JPS60210571A - Silicon carbide-containing alumina sintered body and manufacture - Google Patents
Silicon carbide-containing alumina sintered body and manufactureInfo
- Publication number
- JPS60210571A JPS60210571A JP59064513A JP6451384A JPS60210571A JP S60210571 A JPS60210571 A JP S60210571A JP 59064513 A JP59064513 A JP 59064513A JP 6451384 A JP6451384 A JP 6451384A JP S60210571 A JPS60210571 A JP S60210571A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- sintered body
- silicon carbide
- average particle
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は灰化珪素を含有するアルミナ質焼結体とその製
造方法に係り、詳しくは膨化珪素粒子を均一に含み、機
械的性質、熱伝導性及び電気絶縁性に優れたアルミナ質
焼結体とその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alumina sintered body containing ashed silicon and a method for producing the same, and more specifically, an alumina sintered body containing ashed silicon particles uniformly containing expanded silicon particles and having excellent mechanical properties, thermal conductivity, and electrical insulation properties. This article relates to an excellent alumina sintered body and its manufacturing method.
一般にアルミナ焼結体は、硬度、常温強度、耐熱性、化
学的安定性及び電気的絶縁性に優れた材料であり、耐蝕
耐摩耗部品、電子工業用部品、点火栓用部品などに広く
使用されている。最近、省エネルギーや新エネルギーが
重要な課題となり、耐熱性、耐蝕性、軽量性などの性質
からセラミックスを高温機械部品として使用する試みが
多く行なわれるようになった。そのなかでもアルミナ焼
結体は、高温機械部品として注目されているが、高温に
おける硬度、強度及びクリーブ特性や、破壊しん性、さ
らに耐熱衝撃性が十分な特性に到っていない。また、電
子工業の発達に伴って、半導体等の電子部品材料は高速
化あるいは高集積化が進められている。そのため、集積
回路内における発熱量が増加し、基板材料の放熱性が重
要な課題となっている。ところで、アルミナ焼結体は従
来から電子工業用の基板材料として実用化されているが
、前述の如く高速化あるいは高集積化される集積回路用
の基板材料としては熱伝導率が低く放熱性に劣るため大
きな問題となる。In general, alumina sintered bodies are materials with excellent hardness, room temperature strength, heat resistance, chemical stability, and electrical insulation, and are widely used in corrosion-resistant and wear-resistant parts, electronic industry parts, spark plug parts, etc. ing. Recently, energy conservation and new energy sources have become important issues, and many attempts have been made to use ceramics as high-temperature mechanical parts due to their properties such as heat resistance, corrosion resistance, and light weight. Among them, alumina sintered bodies are attracting attention as high-temperature mechanical parts, but their hardness, strength, cleaving properties, fracture resistance, and thermal shock resistance at high temperatures have not reached sufficient properties. Further, with the development of the electronic industry, electronic component materials such as semiconductors are becoming faster and more highly integrated. Therefore, the amount of heat generated within the integrated circuit increases, and the heat dissipation performance of the substrate material has become an important issue. By the way, alumina sintered bodies have been put to practical use as substrate materials for the electronic industry, but as mentioned above, they have low thermal conductivity and poor heat dissipation properties as substrate materials for integrated circuits that are becoming faster and more integrated. This is a big problem because it is inferior.
前記問題を解決する材料としては高純度のアルミナ粉末
を品温高圧下で焼結するアルミナホットプレス
繊維又はウィスカーとアルミナの複合材料などが検討さ
れている。しかしながら、前記ホットプレス焼結体は熱
伝導率、高温強度、破壊しん性が十分でなく、原料であ
る高純度アルミナ粉末のコストが高く、かつ生産性が悪
い。前記単結晶は熱伝導率、高l晶強度は改善されてい
るがコストが極めて高い。また、灰化珪素繊維又はウィ
スカーとアルミナの複合材料は材料の特定方向に対して
高温強度や破壊しん性の改善がなされるが、全ての方向
に前記繊維又はウィスカーとアルミナが均一に分散する
ことは実質上極めて困難なことがら、全ての方向に性質
全改善することが容易でないなどの欠点であった。As materials for solving the above problem, hot-pressed alumina fibers produced by sintering high-purity alumina powder under high pressure at material temperature, or composite materials of whiskers and alumina are being considered. However, the hot-pressed sintered body does not have sufficient thermal conductivity, high-temperature strength, or fracture resistance, the cost of high-purity alumina powder as a raw material is high, and productivity is poor. Although the single crystal has improved thermal conductivity and high l crystal strength, it is extremely expensive. Furthermore, composite materials of ashed silicon fibers or whiskers and alumina have improved high-temperature strength and fracture resistance in specific directions of the material, but the fibers or whiskers and alumina must be uniformly dispersed in all directions. However, it is difficult to completely improve the properties in all directions, which is a drawback.
本発明者らは前記諸欠点を解決することのできるアルミ
ナ質常圧焼結体を鋭意研究に努めた結果、機械的性物、
熱伝導性及び電電絶縁性に優れた炭化珪素を含んだアル
ミナ質焼結体とその製造方法を完成するに至った。The present inventors have devoted themselves to research into an alumina pressureless sintered body that can solve the above-mentioned drawbacks, and have found that mechanical properties,
We have completed an alumina sintered body containing silicon carbide with excellent thermal conductivity and electrical insulation, and a method for manufacturing the same.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
本発明の目的は、炭化珪素粒子を均一に含んだアルミナ
質焼結体とその製造方法を提供することにある。An object of the present invention is to provide an alumina sintered body uniformly containing silicon carbide particles and a method for manufacturing the same.
