JPS60180906A - Method for removing carbon powder from aluminum nitride powder - Google Patents
Method for removing carbon powder from aluminum nitride powderInfo
- Publication number
- JPS60180906A JPS60180906A JP3535484A JP3535484A JPS60180906A JP S60180906 A JPS60180906 A JP S60180906A JP 3535484 A JP3535484 A JP 3535484A JP 3535484 A JP3535484 A JP 3535484A JP S60180906 A JPS60180906 A JP S60180906A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aln
- aluminum nitride
- fine
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
粉末を除去する方法である。 くわしくはカーボン粉末
を含む窒化アルミニウム粉末を、炭酸ガスを含むガスと
700”C〜1100℃の温度で接触させることを特徴
とする窒化アルミニウムからカーボン粉末を除去 一す
る方法である。DETAILED DESCRIPTION OF THE INVENTION A method for removing powder. Specifically, this is a method for removing carbon powder from aluminum nitride, which is characterized by bringing aluminum nitride powder containing carbon powder into contact with a gas containing carbon dioxide gas at a temperature of 700"C to 1100C.
従来、各種産業用及び民生用の機械、機器材料或いは電
子機器材料等に種々のセラミック又はセラミック複合体
が使用されている。Conventionally, various ceramics or ceramic composites have been used in various industrial and consumer machines, equipment materials, electronic equipment materials, and the like.
しかしながら特定の用途に要求される二−ズを満足する
ヰA料を工業的に製造することはしばしば困難である。However, it is often difficult to industrially produce a material that satisfies the needs of a particular application.
本発明者等は鋭意セラミックの製造技術の開発に携って
来た。特に窒化アルミニウムに関する研究を続けてきた
結果、 新規な窒化アルミニウムの製造に成功し、既に
提案するに至った。更に研究を続けた結果、新たな窒化
アルミニラl1の製法を完成し、ここに提案するに至っ
た。The present inventors have been earnestly involved in the development of ceramic manufacturing technology. As a result of continuing research on aluminum nitride in particular, we have succeeded in producing a new aluminum nitride and have already proposed it. As a result of further research, we completed a new method for producing aluminum nitride l1 and proposed it here.
本発明は窒化アルミニウムからカーボンの粉末を除去す
る方法である。 くわしくは、カーボン粉末を含む窒化
アルミニウム粉末を、炭酸ガスを含むガスと700℃〜
1100℃の温度で接触させることを特徴とする窒化ア
ルミニウムからカーボン粉末を除去する方法である。The present invention is a method for removing carbon powder from aluminum nitride. Specifically, aluminum nitride powder containing carbon powder is heated at 700°C or more with gas containing carbon dioxide gas.
This is a method for removing carbon powder from aluminum nitride, which is characterized by contacting at a temperature of 1100°C.
本発明における窒化アルミニウムはアルミナとカーボン
とを窒素雰囲気下に反応させて得られるものが対象とな
る。例えば、
(1)平均粒子径が2μm以下のアルミニウム微粒子と
灰分含量0.2電量%で平均粒子径が1μm以下のカー
ボン微粉末とを液体分散媒体中で緊密に混合し、そのさ
い該アルミニウム微粉末対該カーボン微粉末の重量比は
i :o、ae〜l:lであり:
(2)得られた緊密混合物を、適宜乾燥し、窒素又はア
ンモニアの雰囲気下でl″400〜1700℃の温度で
焼成し窒化アルミニウム、粉末を得る。The aluminum nitride used in the present invention is obtained by reacting alumina and carbon in a nitrogen atmosphere. For example, (1) fine aluminum particles with an average particle size of 2 μm or less and fine carbon powder with an ash content of 0.2 coul% and an average particle size of 1 μm or less are intimately mixed in a liquid dispersion medium; The weight ratio of the powder to the fine carbon powder is i:o, ae~l:l: (2) The resulting intimate mixture is optionally dried and heated under an atmosphere of nitrogen or ammonia at l″ at 400-1700°C. Calcinate at high temperature to obtain aluminum nitride powder.
