JPS60175505A - Preparation of gas separation composite membrane - Google Patents

Preparation of gas separation composite membrane

Info

Publication number
JPS60175505A
JPS60175505A JP59031110A JP3111084A JPS60175505A JP S60175505 A JPS60175505 A JP S60175505A JP 59031110 A JP59031110 A JP 59031110A JP 3111084 A JP3111084 A JP 3111084A JP S60175505 A JPS60175505 A JP S60175505A
Authority
JP
Japan
Prior art keywords
solution
polyorganosiloxane
composite membrane
dissolving
amino group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59031110A
Other languages
Japanese (ja)
Inventor
Takao Aoki
孝夫 青木
Masaru Kurihara
優 栗原
Tadahiro Uemura
忠廣 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59031110A priority Critical patent/JPS60175505A/en
Publication of JPS60175505A publication Critical patent/JPS60175505A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare a composite membrane reduced in the generation of a pinhole and excellent in gas separation capacity, by coating a porous support with a solution of polyorganosiloxane having an amino group in a non-aqueous solvent and, thereafter, performing the crosslinking reaction of said polyorganosiloxane with a multifunctional reagent having reactivity with the amino group. CONSTITUTION:A solution prepared by dissolving polyorganosiloxane having an amino group in an org. solvent having no compatitility with water such as polymer solution prepared by dissolving amino modified silcone oil in hexane is applied to a porous support such as a polysulfone microporous membrane. Subsequently, a crosslinking agent solution prepared by dissolving a polyfunctional reagent having reactivity with the amino group of polyorganosiloxane in an org. solvent compatible with the solvent of the polymer solution, for example, a solution of trimedinic chloride in hexane is applied to the coated support to obtain a composite membrane wherein an amido crosslinked polysiloxane layer is closely adhered to the support.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、気体分離用複合膜の製造方法に関するもので
あり、さらに詳しくは、多孔性支持体上に、気体分11
1f能を有する架橋ポリオルガノシロキサン系重合体を
主成分とする活性層を設けた構造を有する複合膜の製造
方法に関づるものである。
Detailed Description of the Invention [Technical Field] The present invention relates to a method for producing a composite membrane for gas separation.
The present invention relates to a method for producing a composite membrane having a structure provided with an active layer mainly composed of a crosslinked polyorganosiloxane polymer having 1f ability.

〔従来技術〕[Prior art]

従来、気体分離用複合膜の製造方法としては、■ 支持
体上に、ポリマー溶液を塗布した後、乾燥により溶媒を
除去する方法、■ 多孔性支持体をジメチルシリコーン
モノマおよび架橋剤を含有する塩素系溶剤溶液に浸漬後
加熱架橋せしめる方法(特開昭54−82380号公報
参照)、■ポリオルガノシロキサン系重合体の非水溶性
溶媒溶液を水面上に展延せしめることにより生成する薄
層を単に多孔性支持体に付着μしめる方法(例えば米国
特許第3874986号)、■ 熱架橋性ポリオルガノ
シロキサン系重合体組成物の非水溶性溶媒溶液を水面上
に展延せしめることにより生成する薄膜を水面上で多孔
性支持体に付着せしめ、次いで加熱架橋処理する方法(
特開昭58−92430)などがあった。
Conventionally, methods for producing composite membranes for gas separation include: (1) coating a polymer solution on a support and then removing the solvent by drying; (2) coating a porous support with chlorine containing dimethyl silicone monomer and a crosslinking agent; A method of heating and crosslinking after immersion in a polyorganosiloxane-based solvent solution (see Japanese Patent Application Laid-open No. 54-82380); A method of adhering to a porous support (for example, U.S. Pat. No. 3,874,986); A method of attaching the above to a porous support and then heating and crosslinking it (
JP-A-58-92430), etc.

しかしながら、これらの方法では、活性層を非常に薄(
塗るため、多孔性支持体の傷、あるいは異物などによっ
て欠点を生じやすい。また多孔性支持体の細孔内におけ
る架橋重合体の生成に基づく、気体透過量9低下、複合
膜の耐久性、耐圧性の低さ、さらには、水面キャストな
どに際しての装置及び操作の煩雑、といった欠点が存在
し、いずれも耐久性の高い複合膜を工業的に得るための
製造法に関して、必ずしも満足されるものではなかった
However, these methods make the active layer very thin (
Since it is painted on, defects are likely to occur due to scratches on the porous support or foreign matter. In addition, due to the formation of crosslinked polymers in the pores of the porous support, the amount of gas permeation is reduced9, the durability and pressure resistance of the composite membrane are low, and furthermore, the complexity of equipment and operations when performing water surface casting, etc. These drawbacks exist, and none of them are necessarily satisfactory in terms of production methods for industrially obtaining highly durable composite membranes.

本発明は、特開昭57−105203号等に開示された
アミノ変性ポリシロキサン架橋膜の製造方法に関するも
のである。従来かかる架橋膜を製造する際に、例えば特
開昭57−105203号にはアミノ変性ポリシロキサ
ンと架橋剤の水またはアルコール溶液を多孔性支持体上
に塗布、乾燥を行なう方法ならびに、アミノ変性ポリシ
ロキサンの水またはアルコール溶液と架橋剤の非水溶性
溶媒溶液により支持体上で界面型綜合法で膜形成を行な
う方法が記載されている。しかしながら従来の方法はピ
ンボール等の発生により安定した気体分離性能の確保が
難かしく、必ずしも満足できるものでないことが判明し
た。
The present invention relates to a method for producing an amino-modified polysiloxane crosslinked membrane disclosed in JP-A-57-105203 and other publications. Conventionally, when producing such a crosslinked membrane, for example, JP-A-57-105203 discloses a method in which a water or alcohol solution of amino-modified polysiloxane and a cross-linking agent is coated on a porous support and dried; A method is described in which a film is formed on a support by an interfacial sheathing method using a water or alcohol solution of siloxane and a solution of a crosslinking agent in a non-aqueous solvent. However, it has been found that the conventional method is not always satisfactory because it is difficult to ensure stable gas separation performance due to the occurrence of pinballs and the like.