本発明によれば、アルミナ質常圧焼結体に灰化珪素粒子
を均一に含有させると、硬度、強度、破壊しん性、熱伝
導率及び耐熱衝撃性が大幅に向上する。その理由は、炭
化珪素は本質的に極めて硬い材料であることから灰化珪
素を含んだアルミナ質焼結体の硬度は向上し、その灰化
珪素が細かい粒子として均一に分散していることからア
ルミナ質常圧焼結体の強度も向上する。また、灰化珪素
とアルミナは化学的組成と結晶構造その他の諸性質が異
なる為にミクロ的な灰化珪素粒子とアルミナ質粒子の間
においては組成的及び(V+j造的不均一部分が生じ、
これに基づいて破壊のクラックが伝播したときにその伝
播エネルギーを消費してクラックの進展を防止すること
から破壊しん性が向上する。さらに、炭化珪素は熱伝導
率に優れた材料であることから炭化珪素全均一に含んだ
アルミナ質焼結体の熱伝導率が改善される。According to the present invention, when silicon ash particles are uniformly contained in an alumina pressureless sintered body, hardness, strength, fracture resistance, thermal conductivity, and thermal shock resistance are significantly improved. The reason for this is that silicon carbide is essentially an extremely hard material, so the hardness of an alumina sintered body containing silicon ash improves, and the silicon ash is uniformly dispersed as fine particles. The strength of the alumina pressureless sintered body is also improved. In addition, since silicon ash and alumina have different chemical compositions, crystal structures, and other properties, compositional and (V + j) non-uniformity occurs between microscopic silicon ash particles and alumina particles.
Based on this, when a fracture crack propagates, the propagation energy is consumed to prevent the crack from progressing, thereby improving fracture resistance. Furthermore, since silicon carbide is a material with excellent thermal conductivity, the thermal conductivity of an alumina sintered body containing silicon carbide uniformly throughout is improved.
また本発明によれば、アルミナ質常圧焼結体に含1れる
灰化珪素は重量比で0.5〜40%の範囲であることが
必要である。炭化珪素が0.5%より少ないと炭化珪素
金倉んだことに基づく硬度、強度、破壊しん性及び熱伝
導率の改善が十分でなく、40%より多いとアルミナと
灰化珪素の焼結性が困難となり高密度のアルミナ質常圧
焼結体が得られに<<、仮に、高密度の焼結体が得られ
ても灰化珪素粒子とアルミナ粒子の粒子間における不均
一部分が極めて多くなり機械的性質と熱的性質を大幅に
低下せしめるからであり、なかでも、灰化珪素が0.5
〜20%の範囲であることが最も好適な結果が得られる
。According to the present invention, the silicon ash contained in the alumina pressureless sintered body must be in a range of 0.5 to 40% by weight. If the silicon carbide content is less than 0.5%, improvements in hardness, strength, fracture resistance, and thermal conductivity based on silicon carbide bonding will not be sufficient, and if it is more than 40%, the sinterability of alumina and silicon ash will be insufficient. However, even if a high-density sintered body could be obtained, there would be extremely large non-uniform areas between the silicon ash particles and the alumina particles. This is because silicon ash significantly reduces mechanical and thermal properties.
The most preferable result is obtained in the range of ~20%.
本実験によれば、重量比で炭化珪素0.5〜40%に対
して、SiO2、MgO1CaO1SrO,BaOlM
nO2、F e O2、Ti0z、Z r Oa、Pb
0%Cr2es、B2O3の1種又は2種以上の添加物
0.1〜20%を含み、残部がアルミナを主体とする混
合物を出発原料とすることを特徴とする灰化珪素を含ん
だアルミナ質焼結体であることが好ましい。その理由は
、前記添加物を含むとアルミナとの間に低融点化合物が
生成し、緻密な常圧焼結体が比較的低い温度で容易に得
られるからである。さらに焼結の温度が高いと炭化珪素
中に不純物が拡散しその熱伝導率が大きく低下するのに
対し、焼結の温度が低いと不純物の拡散が防止され熱伝
導率の優れた焼結体が得られる。前記添加物が0.1%
より少ないと生成する低融点化合物が少ないことから実
質的に効果が少なく、添加物が20%を越えると低融点
化合物が多く生成し、常圧焼結体の高温機械的性質が劣
化することから0.1〜20%の範囲であることが好ま
しい。According to this experiment, SiO2, MgO1CaO1SrO, BaOlM
nO2, F e O2, Ti0z, Z r Oa, Pb
An alumina material containing ashed silicon, characterized in that the starting material is a mixture containing 0.1 to 20% of one or more additives of 0% Cr2es and B2O3, with the balance mainly consisting of alumina. A sintered body is preferable. The reason for this is that when the additives are included, a low melting point compound is formed between the alumina and the alumina, and a dense pressureless sintered body can be easily obtained at a relatively low temperature. Furthermore, if the sintering temperature is high, impurities will diffuse into silicon carbide, greatly reducing its thermal conductivity, whereas if the sintering temperature is low, the diffusion of impurities will be prevented, resulting in a sintered body with excellent thermal conductivity. is obtained. The additive is 0.1%
If the additive content is less than 20%, there will be less low-melting point compounds produced, so there will be little effect; if the additive content exceeds 20%, a lot of low-melting point compounds will be produced, and the high-temperature mechanical properties of the pressureless sintered body will deteriorate. It is preferably in the range of 0.1 to 20%.
本発明によれば、灰化珪素の平均粒径は0.05〜5.
