JPS60212740A - Granule moving element - Google Patents
Granule moving elementInfo
- Publication number
- JPS60212740A JPS60212740A JP59067369A JP6736984A JPS60212740A JP S60212740 A JPS60212740 A JP S60212740A JP 59067369 A JP59067369 A JP 59067369A JP 6736984 A JP6736984 A JP 6736984A JP S60212740 A JPS60212740 A JP S60212740A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- heating resistor
- granule
- particles
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
【発明の詳細な説明】 〔技術分野〕 本発明は微小な粒体を移動させる素子に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to an element for moving minute particles.
従来よシ物体を移動させる方法としては、直接物体に触
れて力を加え移動させる方法、又は電磁力を用いて非接
触で物体を移動させる方法が周知であるが、これらはい
づれも微小な物体が高い密度で存在する時に各々独立に
所望の距離だけ移動せしめることは十分には行ない得な
い、即ち、物体に直接触れる方法では物体が微小になる
と高密度配置のためにはその動作機構をも微小なものと
せざるを得ないが、その実現は著しく困難であるゆまた
、電磁力を用いる方法では微小物体を高密度配置して動
作せしめる際のシールドを十分に行なうことが困難であ
り誤動作のおそれがある。Conventional methods for moving objects include directly touching the object and applying force to move it, and using electromagnetic force to move the object without contact, but both of these methods involve small objects. When objects are present in a high density, it is not possible to move each object independently by a desired distance. In other words, if the method of directly touching the object becomes minute, the movement mechanism must be adjusted to arrange it at a high density. However, it is extremely difficult to realize this, and in addition, with methods that use electromagnetic force, it is difficult to provide sufficient shielding when micro objects are arranged in high density and operated, which can lead to malfunctions. There is a risk.
近年、特に各種装置たとえは弐示装置や記録装置におけ
る物体移動エレメントの小型化及び高密度化が要求され
ておシ、微小な物体を高密度に配置して正確に駆動せし
める手段が強く要望されている。In recent years, there has been a demand for smaller and higher-density object moving elements, particularly in various devices such as display devices and recording devices, and there is a strong demand for means for arranging minute objects in a high-density manner and driving them accurately. ing.
本発明は、以上の如き従来技術に鑑み、微小な粒体の移
動を高い精度で行なうことを目的とする。In view of the prior art as described above, the present invention aims to move minute particles with high precision.
本発明によれは、以上の如き目的は、液体中に粒体を存
在せしめ、該液体を介して対向する部材において温度制
御手段を形成し、該温度制御手段によシ液体の温度を部
分的に変えることによル達成される。According to the present invention, the above-mentioned object is to cause particles to exist in a liquid, to form temperature control means in members facing each other via the liquid, and to partially control the temperature of the liquid by the temperature control means. This is accomplished by changing to
以下、図面に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail based on the drawings.
第1図は本発明粒体移動素子の第1の実施例を示す概略
断面図でア)、第2図はその概略斜視図である。図にお
いて、1は保護板、2はエチルアルコールよりなる液体
層、4&及び4bはそれぞれ発熱抵抗体3a及び3bを
含み且つ絶縁性の物質S tO2からなる発熱抵抗体層
、5m+5bは絶縁性の支持体である。6は気泡で形成
された粒体、8は導電線であシ、発熱抵抗体3a、3b
を各々独立に駆動できる機側々の駆動電源7 a p
7 b K接続され、一方発熱抵抗体3a、3bの他@
9は接地あるいは共通の電圧に設定されている。従りて
各々の発熱抵抗体に印加する電圧を制御することによp
1発熱抵抗体の近傍の液体層の温度を制御できる。FIG. 1 is a schematic sectional view showing a first embodiment of the particle moving element of the present invention, and FIG. 2 is a schematic perspective view thereof. In the figure, 1 is a protective plate, 2 is a liquid layer made of ethyl alcohol, 4 & and 4b are heating resistor layers containing heating resistors 3a and 3b, respectively, and made of an insulating substance S tO2, 5m + 5b is an insulating support It is the body. 6 is a particle formed of air bubbles, 8 is a conductive wire, heating resistors 3a, 3b
Drive power source 7 for each side of the machine that can drive each independently
7 b K connected, while heating resistors 3a, 3b and others @
9 is set to ground or a common voltage. Therefore, by controlling the voltage applied to each heating resistor, p
