、有
効全延伸倍率を少なくとも1:9にすること並びにその
後170〜280℃の乾熱処理を行うことによって、初
期モジュールが100%の延び率に関して1300 C
N/ tex (147,8g/d)より大きいアクリ
ル系繊維並びに強度が50CN / tex (5,6
5g / d) 、 5%以下の煮沸巻縮、最大15%
引き裂き伸び率を有する耐アルカリ性のアクリル系−繊
維が得られることが開示されている。 ゛ しかしながら、前述のように、“AN系ポリマの重合度
の増大は、該ポリマからなる紡糸原液の紡糸性を急激に
低下させ、安定した紡糸を著しく困難にするが、この紡
糸性改良のために溶液濃度を小さくすると、得られる繊
維の物性、性能が低下する問題がある。
Also, JP-A-57-51810 and JP-A-57-161
117, the relative viscosity of the solution is 2.5 to 6.0 (
An acrylonitrile polymer (hereinafter referred to as AN polymer) having an intrinsic viscosity within the range of about 1.2 to 3.3) is wet-spun or dry-spun, wet-stretched, and then stretched on a heated roll under tension. Drying and then stretching (contact stretching) for at least 4 t:t, 5 times under dry heat at 140-200°C to give an effective total stretching ratio of at least 1:9, and then dry heat treatment at 170-280°C. By performing the initial module at 1300 C for 100% elongation
Acrylic fibers with a strength greater than N/tex (147,8 g/d) and a strength of 50CN/tex (5,6
5g/d), boiling crimp below 5%, max. 15%
It is disclosed that alkali-resistant acrylic fibers with tear elongation are obtained. However, as mentioned above, "an increase in the degree of polymerization of an AN-based polymer rapidly reduces the spinnability of the spinning dope made of the polymer, making stable spinning extremely difficult. When the solution concentration is reduced, there is a problem that the physical properties and performance of the obtained fibers deteriorate.

かかる観点から、上記特開昭を検討するに、そこに用い
られるポリマの相対粘度は、2.5〜6.0と開示され
ながら、実際に用いられているポリマの相対粘度は、最
大3.3に過ぎず、湿式または乾式紡糸による高重合度
ポリマからなるアクリル系繊維の製造の困難性を示唆し
ている。事実、上記特開昭で得られる繊維の物性は弾性
率は高い値をしめしているが、引張強度は最大9.3g
/dにすぎない。
From this point of view, when considering the above-mentioned Japanese Patent Application Laid-Open No. 2003-120012, it is disclosed that the relative viscosity of the polymer used therein is 2.5 to 6.0, but the relative viscosity of the polymer actually used is at most 3.5 to 6.0. 3, suggesting the difficulty in producing acrylic fibers made of highly polymerized polymers by wet or dry spinning. In fact, the physical properties of the fiber obtained in the above-mentioned JP-A-Sho show a high modulus of elasticity, but a maximum tensile strength of 9.3 g.
/d.

本発明者らは、このような高重合度AN系重合体の紡糸
、延伸方法について鋭意研究、検討を進めた結果2本発
明の新規な高強度、高弾性率アクリル系繊維およびそ−
の製造法を見出すに至ったものである。
The present inventors have conducted intensive research and examination on spinning and drawing methods for such highly polymerized AN-based polymers, and as a result, they have developed the novel high-strength, high-modulus acrylic fiber of the present invention and its
This led to the discovery of a manufacturing method.

すなわち1本発明の目的とするところは、従来の汎用紡
糸手段である湿式または乾式紡糸法を以てしては紡糸が
困難であり、しかも良好な物性。
That is, one object of the present invention is to create a fiber that is difficult to spin using wet or dry spinning methods, which are conventional general-purpose spinning methods, and which has good physical properties.

性能を有する繊維の形成が難しい高重合度AN系ポリマ
、特に、極限粘度が少なくとも2.0を越えるポリマか
らなるアクリル系繊維を提供するにあり、他の目的は、
このよう高重合度AN系康リすから工業用または産業用
あるいは補強用繊維として要求される高強度、高弾性率
を有するアクリル系繊維を生産性よく、すなわち商業的
に製造する方法を提供するにある。
Another object of the present invention is to provide an acrylic fiber made of a high polymerization degree AN-based polymer, in particular a polymer with an intrinsic viscosity exceeding at least 2.0, which is difficult to form into fibers with good performance.
The present invention provides a method for producing acrylic fibers having high strength and high modulus of elasticity, which are required as industrial or reinforcing fibers, with good productivity, that is, commercially, from such high polymerization degree AN-based fibers. It is in.