上記方法によれば原料を焼成して得られる窒化アルミニ
ウムを粉砕する工程の実施を避けることができる。粉砕
工程の実施を避けることによって粉砕工程で混入する不
純物成分を除去出来るし、のみならず窒化アルミニウム
の表面が粉砕中に酸化されて酸素含有量が増加すること
を防ぐことも出来る。窒化アルミニウムの粉砕工程を省
くメリットは以外にも極めて大きい。上記粉砕工程を省
いて、しかも良好な性状の窒化アルミニウムを得るには
、前記製造工程におけるアルミナ微粉末とカーボン微粉
末の混合を液体分散媒体中で行ういわゆる湿式混合方式
を採用することが肝要である。湿式混合刃によれば原料
相互の混合を緊密に実施出来るだけでなく、以外にも原
料粒子が凝集して粗大化する傾向を防ぐことが出来る。According to the above method, it is possible to avoid the step of pulverizing aluminum nitride obtained by firing the raw material. By avoiding the pulverization process, it is possible to remove impurity components mixed in during the pulverization process, and it is also possible to prevent the surface of the aluminum nitride from being oxidized during the pulverization and increasing the oxygen content. The advantages of omitting the process of crushing aluminum nitride are also extremely large. In order to omit the above-mentioned pulverization step and obtain aluminum nitride with good properties, it is important to adopt a so-called wet mixing method in which the fine alumina powder and the fine carbon powder are mixed in a liquid dispersion medium in the manufacturing process. be. The wet mixing blade not only allows the raw materials to be mixed closely, but also prevents the raw material particles from agglomerating and becoming coarse.
得られた緊密混合物は焼成により結果的に細粒子で且つ
粒子が揃った窒化アルミニウムを与える。しかも前記し
たように粉砕工程などで混入する不純物成分を完全に防
ぐことが出来、また窒化アルミニウム表面の酸化防止が
出来るので、従来法にくらべれば焼結性にすぐれ且つ高
純度であり、しかも焼結体は高熱伝導性、透光性を備え
た焼結体を与えることが出来る、すぐれた性状の窒化ア
ルミニウムを製造することができる。前記湿式混合で使
用出来る液体分散媒体は特に限定されず湿式混合溶媒と
して公知のものが使用出来る。一般に工業的には水、炭
化水素、脂肪族アルコール、石油エーテル、ヘキサ:、
ベンゼン、トルエン等であり、脂肪族アノムコールは例
えばメタノール、エタノール、イソプロパツール等であ
る。The resulting intimate mixture is then calcined to yield fine-grained and uniformly grained aluminum nitride. Moreover, as mentioned above, it is possible to completely prevent impurity components mixed in during the grinding process, etc., and it is also possible to prevent oxidation of the aluminum nitride surface, resulting in superior sinterability and high purity compared to conventional methods. As the body, aluminum nitride with excellent properties can be produced, which can provide a sintered body with high thermal conductivity and translucency. The liquid dispersion medium that can be used in the wet mixing is not particularly limited, and any known wet mixed solvent can be used. Generally, industrially, water, hydrocarbons, aliphatic alcohols, petroleum ether, hexa:
Benzene, toluene, etc., and aliphatic anomucoles include, for example, methanol, ethanol, isopropanol, etc.
にも残存する不純物成分の混入を避けることが出来る材
質の装置中で実施するのがよい。It is preferable to carry out the process in an apparatus made of a material that can avoid contamination with residual impurity components.
・般に該湿式混合は常温、常圧下で実施することができ
る。温度及び圧力によって悪影響をうけることはない。- Generally, the wet mixing can be carried out at normal temperature and normal pressure. It is not adversely affected by temperature and pressure.
また混合装置としては材質から焼成後においても残存す
る不純物成分を生じないものを選ぶ限り公知の装置、1
段を採用しうる。例えば混合装置として球を物又は棒状
物を内臓したミルを使用するのカー・般的であるが、ミ
ルの内壁、球状物又は棒状物等の材質は、得られる窒化
アルミニウム中に焼成後においても残存する不純物成分
が混入するのを避けるために、窒化アルミニウノ1自身
あるいは99.9重量%以上の高純度アルミナとするの
が好ましい。また混合装置の原料と接する面をすべてプ
ラスチック製とするかプラスチックでユ1−ティングす
ることもできる。該プラスチックとしては特に限定゛さ
れず例えばポリエチレン、ポリプロピレン、ナイロン、
ポリエステル、ポリウレタン等が使用できる。この場合
、プラスチック中には安定剤として種々の金属成分を含
む場合があるので、予めチェックして使用するようにす
べきである。In addition, as long as the mixing device is selected from a material that does not produce residual impurity components even after firing, any known device, 1.
steps can be adopted. For example, it is common to use a mill with balls or rods built into it as a mixing device, but the inner wall of the mill, the materials of the balls or rods, etc., remain in the resulting aluminum nitride even after firing. In order to avoid contamination with remaining impurity components, it is preferable to use aluminum nitride UNO 1 itself or high purity alumina of 99.9% by weight or more. Furthermore, all surfaces of the mixing device that come into contact with the raw materials may be made of plastic or may be covered with plastic. The plastic is not particularly limited, and includes, for example, polyethylene, polypropylene, nylon,
Polyester, polyurethane, etc. can be used. In this case, since the plastic may contain various metal components as stabilizers, it should be checked before use.