1. The temperature of the liquid layer near the heating resistor can be controlled.
第1図に示す様に発熱抵抗体3aに電圧が印加されてい
る場合には気泡からなる粒体6は前記発熱抵抗体3&の
近傍に位置するが、発熱抵抗体3&に印加する電圧を切
p1発熱抵抗体3bに電圧を印加すると粒体6紘矢印方
向に移動し発熱抵抗体3bの近傍に保持される。この様
に、液体内で温度差を形成することによシ粒体6は移動
し、第1図で示す様な素子であれば、発熱している抵抗
体の近傍に粒体が移動してゆく。従って電圧を印加する
発熱抵抗体を選ぶことによ)、粒体の位置を制御するこ
とが出来るのである。As shown in FIG. 1, when a voltage is applied to the heating resistor 3a, the particles 6 made of air bubbles are located near the heating resistor 3&, but when the voltage applied to the heating resistor 3& is turned off, When a voltage is applied to the p1 heating resistor 3b, the particles 6 move in the direction of the arrow and are held near the heating resistor 3b. In this way, the grains 6 move by creating a temperature difference in the liquid, and in the case of an element like the one shown in FIG. 1, the grains move near the resistor that is generating heat. go. Therefore, by selecting the heating resistor to which voltage is applied, the position of the particles can be controlled.
第1図に示す素子で液体内に気泡を粒体6として設ける
場合には、発熱抵抗体に熱をかけて液体2中において蒸
気泡を形成することで、容易に液体2内に気泡を形成す
ることが出来る。When providing air bubbles in the liquid as particles 6 using the element shown in FIG. 1, the air bubbles can be easily formed in the liquid 2 by applying heat to the heating resistor to form vapor bubbles in the liquid 2. You can.
また、第1図に示す素子では液体2内で粒体6を保持す
る為に1粒体を引きつけていゐ発熱抵抗体に1液体に蒸
気泡を生じない程度の電圧をバイアス電圧(保持電圧)
として印加しておくことが望ましい。又、別の駆動方法
としては、総ての発熱抵抗体に上記バイアス電圧を印加
させておき、粒体6を移動させる目的の位置に存する発
熱抵抗体にバイアス電圧以上の比較的高い電圧を印加し
て粒体6t−引き寄せ、その後バイアス電圧まで下げ、
この様にして、粒体6を所定の位置−に保持することが
できる。In addition, in the device shown in Fig. 1, in order to hold the particles 6 in the liquid 2, a bias voltage (holding voltage) is applied to the heating resistor that attracts the particles 6 to a level that does not cause vapor bubbles in the liquid.
It is desirable to apply it as Another driving method is to apply the above bias voltage to all the heat generating resistors, and then apply a relatively high voltage higher than the bias voltage to the heat generating resistors located at the desired position to move the particles 6. to attract the grain 6t, then lower the bias voltage,
In this way, the grains 6 can be held in a predetermined position.
本実施例素子においては、温度制御手段として複数の発
熱抵抗体が用いられておシ、これらは液体2を介して対
向する複数の部羽即ち発熱抵抗体層4&及び4b内に形
成されている。In the device of this embodiment, a plurality of heating resistors are used as temperature control means, and these are formed in a plurality of parts facing each other with the liquid 2 interposed therebetween, that is, heating resistor layers 4& and 4b. .
第3図は本発明粒体移動素子の第2の実施例を示す断面
図である。図において、11は保護板、12a液体層、
13a及び13klは光エネルギー吸収層であシ、液体
層12を介して対向する位置に配置されている。14
a + 14 bは保護層、15m、15bは絶縁性支
持体、16は粒体である。17は半導体レーザの如き光
源部、18はガルバノミラ−118* U、ffルパノ
ミ2−の回転軸、19は2面反射鏡、20,21#22
及び23は平面反射鏡である。FIG. 3 is a sectional view showing a second embodiment of the particle moving element of the present invention. In the figure, 11 is a protection plate, 12a is a liquid layer,
13a and 13kl are optical energy absorbing layers, which are arranged at opposite positions with the liquid layer 12 interposed therebetween. 14
a + 14 b is a protective layer, 15m and 15b are insulating supports, and 16 is a granule. 17 is a light source unit such as a semiconductor laser, 18 is the rotation axis of the galvanometer mirror 118*U, ff lupanomir 2-, 19 is a two-sided reflecting mirror, 20, 21 #22
and 23 are flat reflecting mirrors.
