JPS60194563A - Reverse conduction gate turn off thyristor device - Google Patents

Reverse conduction gate turn off thyristor device

Info

Publication number
JPS60194563A
JPS60194563A JP5060184A JP5060184A JPS60194563A JP S60194563 A JPS60194563 A JP S60194563A JP 5060184 A JP5060184 A JP 5060184A JP 5060184 A JP5060184 A JP 5060184A JP S60194563 A JPS60194563 A JP S60194563A
Authority
JP
Japan
Prior art keywords
layer
groove
reverse conduction
reverse
gto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060184A
Other languages
Japanese (ja)
Inventor
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5060184A priority Critical patent/JPS60194563A/en
Publication of JPS60194563A publication Critical patent/JPS60194563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/7412Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a diode
    • H01L29/7416Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a diode the device being an antiparallel diode, e.g. RCT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To prevent the decrease in reverse withstand voltage in a large-current element by a method wherein the surface of a groove is provided with a control electrode via insulation film, in a structure where a GTO and a reverse conduction diode are integrally formed in the same semiconductor wafer by being isolated by the groove. CONSTITUTION:The surface of the groove 20 isolating the GTO thyristor and the reverse conduction diode is provided with the control electrode 22 via insulation film 21 such as an SiO2 film. Such a structure enables the control electrode 22 on the groove 20 to promote the elongation of a depletion layer thereunder by the action analogous to that of a field plate known as a high withstand voltage element. Thereby, even when the thickness of a P-layer left under the groove 20 is reduced by deepening it, the tip of the depletion layer elongating toward an n-base layer 11 and an n-layer 11' can be obtained in the state of linear form as shown by a broken line in the figure, and the deterioration in reverse withstand voltage can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ダートターンオフサイリスタ(GTOサイリ
スタ)と逆導通ダイオードを一体形成した逆導通GTO
サイリスタ装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a reverse conduction GTO in which a dirt turn-off thyristor (GTO thyristor) and a reverse conduction diode are integrally formed.
This invention relates to a thyristor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の逆導通GTOサイリスクの一例を第1図に示す。 An example of a conventional reverse conduction GTO scissor is shown in FIG.

GTOサイリスタは周知のように、nペースN11、p
ベース層12、このp4−ス層12の表面部に複数個に
分割形成されたnエミツタ層13 (131r13z 
p・・・)、およびnベース層1ノの下に形成されたp
エミッタji’J 14のpn pn構造からなる。1
5 (151r152 +・・・)バカソード電極であ
り、ダート電極16は各カソード領域を取り囲むように
pベース層12に設けられている。17はアノード電極
である。
As is well known, the GTO thyristor has n-pace N11, p
The base layer 12 and the n emitter layer 13 (131r13z
p...), and p formed under the n base layer 1
It consists of a pn pn structure with 14 emitters ji'J. 1
5 (151r152 +...) A dirt electrode 16 is provided on the p base layer 12 so as to surround each cathode region. 17 is an anode electrode.

このGTOサイリスタと一体形成された逆導通ダイオー
ドは、pベース層12と同じ層を用いた2層12’、n
ベース層1ノと同じ層を用いた1層11′およびこの1
層11′の下に選択的に形成されたn土層18からなる
。19はこの逆導通ダイオードのアノード電極であって
、外部的に例えば圧接ポストによりGTOサイリスタの
カソード電極15と電気的に接続される。またGTOサ
イリスタのアノード電極17はそのまま逆導通ダイオー
ドのカソード電極を兼ねている。
The reverse conduction diode integrally formed with this GTO thyristor has two layers 12' and n using the same layer as the p base layer 12.
1 layer 11' using the same layer as base layer 1 and this 1
It consists of an n-soil layer 18 selectively formed below the layer 11'. Reference numeral 19 denotes an anode electrode of this reverse conduction diode, which is externally electrically connected to the cathode electrode 15 of the GTO thyristor by, for example, a press-contact post. Further, the anode electrode 17 of the GTO thyristor also serves as the cathode electrode of the reverse conduction diode.

GTOのpペース層12と逆導通ダイオードのp )u
 12’とは、エツチングにより形成された溝20によ
り実質的に電気的分離がなされている。
GTO p space layer 12 and reverse conduction diode p)u
12' is substantially electrically isolated by a groove 20 formed by etching.