また上記方法ではアルミナとカーボンは特定の性状のも
のを用いる必要がある。一般にアルミナ微粉末としては
平均粒子径が2μm以下の微粉末を用いるのが好ましく
、 好ましくは少なくとも99.Oli量%より好まし
くは少なくとも99.9.l垣%の純度のものが用いら
れる。またカーボン微粉末は灰分の含有量最大0.2重
量%好ましくは最大0゜1重電%のものを用いるのが好
ましい。 また該カーボンの平均粒子径は1μm以下の
微粒子として用いる必要がある。さらに該カーボンとし
てはカーボンブラック、黒鉛化カーボン等が使用されう
るが一般にはカーボンブラックガ好ましい。Further, in the above method, it is necessary to use alumina and carbon having specific properties. Generally, it is preferable to use fine alumina powder having an average particle diameter of 2 μm or less, preferably at least 99.9 μm. Oli amount % more preferably at least 99.9. A purity of 1% is used. Further, it is preferable to use fine carbon powder having an ash content of 0.2% by weight at most, preferably 0.1% by weight at most. Further, the carbon needs to be used as fine particles with an average particle diameter of 1 μm or less. Further, as the carbon, carbon black, graphitized carbon, etc. can be used, but carbon black is generally preferred.
前記アルミナとカーボンの原料使用割合は、アルミナと
カーボンの純度および粒子径等の性状によって異なるの
で、予め予備テストを行い決定するとよい。通常はアル
ミナとカーボンとを、アルミナ対カーボンの重量比で1
:0.36〜1:1.好ましくはl:4〜1:1の範囲
で温式混合すればよい。該温式混合された原料は必要に
より乾燥を経で、窒素雰囲気下に1400〜1700℃
の温度で焼成する。該焼成する温度が、ヒ記温J?tよ
り低い場合は」二叉的に十分な還元窒素化反応が進tj
L/ないので好ましくない。また該焼成温度が前記温
度より高くなると得られる窒化アルミニアムの一部が焼
結を起し、粒子間の凝集が起るため目的の粒子径の窒化
アルミニウムが得らの難くなるので好ましくない。The raw material usage ratio of alumina and carbon varies depending on the properties of the alumina and carbon, such as their purity and particle diameter, and is therefore preferably determined by conducting a preliminary test in advance. Usually, alumina and carbon are mixed at a weight ratio of alumina to carbon of 1.
:0.36~1:1. Preferably, warm mixing may be carried out in the range of 1:4 to 1:1. The hot mixed raw materials are heated at 1400 to 1700°C under a nitrogen atmosphere after drying if necessary.
Bake at a temperature of Is the firing temperature J? If it is lower than t, sufficient reductive nitrogenation reaction is proceeding bifurcated.
L/No, so it's not preferable. Furthermore, if the firing temperature is higher than the above temperature, a part of the aluminum nitride obtained will sinter, causing agglomeration between particles, making it difficult to obtain aluminum nitride having the desired particle size, which is not preferable.
このようにして得られた窒化アルミニウム粉末は原料と
して加えた過剰のカーボンあるいは未反応のカーボン粉
末を含むので該得られた窒化アルミニウム粉末から該カ
ーボンを除去する必要がある。本発明にあっては該カー
ボンを炭酸ガスを含むガスと700〜1100℃の温度
で接触させることによって除去する。Since the aluminum nitride powder thus obtained contains excess carbon added as a raw material or unreacted carbon powder, it is necessary to remove the carbon from the obtained aluminum nitride powder. In the present invention, the carbon is removed by contacting it with a gas containing carbon dioxide gas at a temperature of 700 to 1100°C.