このような本発明の目的は、前記特許請求の範囲に記載
した発明によって達成することができる。
These objects of the present invention can be achieved by the invention described in the claims.

以下2本発明の詳細な説明する。Two aspects of the present invention will be described in detail below.

本発明の特徴の一つは、AN系ポリマとして。One of the features of the present invention is that it is an AN-based polymer.

いることにあるが、このような高重合度ポリマは。However, such high polymerization degree polymers.

極めて特異な紡糸性を示し通常の紡糸手段を以てしては
安定、かつ生−産性良く紡、糸すくことができない。た
とえば、上記直重5台 媒に対する熔解性が低下し,慣用の溶媒の−っであるロ
ダンソーダ、塩化亜鉛等の濃厚水溶液,硝酸などに溶解
した場合に,溶液がゲル化しゃすく。
It exhibits extremely unique spinnability and cannot be spun or threaded stably and with good productivity using ordinary spinning means. For example, the solubility in the above-mentioned straight weight solvent decreases, and when dissolved in the conventional solvents such as rhodan soda, concentrated aqueous solutions of zinc chloride, nitric acid, etc., the solution tends to gel.

均一で安定な紡糸原液が形成されず,紡糸性が著しく低
い。また、ジメチルスルホキシド(DMSO)のような
熔解性に優れた溶媒を使用した場合は,紡糸原液の濃度
が大きくなると,紡糸口金からの吐出が困難となり9通
常の紡糸手段では紡糸することができず.他方,紡糸性
を得るために紡糸原液のポリマ濃度を低下させると.凝
固糸条にボイドが形成され,延伸にょ゛る糸切れが生じ
たり。
A uniform and stable spinning stock solution cannot be formed, resulting in extremely poor spinnability. In addition, when using a solvent with excellent solubility such as dimethyl sulfoxide (DMSO), when the concentration of the spinning dope increases, it becomes difficult to discharge it from the spinneret9, making it impossible to spin with normal spinning means. .. On the other hand, if the polymer concentration of the spinning stock solution is lowered to obtain spinnability. Voids are formed in the coagulated yarn, and yarn breakage occurs due to stretching.

毛羽の多い繊維糸条しか得られず,しかも繊維の物性も
従来のアクリル系繊維に比べて必ずしも高強度,高弾性
率を示すものでもないのである。
Only fiber yarns with a lot of fluff can be obtained, and the physical properties of the fibers do not necessarily exhibit high strength or high elastic modulus compared to conventional acrylic fibers.

このような紡糸性.延伸性の低下は,AN系重合体の極
限粘度が約3.5以上になると,急激に著しくなり,さ
らに約4.0を越えると1通常の湿式紡糸を以てしては
,少なくとも生産性よく紡糸することが技術的に著しく
困難になるのである。
Such spinnability. The deterioration in drawability suddenly becomes significant when the intrinsic viscosity of the AN polymer increases to about 3.5 or higher, and when the intrinsic viscosity of the AN polymer exceeds about 4.0, it becomes impossible to spin the yarn with good productivity, at least by normal wet spinning. This makes it technically extremely difficult to do so.

このような重合度(極限粘度)の増大に伴う紡糸もしく
は 製糸上の欠陥がポリマの重合度を繊維の引張強度や
弾性率の大巾な向上に寄与せしめることを困難にしてい
るものと推定されるが1本発明は,後述する特定の紡糸
手段をこの高重合度AN系重合体の紡糸に適用すること
によって,上記問題を解消し2本発明の卓越した高物性
A.N系繊維の製造を可能にしたものである。
It is presumed that defects in spinning or spinning that accompany an increase in the degree of polymerization (intrinsic viscosity) make it difficult for the degree of polymerization of the polymer to contribute to a significant improvement in the tensile strength and elastic modulus of the fiber. However, the present invention solves the above problems by applying a specific spinning means to be described later to the spinning of this highly polymerized AN-based polymer. This made it possible to manufacture N-based fibers.