〔本発明の目的〕[Object of the present invention]

本発明者らは、工業的に容易に製造可能で、また再現性
よく欠点のない、気体分離性能(特に酸素富化性能)に
優れた複合膜の製造方法について鋭意検討した結果、本
発明に到達した。すなわち、本発明によれば、ピンホー
ル等の発生の極めて少ない、優れた気体分離性能を有す
る複合膜を安定して供給Jる製造方法を提供することが
可能である。
The present inventors have conducted intensive studies on a method for manufacturing a composite membrane that is industrially easy to manufacture, has no defects with good reproducibility, and has excellent gas separation performance (particularly oxygen enrichment performance), and has developed the present invention. Reached. That is, according to the present invention, it is possible to provide a manufacturing method that stably supplies a composite membrane having excellent gas separation performance with extremely few occurrences of pinholes and the like.

〔本発明の構成〕[Configuration of the present invention]

本発明は、上記目的を達成するため、多孔性支持体上に
、アミノ基を有するポリオルガノシロキサンを少なくと
も0.1%含有する、水と非混和性の有機溶媒系の溶液
を塗布し、その後、該有機溶媒と混和性の有機溶媒に、
アミノ基と反応性を有し、かつ縮合あるいは付加して新
しい結合を生成することのできる多官能試薬を溶解して
なる架橋剤溶液を塗布し、架橋反応を進行することを特
徴とする、気体分離用複合膜の製造方法に関するもので
ある。
In order to achieve the above object, the present invention applies a water-immiscible organic solvent solution containing at least 0.1% of polyorganosiloxane having an amino group onto a porous support, and then , an organic solvent miscible with the organic solvent,
A gas that is characterized by applying a crosslinking agent solution in which a multifunctional reagent that is reactive with amino groups and capable of condensation or addition to generate new bonds is applied to proceed with a crosslinking reaction. The present invention relates to a method for manufacturing a composite membrane for separation.

本発明において多孔性支持体とは実質的には分離性能を
有さない層で、実質的に分離性能を有する薄膜に強度を
与えるために用いられるものであり、均一な微細な孔あ
るいは片面からもう一方の面まで徐々に大きな微細な孔
をもっていて、そのgaIII孔に大きさはその片面の
表面が約100〜1000Aであるような構造の支持体
が好ましい。
In the present invention, the porous support is a layer that does not substantially have separation performance, and is used to give strength to a thin film that does have separation performance. It is preferable to use a support having a structure in which the other surface has fine pores that gradually become larger, and the size of the GaIII pores is about 100 to 1000 A on one surface.

上記の微細孔性支持体は、ミリポアフィルタ(VSWP
)や東洋濾紙(U K I O)のような各種市販材料
3から選択することもできるが、通常は“オフィス・オ
ブ・セイリーン・ウォーター・リサーチ・アンド・ディ
ベ[1ツプメント・プログレス・レポート” No 3
59 (1968)に記載された方法に従って製造でき
る。その素材にはポリス、ルホンヤ、酢酸セルローズ、
硝酸セルローズやポリ塩化ビニル等のホモポリマーある
いはブレンドしたものが通常使用され、たとえばポリス
ルボンのジメチルホルムアミド(DMF>溶液を密に織
ったテトロン布あるいは不織布の上に一定の厚さに注型
しそれをドデシル硫酸ソーダ0.5重量%およびDMF
2!I[%含む水溶液中で湿式凝固させることによって
、表面の大部分が直径数百オングストローム以下の微細
な孔を有した多孔性の支持体が得られる。
The microporous support described above is a Millipore filter (VSWP).
) and Toyo Roshi (U.K.I.O.), but typically "Office of Saline Water Research and Development [1st Progress Report] No. 3
59 (1968). Its materials include polis, ruhonya, cellulose acetate,
Homopolymers or blends of cellulose nitrate and polyvinyl chloride are usually used. For example, a solution of polysulfone in dimethylformamide (DMF) is cast to a certain thickness onto a tightly woven Tetoron cloth or non-woven cloth. Sodium dodecyl sulfate 0.5% by weight and DMF
2! By wet coagulation in an aqueous solution containing I [%], a porous support having most of its surface having fine pores with a diameter of several hundred angstroms or less can be obtained.

なお製膜に際し、この様な多孔性支持体は、支持体表面
に水滴が現われていない程度に、含水状態であることが
好ましい。このことにより、製膜時において、アミノ基
を有するポリオルガノシロキサンを主成分とする水と非
混和性の有機溶媒系溶液が多孔性支持体の細孔に入って
いくことがなく、細孔内における架橋重合体の生成に基
づく複合膜の気体透過量の低下が防がれるものと思われ
る。
Note that during film formation, such a porous support is preferably in a water-containing state to such an extent that no water droplets appear on the surface of the support. This prevents the water-immiscible organic solvent solution, which is mainly composed of polyorganosiloxane having amino groups, from entering the pores of the porous support during film formation. This seems to prevent the reduction in gas permeation of the composite membrane due to the formation of crosslinked polymers.