光源部17を出た光束り、はガルパノミ2−18.2面
反射#!19、平面反射鏡20.21を介して光エネル
ギー吸収層13&に到達し、ここで光が吸収されて熱が
発生し該吸収層131をあたためる。この熱は保護層1
4mを介して液体層12に伝達される。ガルバノミラ−
18を回転させるととKより光速L1を2面反射鏡19
、平面反射鏡22.23を介して光エネルギー吸収層1
3bへ到達せしめることができる。The light beam that exits the light source section 17 is reflected from the two surfaces of Garpanomi 2-18. 19. The light reaches the energy absorbing layer 13 & through the plane reflecting mirrors 20 and 21, where the light is absorbed and generates heat, which warms the absorbing layer 131. This heat is the protective layer 1
4 m to the liquid layer 12. Galvano mirror
When rotating 18, the speed of light L1 changes from K to the two-sided reflecting mirror 19.
, the light energy absorbing layer 1 through the plane reflecting mirrors 22 and 23.
3b can be reached.
本実施例素子における光エネルギー吸収層13m及び1
3b中1cU上記第1の実施例において用いられた様な
発熱抵抗体を埋設することができる。Optical energy absorption layers 13m and 1 in this example element
A heating resistor such as that used in the first embodiment described above can be embedded in 1 cU in 3 b.
そして、発熱抵抗体には粒体16を保持するに足る熱量
を発生するだけの電圧を印加し、一方粒体16を移動さ
せる発熱量を得るためには上記光束L1の入射を用いる
ことができる0%ちるん、これらの役割を逆にすること
もできる。Then, a voltage sufficient to generate enough heat to hold the grains 16 is applied to the heating resistor, while the incident light beam L1 can be used to obtain the amount of heat to move the grains 16. 0% Chirun, you can also reverse these roles.
本実施例においては、温度制御手段として複数の光エネ
ルギー吸収層13m、13bまた紘これらの内部に発熱
抵抗体を埋設したものが用いられてお夛、これらは液体
2を介して対向する複数の部材から構成されている。In this embodiment, a plurality of light energy absorbing layers 13m, 13b and a heat generating resistor embedded therein are used as temperature control means. It is composed of members.
第4図は本発明粒体移動素子の第3の実施例を示す概略
断面図である。本実施例は光制御素子として用いられる
例を示すものである。尚、図において第1図におけると
同様の部材には同一符号を付し説明を省略する。但し、
本実施例においては、保繰板1、液体層2、及び粒体6
は透光性を有するものを用いている。また、30は遮光
フィルターである。FIG. 4 is a schematic cross-sectional view showing a third embodiment of the particle moving element of the present invention. This example shows an example of use as a light control element. In the drawings, the same members as in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. however,
In this embodiment, the storage plate 1, the liquid layer 2, and the granules 6
uses a material that is translucent. Further, 30 is a light shielding filter.
本実施例素子において、発熱抵抗体3a及び3bへの印
加電圧を制御して粒体6を発熱抵抗体3&の近傍に位置
せしめた場合には上方から発熱抵抗体3bの近傍の液体
部分へと入射せしめられた光束エエは素子によシ何の影
響も受けず下方へと射出せしめられ光速■3となる。一
方、発熱抵抗体3a及び3bへの印加電圧を制御して粒
体6を発熱抵抗体3bの近傍に位置せしめた場合には入
射光束11は粒体によりi折または反射されて■1とは
異なる射出光束!4となる(図において点線で示す)。In the device of this example, when the voltage applied to the heating resistors 3a and 3b is controlled to position the particles 6 near the heating resistors 3&, the liquid part near the heating resistors 3b flows from above. The incident light beam A is emitted downward without being affected by the element, and has a light speed of 3. On the other hand, when the voltages applied to the heating resistors 3a and 3b are controlled to position the particles 6 near the heating resistor 3b, the incident light beam 11 is i-folded or reflected by the particles. Different exit luminous flux! 4 (indicated by a dotted line in the figure).
かくして液体層2内の粒体6の位置を制御することによ
〕、入射光束を異なる波面状態で射出せしめることがで
き、光制御が行なわれる。Thus, by controlling the position of the particles 6 in the liquid layer 2, the incident light beam can be emitted in different wavefront states, thereby performing optical control.
尚、本実施例素子において、上方から発熱抵抗体3mの
部分へ1入射せしめられた光束工8は遮光フィルター3
0によシ遮光されるが、もちろん遮光フィルター30を
取外すことKよシ入射光束l!に対して入射光束工1に
対すると同様の光制御を行なうことができる。tた、本
実施例においては上方から光束を入射させたが、適宜の
角度斜めから入射させることもできる。In the device of this example, the light beam 8 that is made to enter the heating resistor 3m from above is the light shielding filter 3.
0, but of course the light blocking filter 30 must be removed to reduce the incident light flux l! The same light control as that for the incident light beam 1 can be performed for the incident light beam. Furthermore, in this embodiment, the light beam is incident from above, but it may also be incident obliquely at an appropriate angle.