すなわち、前記極限粘度が少なくとも2.0好ましくは
3.8を越えるAN系重合体からなる強度が9、5以上
9弾性率がI Bog / d 、特に200g,;’
 d以上の高強度高弾性率AN系繊維は,前記重合体を
乾湿式紡糸することによって初めて工業的に得ることが
でき,工業的な汎用紡糸法である湿式あるいは乾式紡糸
法によっては得ることができないのである。
That is, the strength is 9, 5 or more and the elastic modulus is I Bog / d, especially 200 g;'
High-strength, high-modulus AN-based fibers with a strength of d or more can only be obtained industrially by dry-wet spinning the above polymer, and cannot be obtained by wet or dry spinning, which is a general-purpose industrial spinning method. It cannot be done.

乾湿式紡糸法,すなわち紡糸原液を直接凝固液体温に吐
出しないで,一旦空気等の不活性雰囲気の微小空間に吐
出し9次いでこの吐出糸条を凝固浴中に導いて糸条を形
成させる紡糸法そのものは公知であるが,前記特定の高
強度,高弾性率AN系繊維が特定の極限粘度を有するA
N系重合体を乾湿式紡糸することに よってのみ得られ
ると云う事実は,全く知られていない。以下1本発明の
乾湿式紡糸の具体的態様について詳述する。
Dry-wet spinning method, that is, the spinning stock solution is not directly discharged to the temperature of the coagulating liquid, but is first discharged into a microscopic space in an inert atmosphere such as air9.Then, this discharged thread is introduced into a coagulation bath to form a thread. Although the method itself is well known, it is possible to
The fact that it can only be obtained by dry-wet spinning N-based polymers is completely unknown. Hereinafter, a specific embodiment of the dry-wet spinning of the present invention will be described in detail.

まず、極限粘度が少なくとも2.0のAN系重合体の製
造法としては、公知の懸濁重合、乳化重合及び溶液重合
などが、いずれも用いられるが、好ましくは、溶液重合
により重合するのがよい。
First, as a method for producing an AN polymer having an intrinsic viscosity of at least 2.0, any of known suspension polymerization, emulsion polymerization, solution polymerization, etc. can be used, but solution polymerization is preferably used. good.

ここで、該AN系重合体はその重合度が大きいために、
溶解性が低下し、紡糸安定性の良好な紡糸原液が得られ
ないことがあるから、溶剤の選択が重要である。この溶
剤としては、たとえば、 DMSo、DMA、DMF、
ロダンソーダ、塩化亜鉛の水溶液、硝酸などがあるが、
好ましくは、 DMSo、DMA、DMF、特にDMS
Oが最良である。
Here, since the AN-based polymer has a high degree of polymerization,
The selection of the solvent is important because the solubility may decrease and a spinning dope with good spinning stability may not be obtained. Examples of this solvent include DMSo, DMA, DMF,
There are Rodan soda, zinc chloride aqueous solution, nitric acid, etc.
Preferably DMSo, DMA, DMF, especially DMS
O is the best.

また、ポリマ濃度としては、ポリマの極限粘度や溶媒の
種類によるが、45℃における溶媒粘度が少な(とも2
000ポイズ、好ましくは、 5000 〜10000
ボイズの範囲内で高濃度、好ましくはポリマ濃度約5〜
15%するのがよい。この粘度が2000ボイズよりも
小さくなると、ポリマ濃度が低すぎるため強伸度的性質
が低下するし、製造コスト面でも不利になる。
In addition, the polymer concentration depends on the intrinsic viscosity of the polymer and the type of solvent, but the solvent viscosity at 45°C is low (both 2
000 poise, preferably 5000 to 10000
High concentration within the void range, preferably polymer concentration of about 5 to
15% is better. If the viscosity is less than 2000 voids, the polymer concentration will be too low, resulting in poor strength and elongation properties, and will also be disadvantageous in terms of manufacturing cost.

また、粘度が余りに大きすぎると、紡糸性が低下し、生
産性が低下するので9通常15.000ボイズ以下にす
るのがよい。
In addition, if the viscosity is too high, spinnability and productivity will be reduced, so it is generally preferable to keep the viscosity at 15,000 voids or less.

本発明において、極限粘度は次の測定される値である。In the present invention, the intrinsic viscosity is the following measured value.