本発明は上記カス温度が重要な要因となる。即ち該温度
が」−記ガス温瓜より低い場合はカーボンの除去が十分
でなく、逆に丑記ガス温度より高い場合は窒化アルミニ
ウムがアルミナに変換されるので窒化アルミニウムの純
度が低下し本発明の目的を達成しえない。従って該ガス
温度は700〜1100℃、好しくは750〜9σO℃
の範囲から選べば好適である。In the present invention, the above-mentioned waste temperature is an important factor. That is, if the temperature is lower than the above gas temperature, carbon is not removed sufficiently, and conversely, if it is higher than the above gas temperature, aluminum nitride is converted to alumina, resulting in a decrease in the purity of the aluminum nitride and the present invention. cannot achieve its purpose. Therefore, the gas temperature is 700 to 1100°C, preferably 750 to 9σO°C.
It is preferable to select from the range of .
本発明で使用する炭酸ガスを含むガスは特に限定される
ものではないが一般には0.5容量%以上好ましくはl
容量%以上を含むガスを使用するのが好適である。The gas containing carbon dioxide used in the present invention is not particularly limited, but is generally 0.5% by volume or more, preferably l
It is preferred to use a gas containing at least % by volume.
また上記窒化アルミニウム粉末と接触させる上記ガスの
流速は該カー・ボンの酸化速度に影響を与えるので該接
触時のガス温度、接触時間等の条件におおじで適宜決定
して採用するのが好ましい。一般には該ガス流速は0.
2〜IOe*/秒、奸1ノ<は0.5〜5cm+/秒の
範囲から選べば十分である。Furthermore, since the flow rate of the gas brought into contact with the aluminum nitride powder affects the oxidation rate of the carbon, it is preferable to appropriately determine the flow rate of the gas at the time of contact, such as the gas temperature and contact time. . Generally, the gas flow rate is 0.
It is sufficient to select from the range of 2 to IOe*/sec and 0.5 to 5 cm+/sec.
上記接触時間はガス濃度、温度、流速等によって異なる
のでこれらの条件によって適宜決定すればよい。・般に
は:30分〜10時間の範囲から選べば十分である。The above-mentioned contact time varies depending on gas concentration, temperature, flow rate, etc., and may be appropriately determined based on these conditions. - Generally: It is sufficient to choose from the range of 30 minutes to 10 hours.
本発明における窒化アルミニウム粉末と炭酸ガスとの接
触装置は特に限定さのず公知の装置をそのまま使用すれ
ばよい。The apparatus for contacting aluminum nitride powder and carbon dioxide gas in the present invention is not particularly limited, and any known apparatus may be used as is.
本発明によフて得られる窒化アルミニラ粉末は前記カー
ボン除去にさいしても含有N%もほとんど変化すること
なく安定した状態で得ることができる。The aluminum nitride powder obtained according to the present invention can be obtained in a stable state with almost no change in N% content even during the carbon removal.
本発明を更に詳細に説明するため以下実施を挙げて説明
するが本発明はこれらの実施例に限定されるものではな
い。EXAMPLES In order to explain the present invention in more detail, examples will be given below, but the present invention is not limited to these examples.
実施例1
純度99.99%(不純物分析値は表1に示す)で、平
均粒子径が0.52μmで371m以下の粒子の含有割
合が95容量%のアルミナ100重量部と、灰分0.0
8重量%で平均粒子径が0.45μmのカーボンブラッ
ク50重機部とを、ナイロン製ポットとボールを用いエ
タノールを液体分散媒体として湿式混合で均一にボール
ミル混合した。Example 1 100 parts by weight of alumina with a purity of 99.99% (impurity analysis values are shown in Table 1) and a content of 95% by volume of particles with an average particle diameter of 0.52 μm and 371 m or less, and an ash content of 0.0
50 parts of carbon black having an average particle diameter of 0.45 μm and weighing 8% by weight were uniformly ball-milled by wet mixing using a nylon pot and ball and using ethanol as a liquid dispersion medium.
このようにして得られた混合物を乾燥後、高純度黒鉛製
平罷に入れ電気炉内に高純度窒素ガスを連続的に供給し
ながら1600℃の温度で6時間加熱した。After drying the mixture thus obtained, it was placed in a high-purity graphite blank and heated at 1600° C. for 6 hours while continuously supplying high-purity nitrogen gas into an electric furnace.
このようにして得られた反応混合物を石英製平1[に移
し、酸素含有量10PI)M以下の二酸化炭素ガス(露
点−70℃)を、線速2an+ 7秒で供給しつつ80
0℃の温度で3時間加熱した。The reaction mixture thus obtained was transferred to a quartz Hei 1 plate, and carbon dioxide gas (dew point -70°C) with an oxygen content of 10 PI) M or less was supplied at a linear velocity of 2 an + 7 seconds and heated at 80° C.