0μmであり、アルミナの平均粒径は0.5〜50μn
Lであることが好ましい。その理由は、灰化珪素の平均
粒径が0.05μmより小さいとアルミナ質常圧焼結体
の強度に関しては有効な作用ケもたらすが゛、熱伝導率
を十分に改善する為には所定量以上台まれることが必要
だからである。一般に超微粒子のセラミックスを他のセ
ラミックス中に均一分散している状態を得るには極めて
困難となる。According to the present invention, the average particle size of the silicon ash is 0.05 to 5.
0 μm, and the average particle size of alumina is 0.5 to 50 μm.
L is preferable. The reason for this is that if the average particle size of silicon ash is smaller than 0.05 μm, it will have an effective effect on the strength of the alumina pressureless sintered body. This is because it is necessary to be supported more than that. Generally, it is extremely difficult to uniformly disperse ultrafine ceramic particles in other ceramics.
また、本発明によれば、0.05μm以下の炭化珪素を
十分な量を均一に含ませることは困難である。Further, according to the present invention, it is difficult to uniformly contain a sufficient amount of silicon carbide with a diameter of 0.05 μm or less.
炭化珪素の平均粒径が5.0μmより大きいと炭化珪素
粒子とアルミナ粒子の位子間における(15造的不均一
部分が大きくなり、アルミナ質常圧焼結体の機械的性質
及び熱的性質が向上しにくいからである。なかでも炭化
珪素の平均粒径が0.1〜0.4μmの範囲であること
が最も好適である。またアルミナの平均粒径が0.5μ
mより小さいと十分に高密度のアルミナ質常温焼結体を
得ることが困難となり、アルミナ質常圧焼結体の機械的
性質及び熱的性質が十分でなく、他方アルミナの平均粒
径が60μmより大きいとアルミナ質焼結体の機械的t
by6が大幅に低下するからである。なかでも、アルミ
ナが平均粒径が1.0−10μmの範囲であるこ化珪素
であることが好ましい。その理由はβ型炭化珪素は結晶
系が立方晶系であることから粒子の物理的性質において
異方性を示さないことから安定したミクロ構造を有する
アルミナ質焼結体が得られるからである。また、アルミ
ナの結晶構造はα型アルミナであることが好ましい。そ
の理由はα型アルミナは高温における安定性が優れてい
るからでおる。If the average particle size of silicon carbide is larger than 5.0 μm, the structural non-uniformity between the silicon carbide particles and the alumina particles becomes large, and the mechanical and thermal properties of the alumina pressureless sintered body deteriorate. This is because it is difficult to improve the average particle size of silicon carbide. Among these, it is most preferable that the average particle size of silicon carbide is in the range of 0.1 to 0.4 μm.
If it is smaller than m, it will be difficult to obtain a sufficiently high-density alumina cold sintered body, the mechanical properties and thermal properties of the alumina cold sintered body will be insufficient, and on the other hand, the average particle size of alumina will be 60 μm. The mechanical t of the alumina sintered body is larger than
This is because by6 is significantly reduced. Among these, it is preferable that the alumina is silicon nitride having an average particle size in the range of 1.0 to 10 μm. The reason for this is that β-type silicon carbide has a cubic crystal system and does not exhibit anisotropy in the physical properties of its particles, so that an alumina sintered body having a stable microstructure can be obtained. Further, the crystal structure of alumina is preferably α-type alumina. The reason for this is that α-type alumina has excellent stability at high temperatures.
本発明によれば、炭化珪素はアルミナ質焼結体に均一に
分散されていることが好ましい。その理由は、炭化珪素
が均一に分散していないと、アルミナ質焼結体の物性が
不均一となり、さらに、均一性が著しく惑いとアルミナ
質焼結体に未焼結部分が生じ、アルミナ質常圧焼結体の
機械的性質及び熱的性質に著しい劣化を示すからである
。According to the present invention, silicon carbide is preferably uniformly dispersed in the alumina sintered body. The reason for this is that if silicon carbide is not uniformly dispersed, the physical properties of the alumina sintered body will be non-uniform, and furthermore, if the uniformity is significantly compromised, unsintered parts will occur in the alumina sintered body, and the alumina sintered body will become unsintered. This is because the mechanical properties and thermal properties of the pressureless sintered body show significant deterioration.
本発明によれば、炭化珪素を含むアルミナ質焼結体の嵩
密度は、理論密度の90%以上であることが好ましい。According to the present invention, the bulk density of the alumina sintered body containing silicon carbide is preferably 90% or more of the theoretical density.
その理由は、理論密度が90%より少ないと前記焼結体
の内部に気孔部分が多く存在することにナリ、熱伝導率
が低下するからである。The reason for this is that if the theoretical density is less than 90%, there will be many pores inside the sintered body, and the thermal conductivity will decrease.
次に、本発明の炭化珪素を含んだアルミナ質焼結体の製
造方法について説明する。Next, a method for manufacturing an alumina sintered body containing silicon carbide according to the present invention will be described.
本発明によれば、炭化珪素を含んだアルミナ質焼結体は
図面に示すような製造工程に基づいて製造される。すな
わち、重量比で炭化珪素粉体0.5〜40%と残部がア
ルミナ粉体であって、必要により5if2、Mg0%C
aO1SrO,Bad、Mn0z、Fed、 TiO2
、ZrolPbO%Cry、 8203の1種又は2種
以上の添加物0.1〜20%を配合し、前記配合物に水
又は有機溶剤を添加しホールミルなどで十分混合した後
、成形する。前記、成形体を雰囲気の管理された焼成炉
に挿入し1400〜1900℃の温度において常圧焼結
するこ゛とにより炭化珪素を含んだアルミナ質常圧焼結
体が得られる。According to the present invention, an alumina sintered body containing silicon carbide is manufactured based on the manufacturing process shown in the drawings. That is, the weight ratio is 0.5 to 40% silicon carbide powder and the balance is alumina powder, and if necessary, 5if2, Mg0%C
aO1SrO, Bad, Mn0z, Fed, TiO2
, ZrolPbO%Cry, 8203 in an amount of 0.1 to 20%, water or an organic solvent is added to the mixture, and the mixture is sufficiently mixed in a hole mill or the like, and then molded. By inserting the molded body into a firing furnace in which the atmosphere is controlled and sintering it under pressure at a temperature of 1400 to 1900°C, an alumina pressureless sintered body containing silicon carbide is obtained.