本発明においては、アミノ基を有するポリオルガノシロ
キサンを主成分とする重合体が、アミノ基と反応性を有
し、かつ縮合あるいは付加して新しい結合を生成するこ
とのできる多官能試薬とすみやかな架橋反応をおこすこ
とによって、三次元網目状構造を形成することが重要で
ある。これによって複合膜に耐久性が付与されるように
なる。
In the present invention, a polymer mainly composed of polyorganosiloxane having amino groups is used as a polyfunctional reagent that is reactive with amino groups and can be condensed or added to form new bonds. It is important to form a three-dimensional network structure by causing a crosslinking reaction. This imparts durability to the composite membrane.

ここで用いられる多官能試薬は、通常、室温ですぐにア
ミノ基と反応し、架橋構造を生成するため、あらかじめ
アミノ基を有するポリオルガノシロキサンを主成分とす
る重合体と均一な溶液を形成することはできない。
The polyfunctional reagent used here usually reacts immediately with amino groups at room temperature to generate a crosslinked structure, so it forms a homogeneous solution with a polymer whose main component is polyorganosiloxane, which already has amino groups. It is not possible.

本発明ぐいうアミノ基を右するポリオルガノシロキサン
とは、−分子中に少なくとも2つ以上のアミノ基を有し
、少なくとも30%以上のオルガノシロキサンセグメン
トを含む有機ポリマーである。ここでオルガノシロキサ
ンセグメントとは、ケイ素原子に置換もしくは非置換の
炭素数1〜12のアルキルまたはアリール基の結合した
ものでメチル、エチル、t−ブチル、フェニル、シクロ
ヘキシルなどh原子団の結合したものが好ましく、ジメ
チルシロキサン、フェニルメチルシロ、キサン、t−プ
チルメチルシロキザン、シクロへキシルメチルシロキサ
ンなどが特に好ましい。一般式は式(1)にように示さ
れる。
The polyorganosiloxane containing amino groups in the present invention is an organic polymer having at least two or more amino groups in the molecule and containing at least 30% or more of organosiloxane segments. Here, the organosiloxane segment is one in which a substituted or unsubstituted alkyl or aryl group having 1 to 12 carbon atoms is bonded to a silicon atom, and an h atom group such as methyl, ethyl, t-butyl, phenyl, or cyclohexyl is bonded. are preferred, and dimethylsiloxane, phenylmethylsiloxane, xane, t-butylmethylsiloxane, cyclohexylmethylsiloxane and the like are particularly preferred. The general formula is shown as formula (1).

ここに、R,R’ は置換もしくは非置換の、炭素数1
〜12のアルキルまたはアリール基である。
Here, R, R' are substituted or unsubstituted carbon atoms
~12 alkyl or aryl groups.

ここで、アミン基を導入する方法に関しては、アミノ基
を有する単量体をオルガノシロキサンと共重合するのが
一般的であるが、高分子反応でアミノ基を導入すること
もできる。アミノ基を有し、オルガノシロキサンと容易
に共重合できるものとして、例えば、ビスアミノプロピ
ルテトラメチルジシロキサンは式(2)のように反応し
て、アミノ基を有するオルガノシロキサンを与える。
Here, regarding the method of introducing an amine group, it is common to copolymerize a monomer having an amino group with an organosiloxane, but the amino group can also be introduced by a polymer reaction. For example, bisaminopropyltetramethyldisiloxane, which has an amino group and can be easily copolymerized with an organosiloxane, reacts as shown in formula (2) to give an organosiloxane having an amino group.

さらにはジアルコキシアルキルアミノプロビルシランは
、ジアルキルジアルコキシシランと式(3)のように共
重合して、アミノ基含有ポリオルガノシロキサンを与え
る。
Further, dialkoxyalkylaminoprobylsilane is copolymerized with dialkyldialkoxysilane as shown in formula (3) to give an amino group-containing polyorganosiloxane.

内1」2 N+−12 また、式(3)で得られた重合体は、末端のアルコキシ
−ケイ素結合の反応性を利用して、各種ポリマーあるい
は七ツマ−との共重合体を容易に生成することもできる
In addition, the polymer obtained by formula (3) can easily be used to form copolymers with various polymers or seven polymers by utilizing the reactivity of the terminal alkoxy-silicon bond. You can also.

また高分子反応によるアミノ基の導入方法としては、主
鎖および/又は側鎖にあらかじめハロゲン基を導入して
おいて、アミン等との反応によって、アミノ基を導入す
ることも一般によく行なわれる反応である。
In addition, as a method for introducing amino groups through a polymer reaction, a commonly used method is to introduce a halogen group into the main chain and/or side chain in advance, and then introduce the amino group by reaction with an amine, etc. It is.

このような反応を利用し耐圧性をさらに向上しかつ気体
の選択性を向上するためにオルガノシロキサンセグメン
トとスチレン、カーボネート、ウレタン、含フツ素モノ
マー等の他のセグメントとを製膜性、分離性能、透過速
度等に悪影響を与えない範囲で共重合することもできる
。さらにアミノ基を有するポリオルガノシロキサンを主
成分とする水と非混和性の有機溶媒系に溶解してなる重
合体溶液には耐圧性をさらに向上しかつ気体の選択性を
向上するために、上記のアミノ基を有するポリオルガノ
シロキサン以外の各種有機ポリマ−を製膜性、分離性能
、透過速度等に悪影響を与えない範囲で溶解しておくこ
とも可能である。
Utilizing such a reaction, in order to further improve pressure resistance and gas selectivity, the organosiloxane segment and other segments such as styrene, carbonate, urethane, and fluorine-containing monomers are combined to improve film formability and separation performance. , copolymerization can also be carried out within a range that does not adversely affect the permeation rate and the like. Furthermore, in order to further improve pressure resistance and gas selectivity, the polymer solution prepared by dissolving a polyorganosiloxane having an amino group as a main component in a water-immiscible organic solvent system has the above-mentioned properties. It is also possible to dissolve various organic polymers other than polyorganosiloxane having an amino group within the range that does not adversely affect film forming properties, separation performance, permeation rate, etc.