本実施例においては、液体2と粒体6との屈折率の差に
基づき光制御を行なう例を示したが、液体2及び粒体6
として光吸収性の異なるもの(たとえば、一方が透光性
で他方が遮光性のもの)を用いて粒体の有無による吸光
度の差を利用して光制御を行なうこともできる。In this embodiment, an example was shown in which light control is performed based on the difference in refractive index between the liquid 2 and the particles 6, but the liquid 2 and the particles 6
It is also possible to perform light control by using materials with different light absorbing properties (for example, one is transparent and the other is light blocking) and utilizes the difference in absorbance depending on the presence or absence of particles.
本実施例によれば入射光束は必要最小限の部材を透過す
るので入射光の有効利用が行なわれる。According to this embodiment, the incident light beam is transmitted through the minimum necessary number of members, so that the incident light is effectively utilized.
また、本実施例において社透過戯の素子を示したが、液
体層2と下部保護板1との間に光反射層を設けておくと
とKよル反射型の素子とすることもできる。この場合に
は下部保護板1は透明でおる必要はない。Further, in this embodiment, a transparent type element is shown, but if a light reflective layer is provided between the liquid layer 2 and the lower protection plate 1, a transparent type element can also be used. In this case, the lower protection plate 1 does not need to be transparent.
以上の実施例においては発熱抵抗体の数が2個の場合が
例示されているが、本発明素子においては素子の平面形
状を多角形として発熱抵抗体を3個以上設けることがで
きることはもちろんである。In the above embodiments, the case where the number of heating resistors is two is illustrated, but it goes without saying that in the element of the present invention, the planar shape of the element can be a polygon and three or more heating resistors can be provided. be.
更に、上記実施例においては液体層内に粒体が1つ存在
する場合が例示されているが、本発明素子には複数の粒
体が存在する場合も包含される。Furthermore, although the above embodiments illustrate the case where one particle exists in the liquid layer, the device of the present invention also includes cases where a plurality of particles exist.
上記実施例においては、液体としてエチルアルコールを
用いたが、本発明素子における液体としてはその他の有
機液体や水勢を使用することができる。また、上記実施
例においては、粒体としてエチルアルコールの加熱によ
シ発生せしめられたエチルアルコール蒸気泡を用いたが
、本発明素子における粒体としては同様にしてその他の
液体の加熱により発生せしめられた蒸気泡を用いること
ができ、更に粒体は外部から導入することもで鳶る。粒
体としては、更に使用液体に溶解しにくい気泡が例示で
きる。この様な具体例として、液体として水を用いた場
合における空気、酸素、窒素。In the above embodiments, ethyl alcohol was used as the liquid, but other organic liquids or water may be used as the liquid in the device of the present invention. Furthermore, in the above embodiment, ethyl alcohol vapor bubbles generated by heating ethyl alcohol were used as particles, but particles in the device of the present invention may be similarly generated by heating other liquids. Steam bubbles can be used, and granules can also be introduced from the outside. Examples of particles include air bubbles that are difficult to dissolve in the liquid used. Specific examples of this include air, oxygen, and nitrogen when water is used as the liquid.
水素、ヘリウム、ネオン、アルゴン、−酸化炭素。Hydrogen, helium, neon, argon, -carbon oxide.
−酸化窒素、メタン等の気泡が例示できる。粒体として
は更に使用液体と混シ合わない様な液体を用いることも
できる。この様な具体例として、液体として水を用いた
場合の油滴が例示できる。粒体としては更に比較的低密
度の固体粒子を用いることもできる。この様な具体例と
して、ラテックスメール、マイクロカブセル等の高分子
材料からなる市販の中空あるいは中実の微小球が例示で
きる。- Bubbles of nitrogen oxide, methane, etc. can be exemplified. It is also possible to use a liquid that is immiscible with the liquid used as the particles. A specific example of this is oil droplets when water is used as the liquid. Furthermore, solid particles having a relatively low density can also be used as the granules. Specific examples of this include commercially available hollow or solid microspheres made of polymeric materials such as latex mail and microcapsules.
以上の如き本発明粒体移動素子によれば、液体中の温度
を部分的に変えるだけで微小粒体を所望の位置へと移動
させることができ、また温度制御手段は容易に微小なも
のを作ることがで!!且つその配置を比較的密に行なう
こともできるので高密度に粒体を配置する際にもその移
動を正確に行なうことができる。According to the particle moving element of the present invention as described above, minute particles can be moved to a desired position by only partially changing the temperature in the liquid, and the temperature control means can easily move minute particles. You can make it! ! In addition, since the particles can be arranged relatively densely, they can be moved accurately even when the particles are arranged at a high density.