本発明によれば、前記炭化珪素粉体の平均粒径は0、O
1〜4.0μmであり、アルミナ粉体の平均粒径は0.
05〜40μmであることが必要である。その理由は、
炭化珪素粉体の平均粒径が0.01μmより小さいと凝
集性が極めて強く混合における分散性が低いからであり
、4.0μmより大きいと炭化珪素粒子とアルミナ質粒
子の粒子間における不均一部分が大きくなりアルミナ質
常圧焼結体の機械的性a及び熱的性質が劣化するからで
ある。また、アルミナ粉体の平均粒径が0.06μmよ
り小さいと粉体の嵩比重が低く成形体の密度が低いため
に高密度なアルミナ質常圧焼結体が得られにくく、アル
ミナ粉体の平均粒径が40μmより大きいと粉体の活性
度が低下し焼結性が劣下するからである。According to the present invention, the average particle size of the silicon carbide powder is 0, O
1 to 4.0 μm, and the average particle size of the alumina powder is 0.0 μm.
It is necessary that the thickness is 05 to 40 μm. The reason is,
This is because if the average particle size of the silicon carbide powder is smaller than 0.01 μm, the agglomeration is extremely strong and the dispersibility during mixing is low. This is because the mechanical properties a and thermal properties of the alumina pressureless sintered body deteriorate as the alumina pressureless sintered body becomes larger. In addition, if the average particle size of the alumina powder is smaller than 0.06 μm, the bulk specific gravity of the powder is low and the density of the compact is low, making it difficult to obtain a high-density alumina pressureless sintered body. This is because if the average particle size is larger than 40 μm, the activity of the powder decreases and the sinterability deteriorates.
本発明によれば、前記炭化珪素粉体の結晶構造は、β型
炭化珪素であり、前記アルミナ粉体の結晶構造はα型ア
ルミナであることが望ましい。According to the present invention, the crystal structure of the silicon carbide powder is preferably β-type silicon carbide, and the crystal structure of the alumina powder is preferably α-type alumina.
本発明によれば、前記炭化珪素粉体、゛アルミナ粉体か
ら主としてなる前記組成物に水又はベンゼン、アセトン
、アルコール、トリクロルエチレン、トルエン、キンレ
ンなどの有機溶剤と必要により分散剤全添加し、ボール
ミル
モミキサー、振動ミル、コロイドミル1ヘンシエルミキ
サー、高速ミキサーなどの1種又は2種以上の混合機を
用いて均一に混合することが重要である。さらに、混合
の初期又は途中の段階で成形助Mu fcとえはポリエ
チレングリコール、ポリビニ−ルア!レコール、メチル
セルローズ、クリセリン、澱粉、アラビアゴム、フェノ
ール樹脂、カーボワックス、ステアリン酸、パラフィン
エマフレジョンなどを添加すると成形性が向上する。成
形はたとえば、金型による加圧成形、ラバー成形、イン
ジェクション成形、押出し成形、鎧込み成形、ドクター
ブレード法、カレンダー法、ペーパーディッピング法な
どによって行なわれ、所望の成形体が得られる。According to the present invention, water or an organic solvent such as benzene, acetone, alcohol, trichlorethylene, toluene, or quintin, and if necessary, a dispersant are completely added to the composition mainly consisting of the silicon carbide powder or alumina powder, It is important to mix uniformly using one or more types of mixers such as a ball mill mixer, a vibration mill, a colloid mill, a Henschel mixer, and a high speed mixer. Furthermore, at the initial or mid-way stage of mixing, molding aids such as polyethylene glycol, polyvinyl urea! Addition of lecor, methylcellulose, chrycerin, starch, gum arabic, phenolic resin, carbowax, stearic acid, paraffin emafflesion, etc. improves moldability. Molding is carried out by, for example, pressure molding using a metal mold, rubber molding, injection molding, extrusion molding, armor molding, doctor blade method, calendar method, paper dipping method, etc., to obtain a desired molded product.
本発明によれば、前記成形体は水素、加湿水素、窒素、
アルゴン、ヘリウムの1種又は2種以上のガスを含む算
囲気で常圧焼成することができるが、加湿水素中が最も
好ましい。また、前記雰囲気中にAl2O、S10、C
Oの1種又は2種以上のガスを含むことが好ましい。そ
の理由は、S ic+AIzoa→SiO+Al*O+
COの反応により3iCとAl2O3が反応するが、雰
囲気中にAl2O,5i01GOなどのガス分圧が存在
するとSiCとA120jの反応が抑制され緻密なSi
Cを含んだアルミナ質常圧焼結体が得られるからである
。また、前記成形体を重量比で炭化珪素0.6〜28.