アミン基を有するポリオルガノシロキサンを架橋させる
ために使用される架橋剤としては、酸塩化物、酸無水物
、イソシアネート、チオイソシアネート、スルホニルク
ロリド、エポキシ、アルデヒドあるいは活性ハロゲンな
どの官能基を分子内に2個以上もつ化合物があげられる
。この中でも酸塩化物、イソシアネート化合物が好まし
く、特に、イソフタル酸クロライド、テレフタル酸クロ
ライド、トリメシン酸クロライド、フマル酸クロライド
、トリレン−2,4−ジイソシアネート、ジフェニルメ
タン−4,4′−ジイソシアネートなどが好ましい。
Crosslinking agents used to crosslink polyorganosiloxanes having amine groups include functional groups such as acid chlorides, acid anhydrides, isocyanates, thioisocyanates, sulfonyl chlorides, epoxies, aldehydes, or active halogens in the molecule. Examples include compounds with two or more. Among these, acid chlorides and isocyanate compounds are preferred, with isophthaloyl chloride, terephthaloyl chloride, trimesoyl chloride, fumaroyl chloride, tolylene-2,4-diisocyanate, diphenylmethane-4,4'-diisocyanate and the like being particularly preferred.

本発明において、水と非混和性の有機溶媒とは使用する
多孔性支持体を溶かすことなく、アミノ基を右するポリ
オルガノシロキサンと反応ゼずに、少なくとも0.1重
量%以上溶解し、かつ操作条件下において適度の揮散性
を有するものが使用される。
In the present invention, an organic solvent that is immiscible with water is one that dissolves at least 0.1% by weight or more without dissolving the porous support used or reacting with the polyorganosiloxane containing amino groups, and Those having adequate volatility under operating conditions are used.

かかる溶媒としてはヘキサン、ヘプタン、シフ[1ヘキ
サン、イソペンタン等のような炭化水素系溶媒、あるい
はトリクロロトリフルオロエタン、テトラクロロジフル
オロエタン等のフルオロ系溶媒、さらにはこれら相互あ
るいは他の溶剤との混合物等種々のものが使用可能であ
り、使用する高分子の溶解性、操作条件等を勘案し適宜
選定づることか望ましい。この溶液中のアミノ基を有す
るポリオルガノシロキサンの最適濃度は、ポリマー、架
橋剤、溶媒によって異なるので実験的に定めるのが最も
良いが、一般的には約0.1ないし2重量%の濃度が良
好な結果を与える。
Such solvents include hydrocarbon solvents such as hexane, heptane, Schiff [1 hexane, isopentane, etc., fluoro solvents such as trichlorotrifluoroethane and tetrachlorodifluoroethane, and mixtures of these with each other or other solvents. Various types can be used, and it is desirable to select an appropriate one in consideration of the solubility of the polymer used, operating conditions, etc. The optimum concentration of polyorganosiloxane having amino groups in this solution varies depending on the polymer, crosslinking agent, and solvent, and is best determined experimentally, but in general, a concentration of about 0.1 to 2% by weight is recommended. Gives good results.

さらに架橋剤の溶媒としては架橋剤と反応しない前記ポ
リマー溶液の溶媒(炭化水素系溶媒、フルオロ系溶媒等
)が好ましいが、ポリマー溶液と同一成分である必要は
ない。この溶液中の架橋剤の最適11度は、ポリマー、
架橋剤、溶媒によって異なるので実験的に定めるのが最
も良いが、一般的には約0.05ないし3重量%の濃度
が良好な結果を与える。
Furthermore, the solvent for the crosslinking agent is preferably a solvent for the polymer solution that does not react with the crosslinking agent (hydrocarbon solvent, fluorosolvent, etc.), but it does not have to have the same components as the polymer solution. The optimal 11 degrees of crosslinking agent in this solution is the polymer,
Since it varies depending on the crosslinking agent and solvent, it is best to determine it experimentally, but generally a concentration of about 0.05 to 3% by weight gives good results.

本発明において多孔性支持体層上に架橋ポリオルガノシ
ロキサン系重合体を主成分とする活性層の形成は多孔性
支持体上に前記アミノ基を有するポリオルガノシロキサ
ンを主成分とする溶液を塗布した後、その上から架橋剤
溶液を注ぎ、一定時間展延して、その後、溶媒を乾燥す
ることによって行なわれる。アミノ基を有するポリオル
ガノシロキサンを主成分とする前記ポリマー溶液を、多
孔性支持体上に均一に塗布する方法に関しては特に限定
されるものではないが、多孔性支持体を該ポリマー溶液
に浸漬し、その後ひき上げて液切りするか、あるいは巻
取ローラなどによって一定速度で移動している多孔性支
持体上に適当な形状の注入口よりポリマー溶液を注ぎ込
む方法のほか、へヶ塗り法等の慣用の方法も適用できる
。次に、支持体表面にポリマー溶液の認められなくなる
まで風乾(必要に応じては強制乾燥を行なってもよい。
In the present invention, an active layer mainly composed of a crosslinked polyorganosiloxane polymer is formed on a porous support layer by coating a solution mainly composed of the polyorganosiloxane having amino groups on the porous support layer. After that, a crosslinking agent solution is poured over it, spread for a certain period of time, and then the solvent is dried. There are no particular limitations on the method of uniformly applying the polymer solution containing polyorganosiloxane having an amino group as a main component onto the porous support, but the method may include immersing the porous support in the polymer solution. The polymer solution can then be drawn up and drained, or the polymer solution can be poured through an appropriately shaped injection port onto a porous support that is moving at a constant speed using a winding roller, etc. Conventional methods can also be applied. Next, air drying (forced drying may be performed if necessary) until no polymer solution is observed on the surface of the support.