このようにしないと、ダート電極16とアノード電極1
9とが短絡してしまい、GTOサイリスタにタート電圧
を印加することができなくなるためである。t7f 2
θの下には薄いp層が残され、このp層の高抵抗を利用
して、pベースN12とpI音12′の電気的分離を行
っているのであるが、溝20 @ nベース層11に達
する深さまで形成すれば、電気的分離は完全になる。そ
のようにしないのは、もしpペース層12と2層12′
を完全に分離した場合、アノード電極17に高電圧が印
加された時にpペース層12および2層12′からそれ
ぞれnベース層11および1層11′側に伸びる空乏層
がこの溝20の部分で断絶し、ブレークダウン電圧が著
しく低下するためである。
If this is not done, the dirt electrode 16 and anode electrode 1
9 will be short-circuited, making it impossible to apply the start voltage to the GTO thyristor. t7f 2
A thin p layer is left below θ, and the high resistance of this p layer is used to electrically isolate the p base N12 and the pI sound 12'. If formed to a depth of , the electrical isolation will be complete. The reason why this is not done is if the p-pace layer 12 and the second layer 12'
If these are completely separated, when a high voltage is applied to the anode electrode 17, a depletion layer that extends from the p-space layer 12 and the second layer 12' to the n-base layer 11 and the first layer 11', respectively, will form in this groove 20. This is because the voltage is disconnected and the breakdown voltage drops significantly.

ところで第1図の構造で大電流の素子を構成した場合、
溝2θの長さが長くなるので、電気的分離を十分なもの
とするためには、溝20の下に残されるp層をできるだ
け薄くすることが必要となる。しかしながら、残される
p層を余り薄くすると、溝20を形成する際のエツチン
グの不均一性のため場所によって極端に薄くなることが
ある。こうなると、アノード電極17に高電圧が印加さ
れたときに溝20の下のp層が全て空乏化してしまい、
更に電圧がかかると第1図に破線で示したように、nベ
ース層11.1層11’側へのびる空乏層が溝20の下
では薄くなる。溝20の下のp層が完全に空乏化すると
、それ以上電界がかかってもここに負電荷が供給されな
くなるためである。従ってこの17420の下の部分で
は、他の部分に比べて薄い空乏層で同じ電界を保持しな
ければならなくなり、逆耐圧が低下してしまうという問
題があった。
By the way, when a large current element is configured with the structure shown in Figure 1,
Since the length of the groove 2θ becomes longer, it is necessary to make the p layer left under the groove 20 as thin as possible in order to ensure sufficient electrical isolation. However, if the remaining p-layer is made too thin, it may become extremely thin in some places due to non-uniform etching when forming the grooves 20. In this case, when a high voltage is applied to the anode electrode 17, the entire p-layer under the groove 20 becomes depleted.
When a further voltage is applied, the depletion layer extending toward the n-base layer 11.1 layer 11' becomes thinner under the groove 20, as shown by the broken line in FIG. This is because when the p-layer under the groove 20 is completely depleted, no negative charge is supplied thereto even if an electric field is applied any further. Therefore, in the portion below the 17420, the same electric field must be maintained by a depletion layer that is thinner than in other portions, resulting in a problem that the reverse breakdown voltage is lowered.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、大電流素子での逆耐圧の低下
を防止した逆導通GTOサイリスタ装置を提供すること
を目的とする。
In view of the above points, it is an object of the present invention to provide a reverse conduction GTO thyristor device that prevents a reduction in reverse breakdown voltage in a large current element.

〔発明の概要〕[Summary of the invention]

本発明は、GTOと逆導通ダイオードとを溝により分離
して同一半導体ウェハに一体形成するt+I造において
、溝の表面に絶縁膜を介して制御電極を設け、この電極
の電位をGTOのゲート電極または逆導通ダイオードの
アノード電極と共通′電位に設定したことを特徴として
いる。
The present invention provides a t+I structure in which a GTO and a reverse conduction diode are separated by a groove and integrally formed on the same semiconductor wafer, and a control electrode is provided on the surface of the groove via an insulating film, and the potential of this electrode is applied to the gate electrode of the GTO. Alternatively, it is characterized in that it is set at a common potential with the anode electrode of the reverse conduction diode.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分離溝上の制御電極がいわゆるフィー
ルドプレートと類似の働きをする結果、溝を十分深くし
た場合にも溝の下で空乏層が十分に伸び、従来のような
逆耐圧の劣化が防止される。
According to the present invention, as a result of the control electrode on the isolation trench having a similar function to a so-called field plate, even if the trench is made deep enough, the depletion layer is sufficiently extended under the trench, and the reverse breakdown voltage deteriorates as in the conventional method. is prevented.