296とアルミナ71.8〜99.5%の混合物中に埋
め込んで焼成することが可能である。その理由は焼成時
に前記炭化珪素とアルミナとの混合物中で炭化珪素とア
ルミナとの反応が生じ、AIaOlSiOlCOのガス
が発生して前記生形体中におけるSiCとAl2ozと
の反応が抑制され緻密なSiCが容易に、かつ安イ曲に
得られるからである。According to the present invention, the molded body contains hydrogen, humidified hydrogen, nitrogen,
Calcination can be carried out at normal pressure in an ambient atmosphere containing one or more gases of argon and helium, but humidified hydrogen is most preferred. In addition, Al2O, S10, C
It is preferable that one or more types of O gases be included. The reason is S ic+AIzoa→SiO+Al*O+
3iC and Al2O3 react due to the reaction of CO, but if the partial pressure of gases such as Al2O and 5i01GO is present in the atmosphere, the reaction between SiC and A120j is suppressed and the dense Si
This is because an alumina pressureless sintered body containing C can be obtained. Further, the molded body has a weight ratio of silicon carbide of 0.6 to 28.
It is possible to embed it in a mixture of 296 and alumina of 71.8 to 99.5% and fire it. The reason for this is that during firing, a reaction between silicon carbide and alumina occurs in the mixture of silicon carbide and alumina, gas of AIaOlSiOlCO is generated, and the reaction between SiC and Al2oz in the green body is suppressed, resulting in dense SiC. This is because it is easy and cheap to obtain.
本実験によれば、前記成形体を1800〜1900’C
の温度範囲において常圧焼結することが好ましい。その
理由は1800℃より低いとアルミナ粉体と次化珪素粉
体の焼結性が低く十分に緻密な焼結体が得られず、また
、1900°Cより高いと炭化珪素の粒子内に不純物が
拡散してアルミナ質常圧焼結体の熱伝導率が大きく低下
するからであり、最も好ましくは1400〜1600°
Cの温度範囲である。According to this experiment, the molded body was heated at 1800 to 1900'C.
It is preferable to perform pressureless sintering in a temperature range of . The reason for this is that if the temperature is lower than 1800°C, the sinterability of the alumina powder and the silicon nitride powder is low and a sufficiently dense sintered body cannot be obtained. This is because the thermal conductivity of the alumina pressureless sintered body is greatly reduced due to the diffusion of
The temperature range is C.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例1
平均粒径0.8μmのβ型炭化珪素を重量比で0〜20
%と平均粒径0.4μmのα型アルミナを重量比で78
〜98%及び平均4’x”tL 2.0μmの5i02
を重量比で2%の配合物を5種類用意し、各配合物1(
10gに対し、水を10of添加し、ポリエチレングリ
コ−1し1gとポリビニールアルコ−)V 2 f及び
ステアリン酸i0.5g添加してポー7レミル中で24
時間混合した。前記混合物をスプレードライヤにて乾燥
造粒し、金型成形法により1.5 t/Jの成形圧φ4
0X5tの成形体1に得た。nl】記成形体を管状炉に
挿入し、加湿水素気流中において1600″Cの温度で
1時間焼成してアルミナ質常圧焼結体金得た。Example 1 β-type silicon carbide with an average particle size of 0.8 μm in a weight ratio of 0 to 20
% and α-type alumina with an average particle size of 0.4 μm in weight ratio of 78
~98% and average 4′x”tL 2.0 μm 5i02
Prepare 5 types of formulations with a weight ratio of 2%, and each formulation 1 (
To 10 g, 10 of water was added, 1 g of polyethylene glycol, 1 g of polyvinyl alcohol) and 0.5 g of stearic acid were added, and the mixture was heated in Po7 remill for 24 hours.
Mixed for an hour. The mixture was dried and granulated using a spray dryer, and the molding pressure was φ4 at 1.5 t/J using a molding method.
A molded body 1 of 0x5t was obtained. The compact was inserted into a tubular furnace and fired at a temperature of 1600"C for 1 hour in a humidified hydrogen stream to obtain an alumina atmospheric pressure sintered gold.
このようにして得られた焼結体の嵩密度、マイクロビッ
カース硬度計による硬度、インデンチーシロン法による
Kxo及びレーザクラッシュ法による熱伝導率全測定し
た結果を第1表に示した。また、得られた焼結体2X線
粉末回析したところ全ての実施例にβ型炭化珪素の含ま
れていることがみとめられた。The bulk density of the sintered body thus obtained, the hardness measured by a micro Vickers hardness tester, the Kxo measured by the indenchysilon method, and the thermal conductivity measured by the laser crush method are shown in Table 1. Further, when the obtained sintered bodies were subjected to X-ray powder diffraction, it was found that β-type silicon carbide was contained in all the examples.
比較例1
平均粒径0.8μmのβ型炭化珪素を重量比で50%と
平均粒径0,4μmのα型アルミナを重量比で48%及
び平均粒径2,0μmの5iChe重量比で2%の配合
物を用意し、実施例1と同様の方法で常圧焼結を行なっ
た結果を第1表に示した。Comparative Example 1 β-type silicon carbide with an average particle size of 0.8 μm at a weight ratio of 50%, α-type alumina with an average particle size of 0.4 μm at a weight ratio of 48%, and 5iChe with an average particle size of 2.0 μm at a weight ratio of 2 Table 1 shows the results of pressureless sintering using the same method as in Example 1.
実施例2
平均粒径が0.8μmのβ型炭化珪素全重量比で5%と
平均粒径が0,4μmのα型アルミナを重量比で90%
又は96%及び平均粒径約2.0μmの5i(h、M
n O又はMgOをそれぞれ重量比で5%の配合物を4
種類用意し、実施例1と同様の方法で混合し乾燥し成形
した後、加湿水素気流中で15006Cの温度で2時間
焼成してアルミナ質常圧焼結体が得られた。このように
して得られた焼結体の物性を第2表に示す。Example 2 5% by total weight of β-type silicon carbide with an average particle size of 0.8 μm and 90% by weight of α-type alumina with an average particle size of 0.4 μm
or 5i(h, M
4% formulation by weight of n O or MgO, respectively.