約75mgの乾燥したポリマ(サンプル)を25m1の
フラスコに入れ、0.INチオシアン酸ソーダを含むジ
メチルホルムアミドを加えて完全に溶解する。得られた
溶液をオストヮルド粘度針を用いて20°Cで比粘度を
測定し次式にしたがって極限粘度を算出する。
Approximately 75 mg of dry polymer (sample) was placed in a 25 ml flask and 0. Add dimethylformamide containing IN sodium thiocyanate and dissolve completely. The specific viscosity of the obtained solution was measured at 20° C. using an Ostold viscosity needle, and the intrinsic viscosity was calculated according to the following formula.

0.198 このような極限粘度、溶液粘度を有する紡糸原液は、凝
固浴面上に設置された紡糸口金を通して吐出され、吐出
糸条は一定の不活性雰囲気中、たとえば、空気中を走行
した後、凝固浴中に導かれる。ここで、吐出糸条が不活
性雰囲気中を走行する距離(口金面から凝固浴面までの
距1ilII)は、紡糸原液の溶媒、粘度などにより異
なるが1通常1〜200 mm、好ましくは、3〜20
++unに設定するのがよい。
0.198 The spinning dope having such an intrinsic viscosity and solution viscosity is discharged through a spinneret installed on the surface of the coagulation bath, and the discharged yarn is run in a certain inert atmosphere, for example, in air. , led into a coagulation bath. Here, the distance that the discharged yarn travels in the inert atmosphere (distance 1ilII from the spinneret surface to the coagulation bath surface) varies depending on the solvent and viscosity of the spinning stock solution, but is usually 1 to 200 mm, preferably 3 ~20
It is better to set it to ++un.

特に9本発明の高強度、高弾性率繊維を安定的に製造す
るためには、上記不活性雰囲気走行距離が1mm以下で
は好ましくないし、他方2001を越えると紡糸安定性
が低下し、一定品質の繊維が得られなくなるので好まし
くない。
In particular, in order to stably produce the high-strength, high-modulus fiber of the present invention, it is undesirable for the above-mentioned inert atmosphere running distance to be less than 1 mm, and on the other hand, if it exceeds 2,001 mm, the spinning stability decreases and a certain quality cannot be achieved. This is not preferable because fibers cannot be obtained.

凝固浴としては、湿式紡糸法と同様にポリマの溶剤と共
通の溶剤水溶液が用いられ、ここで凝固した糸条は、熱
水中および/または蒸熱下で洗浄。
As with the wet spinning method, the coagulation bath uses an aqueous solution of the same solvent as the polymer solvent, and the threads coagulated here are washed in hot water and/or steam.

脱溶媒されながら2〜10倍に延伸される。The film is stretched 2 to 10 times while being desolvated.

更に乾燥緻密化を行った後、乾熱で少なくとも1.1倍
好ましくは、1,5倍の延伸を行い、全延伸倍率を10
倍好ましくは12倍以上とする。乾熱延伸温度としては
、150〜270℃好ましくは200〜250℃がよい
After further dry densification, dry heat stretching is carried out by at least 1.1 times, preferably 1.5 times, to bring the total stretching ratio to 10.
It is preferably 12 times or more. The dry heat stretching temperature is preferably 150 to 270°C, preferably 200 to 250°C.

かくして得られる本発明のAN系繊維は、引張強度が少
なくとも9.5g/d、弾性率が180g/d以上とい
う従来のAN系繊維とは比較にならない極めて大きい機
械的性質を有している。
The AN-based fiber of the present invention thus obtained has extremely high mechanical properties that are incomparable to conventional AN-based fibers, such as a tensile strength of at least 9.5 g/d and an elastic modulus of 180 g/d or more.