また本発明によれば、溝の下に薄いpmを残すことなく
、溝をn層に達する深さに形成してGTOと逆導通ダイ
オードの分離を完全なものとした場合にも、同様にこの
溝の部分で空乏層を伸ばすことができ、逆耐圧の劣化を
少なくすることができる。
Furthermore, according to the present invention, even when the groove is formed deep enough to reach the n-layer without leaving a thin PM layer under the groove to completely isolate the GTO and the reverse conduction diode, the same effect can be achieved. The depletion layer can be extended in the groove portion, and deterioration of reverse breakdown voltage can be reduced.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例の逆導通GTOサイリスタを第2図に
示す。第1図と対応する部分には同一符号を付して詳細
な説明を省く。第1図と異なる点は、GTOと逆導通ダ
イオードを分離する溝20の表面にSiO2膜等の絶縁
膜2ノを介して制御電極22を配設していることである
。この実施例の場合、溝20上の制御電t!l1i22
はGTOのダート電極16と連続的に形成され、従って
ダし 一ト電極16と同電位に保〜れるようになっている。
A reverse conducting GTO thyristor according to an embodiment of the present invention is shown in FIG. Portions corresponding to those in FIG. 1 are designated by the same reference numerals and detailed explanations will be omitted. The difference from FIG. 1 is that a control electrode 22 is provided on the surface of a groove 20 separating the GTO and the reverse conducting diode with an insulating film 2 such as a SiO2 film interposed therebetween. In this embodiment, the control voltage t! on the groove 20! l1i22
is formed continuously with the dirt electrode 16 of the GTO, and is therefore kept at the same potential as the dirt electrode 16.

この素子の製造プロセスは、例えばn型シリコンウェハ
にp型層を拡散形成し、p型層表面にnエミッタとなる
n層層を拡散形成し、n型層表面にはpエミッタとなる
p層層および逆導通ダイオードのカソード領域となるn
層を拡散形成する。この後、GTOサイリスタのダート
電極領域を20〜30μmエツチングしてnエミッタを
複数個に分割し、更にGTOサイリスタと逆導通ダイオ
ードを分離する溝20をエツチングにより形成する。こ
の後全面に5IO2膜等の絶縁膜21を形成し、これに
コンタクト穴を6けてAl膜を蒸着し、PEPによって
GTOのカソード電極xs、yr−ト電極16、逆導通
ダイオードのアノード電極19を形成する。このとき、
ダート電極16を溝20の領域をおおうように延在させ
た制御電極22を同時に形成する。裏面にはGTOのア
ノード電極17を形成する。
The manufacturing process for this element is, for example, to form a p-type layer by diffusion on an n-type silicon wafer, to form an n-layer that will become an n-emitter on the surface of the p-type layer, and to form a p-layer that will become a p-emitter on the surface of the n-type layer. layer and the cathode region of the reverse conduction diode.
Diffusion formation of layers. Thereafter, the dirt electrode region of the GTO thyristor is etched by 20 to 30 .mu.m to divide the n emitter into a plurality of parts, and a groove 20 separating the GTO thyristor and the reverse conduction diode is formed by etching. After that, an insulating film 21 such as a 5IO2 film is formed on the entire surface, 6 contact holes are made in this, an Al film is deposited, and the cathode electrode xs of the GTO, the yr-to electrode 16, and the anode electrode 19 of the reverse conduction diode are formed by PEP. form. At this time,
A control electrode 22 in which the dart electrode 16 is extended to cover the region of the groove 20 is formed at the same time. A GTO anode electrode 17 is formed on the back surface.

このような構造とすれば、溝20上の制御電極22は、
高耐圧素子で知られるフィールドグレートと類似の働き
によってその下での空乏層の伸びを助長する。このため
、溝20を深くしてその下に残されるp層の厚みを薄く
した場合にも、アノード側に変電圧が印加されたときの
nペース層11およびn層11′側に伸びる空乏層の先
端が図に破線で示すように直線状につながった状態が得
られる。従って従来のような逆耐圧の劣化を防止するこ
とができる。
With such a structure, the control electrode 22 on the groove 20 is
It promotes the expansion of the depletion layer underneath by a function similar to that of the field grating known for high voltage devices. Therefore, even when the groove 20 is deepened and the thickness of the p layer left below is made thinner, the depletion layer that extends toward the n-paste layer 11 and n-layer 11' side when a variable voltage is applied to the anode side. A state in which the tips of the two are connected in a straight line as shown by the broken line in the figure is obtained. Therefore, it is possible to prevent the reverse breakdown voltage from deteriorating as in the conventional case.