)を行なった後、支持体上に架橋剤を一定時間(数秒な
いし3分間)は・ば均一にゆきわたらゼて架橋反応を進
行させる。架橋剤溶液の支持体上への接触方法は特に限
定されるものではないが前記のポリマー溶液の塗布方法
に準するのが好ましい。
), the crosslinking agent is uniformly spread over the support for a certain period of time (several seconds to 3 minutes) to allow the crosslinking reaction to proceed. The method of contacting the crosslinking agent solution onto the support is not particularly limited, but it is preferable to follow the method of applying the polymer solution described above.

この後、液切りを行ない、必要に応じて、lff1器ま
たは熱風循環乾燥器で強制乾燥する、一般的には50な
いし150℃で30秒ないし3分間が良好である。
Thereafter, the liquid is drained, and if necessary, forced drying is performed in an LFF1 oven or a hot air circulation dryer. Generally, 30 seconds to 3 minutes at 50 to 150°C is good.

〔本発明の効果〕[Effects of the present invention]

本発明によれば、ピンホール等の欠点が少なく、かつ気
体分離能(特に酸素富化性能)の優れた複合膜を、工業
的にきわめて容易に、安定性良く得ることができる。
According to the present invention, a composite membrane with few defects such as pinholes and excellent gas separation performance (particularly oxygen enrichment performance) can be obtained industrially very easily and with good stability.

以下、本発明を実施例によって具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 ポリスルホン微多孔膜の製膜。Example 1 Production of polysulfone microporous membrane.

ポリスルホン15重量部、ジメチルホルムアミド85重
量部のキャスト液を調製した。
A casting solution containing 15 parts by weight of polysulfone and 85 parts by weight of dimethylformamide was prepared.

このキャスト液を傷のない乾燥したガラス板上に210
μmの厚さでキャストした。その後直ちにこのキャスト
した膜をガラス板ごと水の中へずばやく静かに等スピー
ドで入れた。すぐにポリスルホン微多孔膜がガラス板か
ら剥離してくるが、10f7mはど水槽の中に入れてお
き、その後取り出して水道水でよく洗浄した後蒸溜水中
で保存した。このようにして得られたポリスルホン微多
孔膜はキャスト時に空気に接していた方の面は微孔、ガ
ラス板に接していた面のイ4近は比較的大きな孔がおい
ていることが知られている。
Spread this casting solution on a dry, scratch-free glass plate for 210 minutes.
It was cast to a thickness of μm. Immediately thereafter, the cast membrane was quickly and quietly placed into water together with the glass plate at a uniform speed. Although the polysulfone microporous membrane soon peeled off from the glass plate, it was kept in a 10f7m water tank, and then taken out, thoroughly washed with tap water, and then stored in distilled water. It is known that the polysulfone microporous membrane obtained in this way has micropores on the side that was in contact with the air during casting, and relatively large pores on the side that was in contact with the glass plate. ing.

また、このポリスルホン微多孔膜は、製膜時には蒸溜水
中よりとり出し、圧縮窒素流によってポリスルホン微多
孔膜表面の水滴を除去した。
Furthermore, this microporous polysulfone membrane was taken out of distilled water during film formation, and water droplets on the surface of the microporous polysulfone membrane were removed by a compressed nitrogen stream.

次にアミン変性シリコーンオイル(トーレシリコーン社
製変性シリコーンオイル5F8417、アミノ塁0.5
重量%)1重量部を99重量部のn−ヘキサンに溶解し
たポリマー溶液を調製した。
Next, amine-modified silicone oil (modified silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd., amino base 0.5
A polymer solution was prepared by dissolving 1 part by weight (% by weight) in 99 parts by weight of n-hexane.

またトリメシン酸クロライド3重量部を97m和部のn
−へキサンに溶解した溶液を作った。そして、あらかじ
め作製したポリスルポン多孔MW材膜上に該ポリマー溶
液を均一に注いだ後、膜を垂直に保持し、液切りを行な
って、30秒間風乾した。その上にトリメシン酸クロラ
イドの溶液を均一に注ぎ30秒後、膜を垂直にして液切
りを行なった。これを3分間風乾後、熱風乾燥を5分間
行なって、支持体上に密着したアミド架橋ポリシロキサ
ン層を有する複合膜を得た。
In addition, 3 parts by weight of trimesic acid chloride was added to 97 m parts of n
- A solution was made in hexane. After pouring the polymer solution uniformly onto the polysulfone porous MW material membrane prepared in advance, the membrane was held vertically, the liquid was drained, and the membrane was air-dried for 30 seconds. A solution of trimesic acid chloride was uniformly poured onto the membrane for 30 seconds, and then the membrane was turned vertically to drain the liquid. This was air-dried for 3 minutes and then hot-air dried for 5 minutes to obtain a composite membrane having an amide crosslinked polysiloxane layer in close contact with the support.