本発明のAN系繊維がこのような高強度高弾性を示す理
由は十分に、明らかではないが、該繊維を構成する高重
合度AN系重合体が繊維軸方向に高度に配向されている
ためと考えられ、その根拠として本発明のAN系繊維は
、X線結晶配向度が約93%以上の値を示すことがあげ
られる。 ゛従来の衣料用の汎用AN系繊維においても
、高度に延伸を行ったときは、90%を越えるX線配向
度を示すことがあるが2重合度の増大に伴ってAN系繊
維のX線配向度を向上させることは著しく困難になり1
本発明のAN系繊維が少なくとも2.0を越える極限粘
度を有するポリマから構成されているにも拘わらず、約
93%を越えるX線結晶配向度を示すことは驚くべきこ
とである。
Although the reason why the AN-based fiber of the present invention exhibits such high strength and high elasticity is not fully clear, it is because the highly polymerized AN-based polymer constituting the fiber is highly oriented in the fiber axis direction. This is thought to be based on the fact that the AN-based fiber of the present invention exhibits a degree of X-ray crystal orientation of about 93% or more.゛Even in conventional general-purpose AN-based fibers for clothing, when highly stretched, they can show a degree of X-ray orientation exceeding 90%, but as the degree of bipolymerization increases, the It becomes extremely difficult to improve the degree of orientation1
It is surprising that the AN-based fibers of the present invention exhibit a degree of X-ray crystal orientation of greater than about 93%, despite being composed of a polymer having an intrinsic viscosity of at least greater than 2.0.

本発明のAN系繊維はアクリル系繊維の特長である染色
堅牢性および耐光、耐候性に加えて、その引張強度およ
び弾性率が著、1シ<大きいために従来のAN系繊維を
使用できな゛かった産業資材用途はもちろんのこと繊維
を補強材もしくは強化材とする各種の複合材料(コンポ
ジット)用としてあるいは炭素繊維製造用プレカーサと
してAN系繊維の用途を大きく拡大するものであり、そ
の有用性は、極めて大きい。
In addition to the color fastness, light fastness, and weather resistance that are the characteristics of acrylic fibers, the AN-based fibers of the present invention have remarkable tensile strength and elastic modulus, making it impossible to use conventional AN-based fibers. This greatly expands the applications of AN-based fibers, not only for their industrial material applications, but also for various composite materials that use fibers as reinforcing materials or as precursors for carbon fiber production. Gender is extremely large.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 I AN97%、アクリル酸メチル3%の仕込み組成で水系
乳化重合を行い、極限粘度を変更したAN系重合体を作
成した。得られた重合体の極限粘度は、夫々1.2.1
.8.2.2.3.1.5.3.10.2であった。こ
の重合体を各々DMSOに溶解し、紡糸原液を作成した
Example I Aqueous emulsion polymerization was carried out using a charging composition of 97% AN and 3% methyl acrylate to produce AN polymers with different intrinsic viscosity. The intrinsic viscosities of the obtained polymers are 1.2.1, respectively.
.. 8.2.2.3.1.5.3.10.2. Each of these polymers was dissolved in DMSO to prepare a spinning stock solution.

これらの紡糸原液を用いて、湿式および乾湿式紡糸を行
い、得られ大繊維の強度、ヤング率を測定し、その結果
を第1表に示した。
Wet and dry-wet spinning were performed using these spinning solutions, and the strength and Young's modulus of the resulting large fibers were measured. The results are shown in Table 1.

なお、凝固浴は20℃の55%DMSO水溶液を用い、
1浴引取速度2m / m i nとした。また。
The coagulation bath was a 55% DMSO aqueous solution at 20°C.
The take-up speed for one bath was 2 m/min. Also.

乾湿式紡糸の場合の空間部分の長さは10mmとした。The length of the space in the case of dry-wet spinning was 10 mm.

得られた未延伸糸は熱水中で6倍延伸し、水洗第1表 110℃で乾燥後、乾熱チューブで最高延伸率で延伸し
、評価した。
The obtained undrawn yarn was stretched 6 times in hot water, washed with water and dried at 110° C. in Table 1, and then stretched in a dry heat tube at the highest stretching rate and evaluated.

極限粘度が2以上、特に3.8を越えた乾湿式紡糸品は
、すぐれた強度および弾性率を有していることがわかる
It can be seen that dry-wet spun products with an intrinsic viscosity of 2 or more, particularly over 3.8, have excellent strength and elastic modulus.

実施例−2 AN系99%、2− アクリルアミドジメチルプロパン
スルホン酸1%の組成比でDMSO中の熔。
Example-2 Melt in DMSO with a composition ratio of 99% AN system and 1% 2-acrylamidodimethylpropanesulfonic acid.