Various types were prepared, mixed, dried and molded in the same manner as in Example 1, and then fired in a humidified hydrogen stream at a temperature of 15006C for 2 hours to obtain an alumina atmospheric pressure sintered body. Table 2 shows the physical properties of the sintered body thus obtained.
実施例3
炭化珪素の平均粒径と結晶構造、アルミナの平均粒径を
貧化させてアルミナ質常圧焼結体を得た場合の結果ケ第
8表に示した。なお、炭化珪素、アルミナ及び訓02の
組成は重量比でそれぞれ2%、96%及び2%と一定で
あり、配合物の混合、成形、焼成は実施例2と同様に行
なった。Example 3 Table 8 shows the results when an alumina pressureless sintered body was obtained by reducing the average grain size and crystal structure of silicon carbide and the average grain size of alumina. The compositions of silicon carbide, alumina, and Kun 02 were constant at 2%, 96%, and 2% by weight, respectively, and the mixing, molding, and firing of the compounds were performed in the same manner as in Example 2.
比較例2
平均粒径が108mのα型炭化珪素と平均粒径が0.4
μmのα型アルミナを用いて焼結したアルミナ質常圧焼
結体の物性を第8表に示す。Comparative Example 2 α-type silicon carbide with an average particle size of 108 m and an average particle size of 0.4
Table 8 shows the physical properties of an alumina pressureless sintered body sintered using μm α-type alumina.
実施例4
平均粒径が0.8μmのβ型炭化珪素を重量比で3%と
平均粒径0.4μmのα型アルミナを重量比で94%及
び平均粒径2.0μmの5i02’(i7重量比で3%
の配合物を用意し、実施例1と同様の方法で混合し成形
した後、加湿水素気流中にて1500°C又は1600
°Cで1時間焼成して得たアルミナ質常圧焼結体の物性
金弟4表に示す。Example 4 3% by weight of β-type silicon carbide with an average particle size of 0.8 μm, 94% by weight of α-type alumina with an average particle size of 0.4 μm, and 5i02' (i7) with an average particle size of 2.0 μm. 3% by weight
After preparing a mixture and molding it in the same manner as in Example 1, it was heated at 1500°C or 1600°C in a humidified hydrogen stream.
The physical properties of the alumina pressureless sintered body obtained by firing at °C for 1 hour are shown in Table 4.
比較例3
実施例4と同一の成形体全加湿水素気流中にて1250
°C又は2000°Cの温度で1時間焼成した結果全1
4表に示す。Comparative Example 3 The same molded product as Example 4 was heated to 1250 ml in a humidified hydrogen stream.
Results of baking for 1 hour at a temperature of °C or 2000 °C Total 1
It is shown in Table 4.
実施例5
平均粒径がO,aμmのβ型炭化珪素を重量比で2%と
平均粒径が04μmのα型アルミナヲ96重址%と平均
粒径2μmのS ichを重量比で2%の配合物を実施
例1と同様の方法で混合、成形した後、窒素、アルゴン
、加湿水素気流及びアルミナと炭化珪素混合物中に成形
体を埋めた場合について焼成した結果を第5表に示す。Example 5 2% by weight of β-type silicon carbide with an average particle size of O, a μm, 96% by weight of α-type alumina with an average particle size of 0.04 μm, and 2% by weight of Sich with an average particle size of 2 μm. Table 5 shows the results of mixing and molding the mixture in the same manner as in Example 1, and then sintering the molded body in nitrogen, argon, a humidified hydrogen stream, and a mixture of alumina and silicon carbide.
比較例4
実施例5と同一の方法で成形体を得た後、酸素気流中で
焼成した結果を第5表に示す。Comparative Example 4 A molded body was obtained in the same manner as in Example 5, and then fired in an oxygen stream. Table 5 shows the results.
第1表
(註)KIc−破壊しん性 (焼成温度1600℃加湿
水素気流中)第2表
(焼成条件1500℃加湿水素気流中)第・3表
(焼成条件1500℃加湿水素気流中)第4表
第5表
以上の結果からも明らかなように、本発明によれば、ア
ルミナ質焼結体中に炭化珪素を均一に分散させた常圧焼
結法により得られる焼結体は、特に機械的強度、熱伝導
性、電気絶縁性などが優れ、アルミナ質焼結体の優れた
電気的特性と炭化珪素嘗焼結体の優れた熱伝導性とが組
み合せられ、両者の優れた機械的強度を併有するもので
ある。Table 1 (Note) KIc-Fracture resistance (Firing temperature 1600℃ in humidified hydrogen flow) Table 2 (Firing condition 1500℃ in humidified hydrogen flow) Table 3 (Firing condition 1500℃ in humidified hydrogen flow) Table 4 As is clear from the results in Table 5 and above, according to the present invention, the sintered body obtained by the pressureless sintering method in which silicon carbide is uniformly dispersed in the alumina sintered body is The excellent electrical properties of the alumina sintered body and the excellent thermal conductivity of the silicon carbide sintered body are combined, resulting in the excellent mechanical strength of both. It also has the following.
【図面の簡単な説明】
図面は本発明の灰化珪素含有のアルミナ質焼結体の製造
フローシートである。
特許出願人
イビデン株式会社BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a flow sheet for producing an alumina sintered body containing silicon ash according to the present invention. Patent applicant IBIDEN Co., Ltd.