上記実施例では、溝20上の制御電極22をGTOのダ
ート電極16と一体形成したが、逆導通グイオート9の
アノード電極19と一体形成してもよい。またこの制御
電極22は機械+7’yには他の電極から分離されてい
ても、外部で電気的にダート電極16ある。いはアノー
ド電極t極19と同電位に設定されればよい。
In the above embodiment, the control electrode 22 on the groove 20 is formed integrally with the dart electrode 16 of the GTO, but it may be formed integrally with the anode electrode 19 of the reverse conduction guide 9. Further, this control electrode 22 is electrically connected to the dirt electrode 16 on the outside even though it is separated from other electrodes in the machine +7'y. Alternatively, it may be set to the same potential as the anode electrode t-pole 19.

また上記実施例では溝20の下にp層を薄く残して、そ
の高抵抗層によりGTOサイリスクと逆導通ダイオード
を分離したが、この発明においては溝20をnベース層
に達する深さまで形成してもよい。
Furthermore, in the above embodiment, a thin p layer was left under the groove 20, and the high resistance layer separated the GTO silicon risk and the reverse conduction diode, but in the present invention, the groove 20 is formed to a depth that reaches the n base layer. Good too.

第3図は、第2図を変形した実施例で、溝20をnイー
1層1ノに達する深さに形成し、かつこの溝20上の制
御電極22を逆導通ダイオードのアノード電極19と一
体形成したものである。
FIG. 3 shows an embodiment that is a modification of FIG. 2, in which a groove 20 is formed to a depth reaching one layer and one layer, and a control electrode 22 on this groove 20 is connected to an anode electrode 19 of a reverse conduction diode. It is integrally formed.

この実施例の場合、溝20の下にp層がないが、やはり
制御電極22によるフィールドプレートの効果によって
この溝20の下のn層にも破線で示すように空乏層が伸
び、逆耐圧の劣化が防止される。逆耐圧劣化の防止効果
は勿論光の実施例に比べると小さいが、GToのpペー
ス層12と逆導通ダイオードのpH12’とを完全に分
離して誤動作を確実に防止することができる点で有用で
ある。
In this embodiment, there is no p-layer under the groove 20, but due to the field plate effect of the control electrode 22, a depletion layer also extends to the n-layer under the groove 20, as shown by the broken line, and the reverse breakdown voltage increases. Deterioration is prevented. Although the effect of preventing reverse breakdown voltage deterioration is of course smaller than in the optical embodiment, it is useful in that it is possible to completely separate the GTo p space layer 12 and the pH 12' of the reverse conduction diode to reliably prevent malfunctions. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の逆導通GTOサイリスタの断面構造を示
す図、第2図は本発明の一実施例に係る逆導通GTOサ
イリスタの断面構造を示す図、第3図は他の実施例に係
る逆導通GTOザイリスタの断面構造を示す図である。 11・・・nベース層、11′・・・n層、12・・・
pペース層、12′・・・p層、13・・・nエミツタ
層、14・・・pエミッタ層、15・・・GTOカソー
ド電極、16・・・GTOデート電極、17・・・GT
Oアノード電極(兼ダイオードカソード電極)、18・
・・n層層、19・・・ダイオードアノード電極、2o
・・・溝、21・・・絶縁膜、22・・・制御電極。
FIG. 1 is a diagram showing a cross-sectional structure of a conventional reverse conducting GTO thyristor, FIG. 2 is a diagram showing a cross-sectional structure of a reverse conducting GTO thyristor according to one embodiment of the present invention, and FIG. 3 is a diagram showing a cross-sectional structure of a conventional reverse conducting GTO thyristor. FIG. 3 is a diagram showing a cross-sectional structure of a reverse conduction GTO zyristor. 11...n base layer, 11'...n layer, 12...
p space layer, 12'... p layer, 13... n emitter layer, 14... p emitter layer, 15... GTO cathode electrode, 16... GTO date electrode, 17... GT
O anode electrode (also diode cathode electrode), 18.
...N-layer layer, 19...Diode anode electrode, 2o
...Groove, 21...Insulating film, 22...Control electrode.