Heating was carried out at a temperature of 0° C. for 3 hours.
得られて白色の粉はX−線回折分析の結果、単相のAL
Nであり、他の結晶の回折線はなかフた。また該粉末の
平均粒子径は1058μmであり3μm以下が82容量
%を占めた。この粉末の分析値を表2に示す。As a result of X-ray diffraction analysis, the obtained white powder was found to be single-phase AL.
It was N, and the diffraction lines of other crystals were almost absent. The average particle diameter of the powder was 1058 μm, and particles of 3 μm or less accounted for 82% by volume. The analytical values of this powder are shown in Table 2.
(以下余白)
表I AlaO+:+粉末分析値
AI。03含有量 99.99%
元 素 含有11(1’l’M)
Mg < 5
Cr <10
St 30
Zri <5
Fe 22
Cu < 5
Ca <2O
N1 15
′薗 〈 5
(以下余白)
表2 AIN粉末分析値
元 素 含有量(PPM)
Mg <5
Cr 23
S i )) ;3
Zn 9
Fe 18
Cu < 5
Mn 5
N1 31
71’+ <5
Co < 5
AI 65.2
N 33.7
0 0.7
CO,12
このようにして得た窒化アルミニウム粉末に焼結助剤と
してCa(NOs ) 2’ 41190を3.0%/
1%添加し、エタノール中で均一に混合した。この混合
粉末0.6gを内径13+uの金型で一軸プレスし、次
いで2000kg/C1♂に圧力でラバーブレスシテ円
板状の成形体とした。この成形体を内壁を窒化ホウ素粉
末でコーティングした黒鉛製るつぼに入れ、1気圧の窒
素中で1800℃、2時間焼成した。焼成後の焼結体は
密度は3.23g/Cぜであり、この焼結体をjすさ2
mmに研磨したものについてレーザーフラッシュ法によ
り熱伝導率を測定したところ122w/mkであった。(Left below) Table I AlaO+:+Powder analysis value AI. 03 Content 99.99% Element Content 11 (1'l'M) Mg < 5 Cr < 10 St 30 Zri < 5 Fe 22 Cu < 5 Ca < 2O N1 15' Sono < 5 (Margins below) Table 2 AIN Powder analysis value Element Content (PPM) Mg <5 Cr 23 Si )) ;3 Zn 9 Fe 18 Cu < 5 Mn 5 N1 31 71'+ <5 Co < 5 AI 65.2 N 33.7 0 0 .7 CO,12 3.0% of Ca(NOs) 2' 41190 was added to the aluminum nitride powder thus obtained as a sintering aid.
1% was added and mixed uniformly in ethanol. 0.6 g of this mixed powder was uniaxially pressed in a mold with an inner diameter of 13+U, and then pressed to a pressure of 2000 kg/C1♂ to form a rubber-press disc-shaped compact. This compact was placed in a graphite crucible whose inner wall was coated with boron nitride powder, and fired at 1800° C. for 2 hours in nitrogen at 1 atmosphere. The density of the sintered body after firing is 3.23 g/Cze, and this sintered body is
The thermal conductivity of the material polished to mm was measured by the laser flash method and found to be 122 w/mk.
また前記焼結助剤を混合した混合粉末を内径20mmの
黒鉛製モールド内壁を窒化ホウ素でコーティング)に充
填し、1気圧の窒素中で200kg/cv/、2000
℃、3時間の条件でホットプレス焼結した。得うレタ焼
結体を厚さ0.5mmに研削研磨したものは可視光〜赤
外光に対し優れた透光性を有し、波長6μmの光に対す
る直線透過率は46%であった・
実施例2
実施例1と同しアルミナ粉末を実施例1と同様の手順で
混合、乾燥後、窒化反応を行った。該反応混合物を石英
製平冊に移し、各種条件ドで加熱処理を行った結果を表
3に示す。(表3のN004.5は比較例である。)以
下余白
特許出願人 徳山曹達株式会社In addition, the mixed powder containing the sintering aid was filled into a graphite mold (inner wall of which was coated with boron nitride) with an inner diameter of 20 mm, and the mixture was heated at 200 kg/cv/, 2000 kg/cv/ in 1 atm nitrogen.