このようにして得られた複合膜から直径5cmの円板状
試験片を切り出し測定セルに固定し、温度25℃の条件
下、lki/cnfの外圧で純酸素および純窒素を透過
させそれぞれの透過速度より酸素富化性能をめたところ
QO2(酸素透過速度)は0、、82m’/n+’hr
atlll、 tx (Qo 2 /Q 82 ’)は
2.0であった。
A disk-shaped test piece with a diameter of 5 cm was cut out from the composite membrane thus obtained, fixed in a measurement cell, and pure oxygen and pure nitrogen were permeated at a temperature of 25°C and an external pressure of lki/cnf. When oxygen enrichment performance was calculated from speed, QO2 (oxygen permeation rate) was 0, 82 m'/n+'hr
atll, tx (Qo2/Q82') was 2.0.

実施例2 アミノ変性シリコーン オイル(トーレシリコーン社製
変性シリコーンオイル5F8417)1mm部とビス(
アミノプロピル)テトラメチルジシロキサン0.5重石
部を98.5重量部のn−ヘキサンに均一に溶解した溶
液を調製した。またトリメシン酸りロライドo、im壷
部を99.9重量部のn−ヘキサンに溶解した溶液を作
った。
Example 2 A 1 mm portion of amino-modified silicone oil (modified silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd.) and a screw (
A solution was prepared by uniformly dissolving 0.5 parts of tetramethyl (aminopropyl)tetramethyldisiloxane in 98.5 parts by weight of n-hexane. In addition, a solution was prepared by dissolving trimesic acid chloride o and im in 99.9 parts by weight of n-hexane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質基材股上での架橋反応によるアミ
ド架橋型ポリシロキサン層を有する複合IIりを得た。
Using these materials, a composite II having an amide crosslinked polysiloxane layer formed by a crosslinking reaction on the crotch of a polysulfone porous base material prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能−を実施
例1と同様にして測定したところQO2は2.2yn’
/ln211ratm 、 aハ2.0 テアツタ。
The oxygen enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1, and the QO2 was 2.2yn'
/ln211ratm, aha 2.0 Tea Tsuta.

実施例3 アミン変性シリコーンオイル(トーレシリ」−ン社製変
性シリ]−ンAイル5F8417)1重量部を99重ω
部のトリノルオロトリクロロエタンに溶解した溶液を調
製した。また、フマル酸クロライド0.1mm部を99
.9重量部のトリフルオロ1−リクロロエタンに溶解し
た溶液を作った。
Example 3 1 part by weight of amine-modified silicone oil (modified silicone A-il 5F8417 manufactured by Toray Silicone Co., Ltd.) was added to 99 wt.
A solution was prepared by dissolving 100% of the compound in trinororotrichloroethane. In addition, 0.1 mm part of fumaric acid chloride was added to 99
.. A solution was prepared in 9 parts by weight of trifluoro-1-lichloroethane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質基材膜上での架橋反応によるアミ
ド架橋型ポリシロキサン層を有する複合膜を1!Iだ。
Using these materials, a composite membrane having an amide crosslinked polysiloxane layer formed by a crosslinking reaction on a polysulfone porous base membrane prepared in advance in the same manner as in Example 1 was prepared. It's I.

このようにして得られた複合膜のMIA富化性能を実施
例1と同様にして測定したところ、QO2=0.95t
n”/TII2hratm 、 α−2,lであった。
When the MIA enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1, it was found that QO2 = 0.95t
n''/TII2hratm, α-2,l.

実施例4 アミノ変性シリコーンオイル(トーレシリコーン社製シ
リコーンオイル5F8417)1重量部を99重同郡の
n−ヘキサンに溶解した溶液を調製した。またジフェニ
ルメタン−4,4′−ジイソシアナート0.5重量部を
99.5重量部のn−ヘキサンに溶解した溶液を作った
Example 4 A solution was prepared by dissolving 1 part by weight of amino-modified silicone oil (silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd.) in 99% n-hexane. A solution was also prepared by dissolving 0.5 parts by weight of diphenylmethane-4,4'-diisocyanate in 99.5 parts by weight of n-hexane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質基材股上での架橋反応による尿素
架橋型ポリシロキサン層を有する複合膜を得た。
Using these, a composite membrane having a urea crosslinked polysiloxane layer formed by a crosslinking reaction on the crotch of a polysulfone porous substrate prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能を実施例
1と同様にして測定したところ、QO2=3.25m’
/yn”hratm 、 a=2.0テアツタ。
When the oxygen enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1, QO2 = 3.25 m'
/yn”hratm, a=2.0 Tea Tsuta.

実施例5 アミノ変性シリコーンオイル(トーレシリコーン社製変
性シリコーンオイル5F8417)1mm部を99重量
部のトリフルオロトリク口口エタンに溶解した溶液を調
製した。また、ジイソシアン酸へキサメチレン0.5m
ff1部を99.5重量部のn−ヘキサンに溶解した溶
液を作った。
Example 5 A solution was prepared by dissolving 1 mm part of amino-modified silicone oil (modified silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd.) in 99 parts by weight of trifluorotric ethane. Also, 0.5 m of hexamethylene diisocyanate
A solution was prepared by dissolving 1 part of ff in 99.5 parts by weight of n-hexane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質nag:上での架橋反応による尿
素架橋型ポリシロキサン層を有する複合膜を得た。
Using these materials, a composite membrane having a urea crosslinked polysiloxane layer formed by a crosslinking reaction on a polysulfone porous nag prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能を実施例
1と同様にして測定したところQO2=0、5yn’/
11’11ratm 、α−2,2であった。
The oxygen enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1. QO2 = 0, 5yn'/
11'11ratm, α-2,2.