液重合を行い、極限粘度=5.5の重合体を得た濃縮に
よってポリマ濃度を変更し6%、8%。
Liquid polymerization was performed to obtain a polymer with an intrinsic viscosity of 5.5.The polymer concentration was changed to 6% and 8% by concentration.

10%、12%の原液を作成した。45℃の粘度は、夫
々、1.300.2.100.5.200.9.800
ポイズであった。
Stock solutions of 10% and 12% were prepared. The viscosity at 45°C is 1.300.2.100.5.200.9.800, respectively.
It was Poise.

原液を80℃に加温し、空間部の長さを10mmとして
、 10℃、 50%DMSO水溶液中に吐出し、凝固
糸を得た。凝固糸を熱水中で7倍延伸し、100℃で緊
張乾燥後、更に乾熱チューブを用いて。
The stock solution was heated to 80° C., the length of the space was set to 10 mm, and the solution was discharged into a 50% DMSO aqueous solution at 10° C. to obtain a coagulated thread. The coagulated thread was stretched 7 times in hot water, strain-dried at 100°C, and then further dried using a dry heat tube.

220℃で1.8倍延伸を行った。得られた繊維の物性
評価を行い、第2表にまとめた。
Stretching was performed by 1.8 times at 220°C. The physical properties of the obtained fibers were evaluated and summarized in Table 2.

第2表 ポリマ濃度が高い方が強度、ヤング率とも高くなり、4
5℃の粘度が2,000ボイズ以上好ましくは5.00
0ボイズ以上となるように、ポリマ濃度を上げることが
望ましい。
Table 2 The higher the polymer concentration, the higher the strength and Young's modulus.
Viscosity at 5°C is 2,000 voids or more, preferably 5.00
It is desirable to increase the polymer concentration so that the void is 0 or more.

実施例 3 AN100%をDMSO溶媒中で均一溶液重合し極限粘
度が6.0の重合体を得た。
Example 3 100% AN was homogeneously solution polymerized in a DMSO solvent to obtain a polymer having an intrinsic viscosity of 6.0.

ポリマ濃度が10%の原液を作製したところ、45℃の
粘度が6.100ボイズであった。
When a stock solution with a polymer concentration of 10% was prepared, the viscosity at 45° C. was 6.100 voids.

原液を90℃に加温し、空間部の長さを15 mmとし
て15℃、30%DMSO水溶液中に吐出し。
The stock solution was heated to 90°C and discharged into a 30% DMSO aqueous solution at 15°C with a space length of 15 mm.

10 m /minで引き取った。水洗しながら熱水中
で6倍に延伸し、100℃で乾燥後、熱板を用いて23
0℃で2.0倍延伸を行った。
It was pulled at a speed of 10 m/min. Stretched 6 times in hot water while washing with water, dried at 100°C, and stretched 23 times using a hot plate.
Stretching was performed by 2.0 times at 0°C.

得られた繊維の物性は、デニールld 、強度12.8
g/ d 、伸度8%、ヤング率220g/dであった
The physical properties of the obtained fibers are as follows: denier ld, strength 12.8
g/d, elongation of 8%, and Young's modulus of 220 g/d.