史に1本発明粒体移動素子においては温度制御手段は液
体を介して対向する複数の部材において形成されている
ので粒体を保持すべき複数の位置のそれぞれKおける発
熱の影響を他の位置に及ばずことがなく、この素子の応
答速度は良好である。History 1: In the particle moving element of the present invention, the temperature control means is formed of a plurality of members facing each other with a liquid interposed therebetween, so that the influence of heat generation at each of the plurality of positions where the particles are to be held is suppressed from other positions. The response speed of this element is good.
第1図は本発明素子の断面図であシ、第2図はその斜視
図でおる。第3図及び第4図は本発明素子の断面図でお
る。
1.11:保護板、2112:液体層、3 m +3b
二発熱抵抗体、4m、4b;発熱抵抗体層、5m+5b
、15m、15b:支持体、6.16二粒体、13m、
13b:光エネルギー吸収層、14m、14b:保護層
、30:遮光フィルター。
!11図
箪2図FIG. 1 is a sectional view of the device of the present invention, and FIG. 2 is a perspective view thereof. 3 and 4 are cross-sectional views of the device of the present invention. 1.11: Protective plate, 2112: Liquid layer, 3 m +3b
Two heating resistors, 4m, 4b; heating resistor layer, 5m + 5b
, 15m, 15b: Support, 6.16 two particles, 13m,
13b: light energy absorption layer, 14m, 14b: protective layer, 30: light shielding filter. ! 11 figures, 2 figures
Claims (1)
部分的に変えるための温度制御手段が設けられておシ、
該温度制御手段は液体を介して対向する複数の部材にお
いて形成されていることを特徴とする、粒体移動素子。 (2)温度制御手段が発熱抵抗体からなる、第1項の粒
体移動素子。 (3) m度制御手段が光エネルギー吸収体からなる、
第1項の粒体移動素子。 (4) !1度制御手段が発熱抵抗体と光エネルギー吸
収体との組合わせからなる、第1項の粒体移動素子。[Scope of claims]
A particle moving element characterized in that the temperature control means is formed of a plurality of members facing each other with a liquid interposed therebetween. (2) The particle moving element according to item 1, wherein the temperature control means comprises a heating resistor. (3) m degree control means consists of a light energy absorber;
Particle movement element in the first term. (4)! 1. The particle moving element according to item 1, wherein the one-time control means comprises a combination of a heating resistor and a light energy absorber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59067369A JPS60212740A (en) | 1984-04-06 | 1984-04-06 | Granule moving element |
US06/616,182 US4795243A (en) | 1983-06-10 | 1984-06-01 | Granular member moving method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59067369A JPS60212740A (en) | 1984-04-06 | 1984-04-06 | Granule moving element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60212740A true JPS60212740A (en) | 1985-10-25 |
Family
ID=13343026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59067369A Pending JPS60212740A (en) | 1983-06-10 | 1984-04-06 | Granule moving element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60212740A (en) |
-
1984
- 1984-04-06 JP JP59067369A patent/JPS60212740A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4585301A (en) | Optically actuated optical switch apparatus and methods | |
JPH045052Y2 (en) | ||
US4734359A (en) | Thermal recording material for display and image display device utilizing the same | |
GB1563113A (en) | Variable focus liquid crystal lens | |
JPH0218720A (en) | Optical head device | |
JP2002523802A (en) | Beam deflectors and scanners | |
US5382985A (en) | Thermorefractive optical switch | |
JP6469717B2 (en) | Variable photothermal lens | |
JP4482485B2 (en) | Head module | |
JPS60212740A (en) | Granule moving element | |
JPH01503814A (en) | optical data storage | |
US4566086A (en) | Information storage system utilizing electrets | |
US20030165105A1 (en) | Data memory | |
LV11390B (en) | Data storage medium and methods for recording and reading of data | |
JP4033791B2 (en) | Rewritable thin image display sheet, image display device, and image display system | |
JPS60222828A (en) | Grain moving element | |
JPS60212739A (en) | Optical control element | |
JPS60212736A (en) | Optical control element | |
JPS60212738A (en) | Optical control element | |
JPS60211435A (en) | Control element for quantity of light | |
KR950701755A (en) | Optical disk for electronic trapping optical storage media and manufacturing method thereof (IMPROVED OPTICAL DISK STRUCTURES FOR ELECTRON TRAPPING OPTICAL MEMORY MEDIA) | |
JPS60212742A (en) | Optical control device | |
JPS61134738A (en) | Optical control element | |
JP4006507B2 (en) | Light switch | |
JPS59228627A (en) | Method for optical modulation and optical modulating element |