実施例6 アミン変性シリコーンオイル(トーレシリコーン社製変
性シリコーンオイル5F8417)1重り部とビス(ア
ミノプロピル)テトラメチルジシロキサン0.05重量
部を98.95重量部のn−ヘキサンに均一に溶解した
溶液を調製した。また塩化シアヌル0.1in吊部を9
9.9重量部のn−ヘキサンに溶解した溶液を作った。
Example 6 1 part by weight of amine-modified silicone oil (modified silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd.) and 0.05 part by weight of bis(aminopropyl)tetramethyldisiloxane were uniformly dissolved in 98.95 parts by weight of n-hexane. A solution was prepared. In addition, 0.1 inch of cyanuric chloride was added to the hanging part.
A solution was prepared in 9.9 parts by weight of n-hexane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質基材股上での架橋反応によるシア
メロアミド架橋型ポリシロキサン層を有する複合膜を得
た。
Using these, a composite membrane having a siameroamide crosslinked polysiloxane layer formed by a crosslinking reaction on the crotch of a polysulfone porous substrate prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能を実施例
1と同様にして測定したところ、QO2=4.5TIl
’/W12hratlll 、 U= 1 、7Tアッ
TC6実施例7 アミノ変性シリコーンオイル(トーレシリコーン社製変
性シリコーンオイル5F8417)、1型缶部とビス(
アミノプロピル)テトラメチルジシロキサン0.051
31部を98.95重量部のn−ヘキサンに均一に溶解
した溶液を調製した。またトリイソシアン酸化合物く西
独、+1jils社製IPDI−71890)0.1重
量部を99.9重量部のn−ヘキサンに溶解した溶液を
作った。
When the oxygen enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1, it was found that QO2 = 4.5TIl
'/W12hratll, U=1, 7TatTC6 Example 7 Amino-modified silicone oil (Modified silicone oil 5F8417 manufactured by Toray Silicone Co., Ltd.), type 1 can part and screws (
aminopropyl)tetramethyldisiloxane 0.051
A solution was prepared by uniformly dissolving 31 parts in 98.95 parts by weight of n-hexane. Further, a solution was prepared by dissolving 0.1 part by weight of a triisocyanate compound (IPDI-71890, manufactured by +1jils, West Germany) in 99.9 parts by weight of n-hexane.

これらを用いて実施例1と同様にしてあらかじめ作製し
たポリスルホン多孔質基材膜上での架橋反応による尿素
架橋型ポリシロキサン層を有する複合膜を得た。
Using these materials, a composite membrane having a urea crosslinked polysiloxane layer formed by crosslinking reaction on a polysulfone porous base membrane prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能を実施例
1と同様にして測定したところ、QO2=3.6Tll
’/Tl12ハratII、 a= 2.2であった。
The oxygen enrichment performance of the composite membrane thus obtained was measured in the same manner as in Example 1, and it was found that QO2 = 3.6 Tll.
'/Tl12haratII, a=2.2.

実施例8 3−アミノプロピルメチルジェトキシシラン0゜955
gとジメチルツメ1−キシシラン11.4(]と水25
1とを70℃で攪拌しつつ、41L″1問反応させ加水
分解した。つづいて分液により油層を分頗し、その後5
mm1−IQの真空下におき、生成するアルコールを留
去しつつ、バス高110℃まで加熱して、残存のシリコ
ーン七ツマ−、オリゴマーを留去して、アミノ変性シロ
キサンオイルを4げた。
Example 8 3-aminopropylmethyljethoxysilane 0°955
g and dimethyl 1-xysilane 11.4 (] and water 25
While stirring 1 and 1 at 70°C, 41L was reacted and hydrolyzed. Next, the oil layer was separated by liquid separation, and then 5
The mixture was placed under a vacuum of mm1-IQ and heated to a bath height of 110 DEG C. while distilling off the alcohol produced, and the remaining silicone hexamer and oligomer were distilled off to obtain an amino-modified siloxane oil.

このオイルはメタノール、n−ベキ1ノン、トリフルオ
ロトリクロロエタン等に可溶であった。
This oil was soluble in methanol, n-bequinone, trifluorotrichloroethane, and the like.

上記アミン変性シリコンオイル1iJffi部を99重
重岱のトリフルオロトリクロロエタンに溶解しポリマー
溶液を調製した。また、フマル酸クロライド1重量部を
トリノルオoトリクロロエタン99mff1部に溶解し
た溶液を作った。これらを用いて実施例1と同様にして
あらかじめ作製したポリスルボン多孔質基材膜上での架
橋反応によるアミド架橋型ポリシロキサン層を有する複
合膜を得た。
A polymer solution was prepared by dissolving 1 iJffi part of the above amine-modified silicone oil in 99 weight units of trifluorotrichloroethane. Further, a solution was prepared by dissolving 1 part by weight of fumaric acid chloride in 1 part of 99 mff of trichloroethane. Using these materials, a composite membrane having an amide crosslinked polysiloxane layer formed by crosslinking reaction on a polysulfone porous base membrane prepared in advance in the same manner as in Example 1 was obtained.

このようにして得られた複合膜の酸素富化性能を測定し
たところ、QO2=0.92、α−1゜90であった。
When the oxygen enrichment performance of the composite membrane thus obtained was measured, it was found that QO2=0.92 and α-1°90.