特許出願人 東し株式会社Patent applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)極限粘度が少なくとも約2.0を越えるアクリル
ニトリル系重合体を乾・湿式紡糸することによって得ら
れた引張強度が9.5’g/d以上弾性率が180g/
 d以上である高強度、高弾性率アクリル系繊維。 (2、特許請求の範囲第1項において、アクリルニトリ
ル系重合体の極限粘度が少なくとも3.8を越える重合
体であり、引張強度が10g/d以上である高強度、高
弾性率アクリル系繊維。 (3)特許請求の範囲第1項において、アクリルニトリ
ル系重合体が少なくとも90重量%のアクリルニトリル
と10重量%以下の共重合性を有す墨ビニル系化合物か
らなり、少なくとも4.0を越える極限粘度を有するア
クリルニトリル系重合体から構成されてなる高強度、高
弾性率アクリル系繊維。 (4)特許請求の範囲第1〜2項において、アクリル系
繊維の引張強度が10g/ d以上5弾性率が少なくと
も約2008/dである高強度、高弾性率アクリル系繊
維。 (5)極限粘度が少なくとも2.0であるアクリルニト
リル系重合体を該アクリルニトリル系重合体の溶媒に溶
解して、45℃における溶液粘度が少なくとも2000
ポイズである紡糸ドープを作成し、この紡糸ドープを乾
・湿式紡糸した後、湿熱または蒸熱下約2〜lO倍の一
次延伸を行い。 水洗、乾燥の各工程を経由せしめた後、乾熱延伸を施し
、ついで有効全延伸倍率を乾・湿式紡糸出の未延伸糸条
の少なくとも10倍とすることを特徴とする高強度、高
弾性率アクリル系繊維の製造法。 (6)特許請求の範囲第5項おいて、アクリルニトリル
系重合体の溶媒がジメチルスルホキシド、N、N−ジメ
チルホルムアミド、N、N−ジメチルアセトアミドから
なる群から選ばれた少くとも一種の単独または混合溶媒
である高強度高弾性率アクリル系繊維の製造法
[Scope of Claims] (1) A tensile strength of 9.5'g/d or more and an elastic modulus of 180g obtained by dry/wet spinning an acrylonitrile polymer having an intrinsic viscosity of at least about 2.0 or more. /
High strength, high elastic modulus acrylic fiber that is d or higher. (2. In claim 1, the high strength, high modulus acrylic fiber is an acrylonitrile polymer whose intrinsic viscosity exceeds at least 3.8, and whose tensile strength is 10 g/d or more. (3) In claim 1, the acrylonitrile polymer is composed of at least 90% by weight of acrylonitrile and a black vinyl compound having a copolymerizability of 10% by weight or less, and has at least 4.0% by weight of a black vinyl compound. High-strength, high-modulus acrylic fiber composed of an acrylonitrile polymer having an intrinsic viscosity exceeding (5) A high strength, high modulus acrylic fiber having an elastic modulus of at least about 2008/d. (5) An acrylonitrile polymer having an intrinsic viscosity of at least 2.0 is dissolved in a solvent for the acrylonitrile polymer. and the solution viscosity at 45°C is at least 2000
A spinning dope of poise is prepared, and after this spinning dope is subjected to dry/wet spinning, it is first stretched by about 2 to 10 times under wet heat or steam heat. High strength and high elasticity characterized by subjecting the yarn to dry heat stretching after passing through the steps of water washing and drying, and then making the effective total stretching ratio at least 10 times that of the undrawn yarn from dry and wet spinning. Production method of acrylic fiber. (6) In claim 5, the solvent for the acrylonitrile polymer is at least one selected from the group consisting of dimethyl sulfoxide, N,N-dimethylformamide, and N,N-dimethylacetamide, or Production method of high strength, high modulus acrylic fiber using mixed solvent
JP58128006A 1983-07-15 1983-07-15 High-strength, high-modulus acrylic fiber manufacturing method Expired - Lifetime JPH0711086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128006A JPH0711086B2 (en) 1983-07-15 1983-07-15 High-strength, high-modulus acrylic fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128006A JPH0711086B2 (en) 1983-07-15 1983-07-15 High-strength, high-modulus acrylic fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS6021905A true JPS6021905A (en) 1985-02-04
JPH0711086B2 JPH0711086B2 (en) 1995-02-08