Hot press sintering was performed at ℃ for 3 hours. The obtained Reta sintered body was ground and polished to a thickness of 0.5 mm and had excellent translucency for visible light to infrared light, and the linear transmittance for light with a wavelength of 6 μm was 46%. Example 2 The same alumina powder as in Example 1 was mixed and dried in the same manner as in Example 1, followed by a nitriding reaction. The reaction mixture was transferred to a flat quartz booklet and heat treated under various conditions. Table 3 shows the results. (N004.5 in Table 3 is a comparative example.) The following margin patent applicant: Tokuyama Soda Co., Ltd.
Claims (2)
酸ガスを含むガスと70θ℃〜1100℃の温度で接触
させることを特徴とする窒化アルミニウムからカーボン
粉末を除去する方法。(1) A method for removing carbon powder from aluminum nitride, which comprises bringing aluminum nitride powder containing carbon powder into contact with a gas containing carbon dioxide gas at a temperature of 70θ°C to 1100°C.
」二含むガスである特許請求の範囲(1)記載の方法。(2) The method according to claim (1), wherein the gas containing carbon dioxide gas is a gas containing 0.5% by volume or more of carbon dioxide gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3535484A JPS60180906A (en) | 1984-02-28 | 1984-02-28 | Method for removing carbon powder from aluminum nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3535484A JPS60180906A (en) | 1984-02-28 | 1984-02-28 | Method for removing carbon powder from aluminum nitride powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60180906A true JPS60180906A (en) | 1985-09-14 |
Family
ID=12439533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3535484A Pending JPS60180906A (en) | 1984-02-28 | 1984-02-28 | Method for removing carbon powder from aluminum nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60180906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171903A (en) * | 1986-01-24 | 1987-07-28 | Nec Corp | Synthesis of fine aluminum nitride powder |
US4992253A (en) * | 1989-12-29 | 1991-02-12 | National Science Council | Process for producing an ultrafine powder of aluminum nitride |
JP2006131492A (en) * | 2004-10-07 | 2006-05-25 | Toyo Aluminium Kk | Aluminum nitride powder and its production method |
-
1984
- 1984-02-28 JP JP3535484A patent/JPS60180906A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171903A (en) * | 1986-01-24 | 1987-07-28 | Nec Corp | Synthesis of fine aluminum nitride powder |
JPH0524850B2 (en) * | 1986-01-24 | 1993-04-09 | Nippon Electric Co | |
US4992253A (en) * | 1989-12-29 | 1991-02-12 | National Science Council | Process for producing an ultrafine powder of aluminum nitride |
JP2006131492A (en) * | 2004-10-07 | 2006-05-25 | Toyo Aluminium Kk | Aluminum nitride powder and its production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7358331B2 (en) | Method for manufacturing silicon nitride powder | |
CN104203813B (en) | Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same | |
US2929126A (en) | Process of making molded aluminum nitride articles | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
JPS62241811A (en) | Powder for manufacturing ceramics of metal carbide and nitride by hot carbon reduction and manufacture | |
JP3827459B2 (en) | Silicon nitride powder and method for producing the same | |
JPS62197353A (en) | Manufacture of silicon carbide sintered body | |
US2535659A (en) | Amorphous silica and process for making same | |
JPH0362643B2 (en) | ||
JPS60180906A (en) | Method for removing carbon powder from aluminum nitride powder | |
JPH0617214B2 (en) | Method for producing ultrafine aluminum nitride powder | |
JPH0428645B2 (en) | ||
JPS62167212A (en) | Production of beta-type silicon carbide powder | |
JPH07309611A (en) | Production of aluminum nitride powder | |
JPS616104A (en) | Manufacture of aluminum nitride powder | |
IE870755L (en) | Silicon nitride powders for ceramics | |
JPH08290905A (en) | Hexagonal boron nitride powder and its production | |
JPS638265A (en) | Manufacture of composite sintered body | |
JPS5918106A (en) | Preparation of silicon aluminum oxynitride type powdery raw material | |
JPS616109A (en) | Manufacture of sic | |
JPS60131863A (en) | Electrical insulating silicon carbide sintered body | |
JPS61111959A (en) | Material comprising particles containing elementary silicon bonded by reaction under presence of carbon and manufacture | |
JPH01103960A (en) | Production of boron nitride sintered compact | |
JPH0455996B2 (en) | ||
JPH01179763A (en) | Production of combined sintered body of boron nitride and silicon nitride |