比較例1 実施例8で合成したアミン変性シリコンオイル1東予部
を99重量部のメタノールに溶解したポリマー溶液を調
製した。またフマル酸クロライド1重量部をn−ヘキサ
ン99重量部に溶解した溶液を作った。これらを用いて
実施例1と同様にしてあらかじめ作製だポリスルホン多
孔質基材股上で膜形成を行ない、複合膜を得た。
Comparative Example 1 A polymer solution was prepared by dissolving the amine-modified silicone oil 1 Toyobu synthesized in Example 8 in 99 parts by weight of methanol. Further, a solution was prepared by dissolving 1 part by weight of fumaric acid chloride in 99 parts by weight of n-hexane. Using these, a membrane was formed on a polysulfone porous base material prepared in advance in the same manner as in Example 1 to obtain a composite membrane.

この膜の酸素富化性能を測定したところ、Q O。When the oxygen enrichment performance of this membrane was measured, it was found to be Q O.

=2.0.α=0.97であった。=2.0. α=0.97.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1) 多孔性支持体上に、アミノ基を有するポリオル
ガノシロキサンを少なくとも0.1%含有する、水と非
混和性の有機溶媒系の溶液を塗布し、その後、該有機溶
媒と混和性の有機溶媒に、前記ポリオルガノシロキサン
のアミノ基と反応性を有し、かつ縮合あるいはイ1加し
て新しい結合を生成することのできる多官能試薬を溶解
してなる架橋剤溶液を塗布し、架橋反応を進行せしめる
ことを特徴とする、気体分離用複合膜の製造方法。
(1) A solution of an organic solvent immiscible with water containing at least 0.1% of a polyorganosiloxane having an amino group is applied onto a porous support, and then a solution of an organic solvent immiscible with water is applied. A crosslinking agent solution prepared by dissolving a polyfunctional reagent that is reactive with the amino groups of the polyorganosiloxane and capable of condensation or addition to form new bonds is applied to an organic solvent to perform crosslinking. A method for producing a composite membrane for gas separation, characterized by allowing a reaction to proceed.
JP59031110A 1984-02-21 1984-02-21 Preparation of gas separation composite membrane Pending JPS60175505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031110A JPS60175505A (en) 1984-02-21 1984-02-21 Preparation of gas separation composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031110A JPS60175505A (en) 1984-02-21 1984-02-21 Preparation of gas separation composite membrane

Publications (1)

Publication Number Publication Date
JPS60175505A true JPS60175505A (en) 1985-09-09

Family

ID=12322259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031110A Pending JPS60175505A (en) 1984-02-21 1984-02-21 Preparation of gas separation composite membrane

Country Status (1)

Country Link
JP (1) JPS60175505A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114714A (en) * 1984-11-09 1986-06-02 ザ リサーチ フアウンデーシヨン オブ ステイト ユニバーシイテイ オブ ニユーヨーク Production of composite membrane for separating gas
JPS61133102A (en) * 1984-11-30 1986-06-20 ミリポア・コーポレイシヨン Porous film having hydrophilic surface and manufacture thereof
EP0254556A2 (en) * 1986-07-23 1988-01-27 Bend Research, Inc. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
EP0322866A2 (en) * 1987-12-28 1989-07-05 Idemitsu Kosan Company Limited Selective gas permeation membranes and method of manufacturing them
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114714A (en) * 1984-11-09 1986-06-02 ザ リサーチ フアウンデーシヨン オブ ステイト ユニバーシイテイ オブ ニユーヨーク Production of composite membrane for separating gas
JPH0536094B2 (en) * 1984-11-09 1993-05-28 Risaachi Fuaundeeshon Obu Suteeto Univ Obu Nyuuyooku Za
JPS61133102A (en) * 1984-11-30 1986-06-20 ミリポア・コーポレイシヨン Porous film having hydrophilic surface and manufacture thereof
JPH0475051B2 (en) * 1984-11-30 1992-11-27
EP0254556A2 (en) * 1986-07-23 1988-01-27 Bend Research, Inc. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
EP0322866A2 (en) * 1987-12-28 1989-07-05 Idemitsu Kosan Company Limited Selective gas permeation membranes and method of manufacturing them

Similar Documents

Publication Publication Date Title
JPH07304887A (en) Composite membrane and its preparation
JPS6322843B2 (en)
JPH02144130A (en) Siloxane graft membrane
JPS60216825A (en) Multi-component gas separation membrane having polyphosphazene film
JPH0374128B2 (en)
JPS59209610A (en) Permselective membrane
JPS59209609A (en) Permselective membrane
US5061301A (en) Process for the preparation of surface modified, multilayered, composite membranes for oxygen enrichment and the gas separation membranes
JPS59209608A (en) Permselective membrane
JPS60175505A (en) Preparation of gas separation composite membrane
JPS643134B2 (en)
JPH0230292B2 (en)
JPH0824830B2 (en) Separation membrane
JPS61111121A (en) Composite membrane for separating gas
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
JPS63130105A (en) Production of permselective composite membrane
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
JPS6028803A (en) Selective permeable membrane and its manufacture
JPH085961B2 (en) Hydrogen separation method
JPH051050B2 (en)
JPS60261512A (en) Manufacture of composite membrane for gas separation
JP2505440B2 (en) Method for manufacturing semipermeable composite membrane
JPS63123406A (en) Manufacture of semipermeable composite membrane
JPS6146203A (en) Composite semipermeable membrane and its manufacture