Claims (1)
がアルミナを主成分とする混合組成物で構成された炭化
珪素含有のアルミナ質焼結体。 2、炭化珪素0.5〜40重量%に対し、Sin。 MgO1Cab、SrO%BaO1M n Oz、Fe
d。 Ti(h、ZrCh、P b O、Cr 20 s、B
e203の1種又は2種以上の酸化物が0.1〜20重
量%添加含有され、残部がアルミナを主成分とする混合
組成物で構成されることを特徴とする特許請求の範囲第
1項記載の焼結体。 3、前記炭化珪素の平均粒径は、0.05〜5.0μm
であることを特徴とする特許請求の範囲第1項記載の焼
結体。 4、前記アルミナの平均粒径は0.5〜δOμmである
ことを特徴とする特許請求の範囲第1項記載るることを
特徴とする特許請求の範囲第1項記載の焼結体。 6、 前記アルミナの結晶構造はα型アルミナであるこ
とを特徴とする特許請求の範囲第1項記載の焼結体。 7、 前記炭化珪素はアルミナ質焼結体に均一に分散し
て含有されていることを特徴とする特許請求の範囲第1
項記載の焼結体。 8、前記炭化珪素含有のアルミナ質焼結体の嵩密度は理
論密度の90%以上であることを特徴とする特、ff請
求の範囲第1項記載の焼結体。 9、前記β型炭化珪素は平均粒径が0.1〜0.4μ!
nのものでメジ、少くとも重量比で0.6〜2.0%含
有されているものであって、残部が平均粒径1.0〜1
0μmのα型アルミナを主成分とする混合組成物で構成
されていることを特徴とする特許請求の1頭囲第1項記
載の焼結体。 10、炭化珪素粉末0.5〜40重量%と残部がアルミ
ナ粉末を主成分とする組成物を均一に混合し、このよう
にして得られる均一混合物を成形した後、該成形体を1
800〜1900°Cの温度で常圧焼結することを特徴
とする炭化珪素含有のアルミナ質焼結体の製造方法。 11、車量比で、炭化珪素粉末0.5〜40%と5i0
2、MgO,Cab、5rO1Bad、MnO2、Fe
01Ti(h、Z r O2、P b O%Cr 20
s、B2O3の1種又は2種以上の混合物の0.1〜
20%、および残部がアルミナ粉体を主体とする組成物
から成ることを特徴とする特許請求の範囲第10項記載
の製造方法。 12、前記灰化けい素粉体の平均粒径は0.01〜4.
0μmであり、アルミナ粉体の平均粒径は0.05〜4
0μmであることを特徴とする特許請求けい素であり、
前記アルミナ粉体の結晶構造はα型アルミナであること
を特徴とする特許請求の範囲第10項記載の製造方法。 14、前記組成物に水又は有機溶剤を添加し、ボールミ
ル、アトライター、ホモミキサー、振動ミル、コロイド
ミル、ヘンシェルミキt−1高4−キサ−なとの1種又
は2種以上の混合機を用いて均一に混合することを特徴
とする特許請求の範囲第10項記載の製造方法。 15、前記常圧焼結中における雰囲気は、水素、加湿水
素、屋素、アルゴン、ヘリウムの1種又は2種以上であ
ることを特徴とする特許請求の範囲第10項記載の製造
方法。 16、fnI記常圧焼結中における雰囲気は、AhOl
SiOlCOの1種又は2種以上のガスを含むことを特
徴とする特許請求の範囲第10項記載の製造方法。 17、前記常圧焼結は、前記成形体を重量比で灰化けい
素0.5〜28.2%とアルミナ71.8〜99.5%
の混合物中に埋めて焼成することを特徴とする特許請求
の範囲第10項記載の製造方法。[Scope of Claims] 1. A silicon carbide-containing alumina sintered body composed of a mixed composition containing 0.5 to 40% by weight of silicon carbide and the remainder being alumina as a main component. 2. Sin for 0.5 to 40% by weight of silicon carbide. MgO1Cab, SrO%BaO1M n Oz, Fe
d. Ti(h, ZrCh, P b O, Cr 20 s, B
Claim 1, characterized in that the mixture composition contains 0.1 to 20% by weight of one or more oxides of e203, and the remainder is alumina as a main component. The described sintered body. 3. The average particle size of the silicon carbide is 0.05 to 5.0 μm
The sintered body according to claim 1, characterized in that: 4. The sintered body according to claim 1, wherein the alumina has an average particle diameter of 0.5 to δO μm. 6. The sintered body according to claim 1, wherein the crystal structure of the alumina is α-type alumina. 7. Claim 1, characterized in that the silicon carbide is contained uniformly dispersed in the alumina sintered body.
The sintered body described in section. 8. The sintered body according to claim 1, wherein the silicon carbide-containing alumina sintered body has a bulk density of 90% or more of the theoretical density. 9. The β-type silicon carbide has an average particle size of 0.1 to 0.4μ!
n, containing at least 0.6 to 2.0% by weight, and the remainder having an average particle size of 1.0 to 1.
The sintered body according to claim 1, wherein the sintered body is made of a mixed composition containing α-type alumina having a diameter of 0 μm as a main component. 10. After uniformly mixing a composition mainly consisting of 0.5 to 40% by weight of silicon carbide powder and the remainder being alumina powder, and molding the homogeneous mixture thus obtained, the molded body was
A method for producing a silicon carbide-containing alumina sintered body, which comprises sintering under normal pressure at a temperature of 800 to 1900°C. 11. Silicon carbide powder 0.5-40% and 5i0 in terms of vehicle weight
2, MgO, Cab, 5rO1Bad, MnO2, Fe
01Ti(h, Z r O2, P b O%Cr 20
s, 0.1 to 0.1 of one type or a mixture of two or more of B2O3
11. The manufacturing method according to claim 10, characterized in that the composition consists of a composition mainly consisting of alumina powder, and the remainder being alumina powder. 12. The average particle size of the ashed silicon powder is 0.01 to 4.