Family

ID=14974137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128006A Expired - Lifetime JPH0711086B2 (en) 1983-07-15 1983-07-15 High-strength, high-modulus acrylic fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0711086B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194111A (en) * 1984-02-25 1985-10-02 ヘキスト・アクチエンゲゼルシヤフト Monofilament and bristle comprising acrylonitrile homopolymer or copolymer and its production
JPS61163149A (en) * 1985-01-09 1986-07-23 東レ株式会社 Acrylic fiber for reinforcement
JPS61215712A (en) * 1985-03-19 1986-09-25 Toray Ind Inc Acrylic multifilament yarn having high tenacity
EP0201908A2 (en) * 1985-05-14 1986-11-20 Mitsubishi Rayon Co., Ltd Acrylonitrile spinning solution and process for producing fibers therewith
JPS62197342A (en) * 1986-02-24 1987-09-01 東レ株式会社 Manufacture of fiber reinforced inorganic product
JPS62282016A (en) * 1986-05-27 1987-12-07 Asahi Chem Ind Co Ltd Highly stereoregular acrylic fiber
JPS6366317A (en) * 1986-09-08 1988-03-25 Mitsubishi Rayon Co Ltd Highly orientated polyacrylonitrile based fiber and production thereof
JPS63138275U (en) * 1987-03-03 1988-09-12
JPS63256713A (en) * 1987-04-09 1988-10-24 Toray Ind Inc High-strength acrylic yarn and production thereof
CN114164503A (en) * 2020-09-11 2022-03-11 中国石油化工股份有限公司 Dry acrylic fiber spinning method and stock solution preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381724A (en) * 1976-12-24 1978-07-19 Asahi Chem Ind Co Ltd Production of acrylic synthetic fibers
JPS5751810A (en) * 1980-07-23 1982-03-26 Hoechst Ag High module polyacrylonitrile yarn , fiber and method
JPS57161117A (en) * 1981-03-20 1982-10-04 Hoechst Ag Set polyacrylonitrile filament and fiber and production thereof
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381724A (en) * 1976-12-24 1978-07-19 Asahi Chem Ind Co Ltd Production of acrylic synthetic fibers
JPS5751810A (en) * 1980-07-23 1982-03-26 Hoechst Ag High module polyacrylonitrile yarn , fiber and method
JPS57161117A (en) * 1981-03-20 1982-10-04 Hoechst Ag Set polyacrylonitrile filament and fiber and production thereof
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194111A (en) * 1984-02-25 1985-10-02 ヘキスト・アクチエンゲゼルシヤフト Monofilament and bristle comprising acrylonitrile homopolymer or copolymer and its production
JPS61163149A (en) * 1985-01-09 1986-07-23 東レ株式会社 Acrylic fiber for reinforcement
JPS61215712A (en) * 1985-03-19 1986-09-25 Toray Ind Inc Acrylic multifilament yarn having high tenacity
US4831069A (en) * 1985-05-14 1989-05-16 Mitsubishi Rayon Co., Ltd. Acrylonitrile spinning solution and process for producing fibers therewith
EP0201908A2 (en) * 1985-05-14 1986-11-20 Mitsubishi Rayon Co., Ltd Acrylonitrile spinning solution and process for producing fibers therewith
JPS62197342A (en) * 1986-02-24 1987-09-01 東レ株式会社 Manufacture of fiber reinforced inorganic product
JPS62282016A (en) * 1986-05-27 1987-12-07 Asahi Chem Ind Co Ltd Highly stereoregular acrylic fiber
JPS6366317A (en) * 1986-09-08 1988-03-25 Mitsubishi Rayon Co Ltd Highly orientated polyacrylonitrile based fiber and production thereof
JPH0372723B2 (en) * 1986-09-08 1991-11-19 Mitsubishi Rayon Co
JPS63138275U (en) * 1987-03-03 1988-09-12
JPS63256713A (en) * 1987-04-09 1988-10-24 Toray Ind Inc High-strength acrylic yarn and production thereof
CN114164503A (en) * 2020-09-11 2022-03-11 中国石油化工股份有限公司 Dry acrylic fiber spinning method and stock solution preparation method
CN114164503B (en) * 2020-09-11 2022-12-27 中国石油化工股份有限公司 Dry acrylic fiber spinning method and stock solution preparation method

Also Published As

Publication number Publication date
JPH0711086B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4659529A (en) Method for the production of high strength polyacrylonitrile fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPH0657524A (en) Production of acrylic fiber
JP4392099B2 (en) Acrylic fiber manufacturing method
JPH03206114A (en) Ultrafine acrylic fiber
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
JPH01104820A (en) Production of high-strength acrylic fiber
JPH0465523A (en) Production of acrylic synthetic fiber with deep wrinkle
JPH07109616A (en) Polyvinyl alcohol fiber, its production and spinneret for dry-spinning therefor
JPH07243121A (en) Production of high-strength acrylic fiber
JPS61152811A (en) High tenacity acrylic fiber yarn and production thereof
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP2011231412A (en) Polyacrylonitrile-based fiber and carbon fiber made from the same
JPS6018333B2 (en) Manufacturing method of heat-resistant acrylonitrile fiber
JPS6364528B2 (en)
JPH05239712A (en) Production of high-tenacity acrylic fiber having excellent abrasion resistance
JPS6385108A (en) Highly strong acrylic fiber and production thereof