Claims (2)

【特許請求の範囲】[Claims] (1) ダートターンオフサイリスタと逆導通ダイオー
ドとを溝により′眠気的に分離して同ご半導体ウェハに
一体形成してなる装置において、前記溝の表面に絶縁膜
を介して制御電極を設け、この制御?■極の電位を前記
ダートターンオフサイリスタのダート電極または逆導通
ダイオードのアノード電極と共通電位に設定したことを
特徴とする逆導通ケ9−トターンオフサイリスタ装置。
(1) In a device in which a dirt turn-off thyristor and a reverse conduction diode are drowsily separated by a groove and integrally formed on the same semiconductor wafer, a control electrode is provided on the surface of the groove with an insulating film interposed therebetween; control? (2) A reverse conduction turn-off thyristor device, characterized in that the potential of the pole is set to a common potential with the dirt electrode of the dirt turn-off thyristor or the anode electrode of the reverse conduction diode.
(2) 前記溝の表面に絶縁膜を介して設けた制H71
を極は、前記ダートターンオフサイリスタのダート1i
L極または逆導通ダイオードのアノード電極i極と連続
的に形成されたものである特許請求の範囲第1項記載の
逆導通ダートターンオフサイリスタ装置。
(2) Control H71 provided on the surface of the groove via an insulating film
The pole is the dart 1i of the dart turn-off thyristor
The reverse conduction dirt turn-off thyristor device according to claim 1, which is formed continuously with the L pole or the anode electrode i-pole of the reverse conduction diode.
JP5060184A 1984-03-16 1984-03-16 Reverse conduction gate turn off thyristor device Pending JPS60194563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060184A JPS60194563A (en) 1984-03-16 1984-03-16 Reverse conduction gate turn off thyristor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060184A JPS60194563A (en) 1984-03-16 1984-03-16 Reverse conduction gate turn off thyristor device

Publications (1)

Publication Number Publication Date
JPS60194563A true JPS60194563A (en) 1985-10-03

Family

ID=12863482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060184A Pending JPS60194563A (en) 1984-03-16 1984-03-16 Reverse conduction gate turn off thyristor device

Country Status (1)

Country Link
JP (1) JPS60194563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205661A (en) * 1986-03-05 1987-09-10 Mitsubishi Electric Corp Manufacture of reverse conducting gto

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230166A (en) * 1975-09-03 1977-03-07 Hitachi Ltd Method for fabrication of semiconductor device
JPS5453972A (en) * 1977-10-07 1979-04-27 Nec Corp Reverse conducting thyristor
JPS55165650A (en) * 1979-06-12 1980-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230166A (en) * 1975-09-03 1977-03-07 Hitachi Ltd Method for fabrication of semiconductor device
JPS5453972A (en) * 1977-10-07 1979-04-27 Nec Corp Reverse conducting thyristor
JPS55165650A (en) * 1979-06-12 1980-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205661A (en) * 1986-03-05 1987-09-10 Mitsubishi Electric Corp Manufacture of reverse conducting gto

Similar Documents

Publication Publication Date Title
US6190948B1 (en) Method of forming power semiconductor devices having overlapping floating field plates for improving breakdown voltage capability
US5304821A (en) MOS-gate-turnoff thyristor
US4145703A (en) High power MOS device and fabrication method therefor
US4344081A (en) Combined DMOS and a vertical bipolar transistor device and fabrication method therefor
US5510634A (en) Insulated gate bipolar transistor
JPH09283754A (en) High withstand voltage semiconductor device
JPS62131580A (en) High speed switching lateral insulated gate transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JPH01218067A (en) Bipolar-type semiconductor switching device
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JPH0793422B2 (en) Semiconductor device
TW202416537A (en) Trench gate type igbt
JP4761011B2 (en) Semiconductor device having thyristor and method for manufacturing the same
JPH0241182B2 (en)
JPS60194563A (en) Reverse conduction gate turn off thyristor device
JP3657938B2 (en) Semiconductor device
US5925899A (en) Vertical type insulated gate bipolar transistor having a planar gate structure
JPH07211897A (en) Semiconductor element for high voltage
US5047824A (en) Reverse conducting gate turn-off thyristor
JPH05315599A (en) Self-arc extinguishing thyristor and manufacture thereof
JPH0136711B2 (en)
JPH0964350A (en) Semiconductor device
JPH0691245B2 (en) Gate turn-off thyristor
KR100486350B1 (en) Est &amp; method of manufacturing thereof
KR100275208B1 (en) Insulated gate bipolar transistor