0 μm, and the average particle size of alumina powder is 0.05 to 4
A patented silicon characterized by having a diameter of 0 μm,
11. The manufacturing method according to claim 10, wherein the crystal structure of the alumina powder is α-type alumina. 14. Add water or an organic solvent to the composition, and mix it with one or more of the following: a ball mill, an attriter, a homo mixer, a vibration mill, a colloid mill, a Henschel MIKI T-1 high 4-kisa-nato. 11. The manufacturing method according to claim 10, characterized in that uniform mixing is carried out using. 15. The manufacturing method according to claim 10, wherein the atmosphere during the pressureless sintering is one or more of hydrogen, humidified hydrogen, oxygen, argon, and helium. 16, fnI The atmosphere during pressureless sintering is AhOl.
11. The manufacturing method according to claim 10, which comprises one or more gases of SiOlCO. 17. The above-mentioned pressureless sintering is performed to form the compact into a silicon ash of 0.5 to 28.2% and alumina of 71.8 to 99.5% by weight.
11. The manufacturing method according to claim 10, characterized in that the method comprises embedding in a mixture of and firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59064513A JPS60210571A (en) | 1984-03-31 | 1984-03-31 | Silicon carbide-containing alumina sintered body and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59064513A JPS60210571A (en) | 1984-03-31 | 1984-03-31 | Silicon carbide-containing alumina sintered body and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60210571A true JPS60210571A (en) | 1985-10-23 |
JPH0235700B2 JPH0235700B2 (en) | 1990-08-13 |
Family
ID=13260360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59064513A Granted JPS60210571A (en) | 1984-03-31 | 1984-03-31 | Silicon carbide-containing alumina sintered body and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60210571A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188454A (en) * | 1988-01-22 | 1989-07-27 | Koichi Niihara | High strength composite ceramic sintered body |
JP2007210814A (en) * | 2006-02-08 | 2007-08-23 | Hitachi Zosen Corp | Refractory and melting furnace comprising the refractory |
US20180170811A1 (en) * | 2015-06-17 | 2018-06-21 | National Institute For Materials Science | Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493108A (en) * | 1977-12-27 | 1979-07-24 | Toshiba Ceramics Co | Supporting element for paper making machine |
JPS5738369A (en) * | 1980-08-21 | 1982-03-03 | Mitsubishi Metal Corp | High strength and high hardness alumina ceramic |
JPS5939766A (en) * | 1982-08-30 | 1984-03-05 | 京セラ株式会社 | Alumina-silicon carbide complex sintered body |
-
1984
- 1984-03-31 JP JP59064513A patent/JPS60210571A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493108A (en) * | 1977-12-27 | 1979-07-24 | Toshiba Ceramics Co | Supporting element for paper making machine |
JPS5738369A (en) * | 1980-08-21 | 1982-03-03 | Mitsubishi Metal Corp | High strength and high hardness alumina ceramic |
JPS5939766A (en) * | 1982-08-30 | 1984-03-05 | 京セラ株式会社 | Alumina-silicon carbide complex sintered body |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188454A (en) * | 1988-01-22 | 1989-07-27 | Koichi Niihara | High strength composite ceramic sintered body |
JP2007210814A (en) * | 2006-02-08 | 2007-08-23 | Hitachi Zosen Corp | Refractory and melting furnace comprising the refractory |
JP4677915B2 (en) * | 2006-02-08 | 2011-04-27 | 日立造船株式会社 | Refractory and melting furnace made of this refractory |
US20180170811A1 (en) * | 2015-06-17 | 2018-06-21 | National Institute For Materials Science | Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition |
US10822277B2 (en) * | 2015-06-17 | 2020-11-03 | National Institute For Materials Science | Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions |
Also Published As
Publication number | Publication date |
---|---|
JPH0235700B2 (en) | 1990-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH035374A (en) | Silicon nitride-silicon carbide combined sintered body and its production | |
JPS60210571A (en) | Silicon carbide-containing alumina sintered body and manufacture | |
JPS6077174A (en) | Manufacture of silicon nitride sintered body | |
JPS6121964A (en) | Alumina sintered body and manufacture | |
JP2000272968A (en) | Silicon nitride sintered compact and its production | |
JP2002053376A (en) | Method for sintering silicon nitride ceramics | |
JPS6121965A (en) | Alumina sintered body and manufacture | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JP2690571B2 (en) | Zirconia cutting tool and its manufacturing method | |
JPS61158866A (en) | Ceramic sintered body and manufacture | |
JP2658944B2 (en) | Silicon nitride-titanium nitride composite ceramics and method for producing the same | |
JPH11189457A (en) | Abrasion resistant alumina sintered compact | |
JP3108362B2 (en) | High-strength inorganic fiber molded body | |
JPH0733286B2 (en) | Method for manufacturing silicon carbide sintered body | |
JP3784129B2 (en) | High strength alumina sintered body | |
JP5712142B2 (en) | Porous ceramic sintered body and method for producing porous ceramic sintered body | |
KR100278013B1 (en) | Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material | |
JPS60239359A (en) | Silicon carbide sintered body and manufacture | |
JPS58217469A (en) | Manufacture of silicon nitride-silicon carbide composition | |
JPH08133842A (en) | Highly tough ceramics and their production | |
JPH0517210A (en) | Production of alumina-based composite sintered body and the sintered body | |
JPH07138072A (en) | High tenacity ceramic material comprising particles of uneven diameters and its production | |
JPS63236765A (en) | Aluminum nitride sintered body | |
JPH0575716B2 (en) | ||
JPH06287007A (en) | Partially crystallized multicomponent powder and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |