JPS60169525A - Method for cooling steel strip in cooling zone of continuous annealing furnace - Google Patents

Method for cooling steel strip in cooling zone of continuous annealing furnace

Info

Publication number
JPS60169525A
JPS60169525A JP2524584A JP2524584A JPS60169525A JP S60169525 A JPS60169525 A JP S60169525A JP 2524584 A JP2524584 A JP 2524584A JP 2524584 A JP2524584 A JP 2524584A JP S60169525 A JPS60169525 A JP S60169525A
Authority
JP
Japan
Prior art keywords
cooling
strip
zone
winding angle
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2524584A
Other languages
Japanese (ja)
Other versions
JPS6337170B2 (en
Inventor
Kuniaki Tauchi
田内 邦明
Kanaaki Hyodo
兵頭 金章
Yoshihiro Iida
祐弘 飯田
Norihisa Shiraishi
典久 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2524584A priority Critical patent/JPS60169525A/en
Publication of JPS60169525A publication Critical patent/JPS60169525A/en
Publication of JPS6337170B2 publication Critical patent/JPS6337170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To cool a steel strip having a thickness change without a defective shape and breakdown by starting the resetting of the angle for winding the steel strip on cooling rolls in a cooling zone of a continuous annealing furnace at the time shifted by as much as the response time for the change in the winding angle. CONSTITUTION:A continuous annealing furnace which subjects a strip 1 after cold rolling to heating in a heating zone A, holding in a soaking zone B, cooling in the 1st cooling zone C, an overaging in an overaging zone D and secondary cooling is so constituted that the strip 1 is put around cooling rolls 2-6 passed internally with a refrigerant in said zone C and the cooling temp. is changed by moving the rolls 2-6 and changing the winding angle. The point of the time when the strip 1 arrives at the inlet of the zone C in the boundary part is calculated by a boundary part detector 17, a pulse generator 17, a pulse counter 16, a line speed detector 18, etc. and the resetting of the winding angle is started earlier by as much as the response time for the change in the above-mentioned winding angle in the case of changing the preceding strip to the succeeding strip having the thickness smaller than the thickness of the preceding strip.

Description

【発明の詳細な説明】 への接触熱伝達によって銅帯を冷却するロール冷却装置
を持つ冷却帯の鋼帯冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a steel strip in a cooling zone having a roll cooling device for cooling the copper strip by contact heat transfer to the steel strip.

連続焼鈍炉は、一例として第1図に示す構造を有し、冷
間圧延後の銅帯(以下ス) IJラップ称す)を熱処理
するための炉設備である。設備としては、例えば加熱帯
A1均熱帯B,第1冷却帯C 、 il!’:1時効帯
り,第2冷却帯Eからなシ、第2図に示すヒートサイク
ルを実現するものである。すなわち、第1図に示すスト
リップ1が炉内に至ると、まず加熱帯Aにてたとえは7
00゛C程に加熱され、ついで均熱帯Bにて20秒間7
00℃に保ってまんべんなく熱し、今度は第1冷却帯C
で毎秒50℃ずつ冷却し、その後過時効帯Dにて2分間
400℃にて過時効処理を行ない、更に第2冷却帯EV
Cて冷却するという過程を辿る。
The continuous annealing furnace has a structure shown in FIG. 1 as an example, and is a furnace equipment for heat-treating a cold-rolled copper strip (hereinafter referred to as IJ wrap). The equipment includes, for example, a heating zone A, a soaking zone B, a first cooling zone C, and an il! ': 1 aging zone, 2nd cooling zone E, the heat cycle shown in FIG. 2 is realized. That is, when the strip 1 shown in FIG.
It is heated to about 00°C, and then heated for 20 seconds in soaking zone B.
Keep it at 00℃ and heat it evenly, then turn to the first cooling zone C.
The temperature is cooled by 50°C per second, and then the overaging treatment is performed at 400°C for 2 minutes in the overaging zone D, and then the cooling is performed in the second cooling zone EV.
The process of cooling is followed by cooling.

このような設備において、第1冷却帯Cおよび第2冷却
帯Eでは、スト17ツプ1の冷却に当り、従来よシ、冷
却ガス全ストリツflK吹き付けて強制対流によシ冷却
を行なういわゆるガスジェット法が行にわれていた。し
かし、最近ではこのガスジェット法よりも冷却能力が高
くシカモランニングコストが安いロール冷却法が提案さ
れている。このロール冷却法はストリツfがまきかけら
れるロールに冷媒を通してロールを冷却しロールに接触
するス) IJツブを冷却するものである。しかも、ス
トリップの板厚などが変化した場合にはストリップとロ
ールとの巻伺角度を変えることにより板厚に応じた冷却
温度を調整する冷却方法(特開昭56−35730号公
報掲載)も提案されている。
In such equipment, in the first cooling zone C and the second cooling zone E, when cooling the strips 17, conventionally, the so-called gas is used to blow the entire strip of cooling gas flK and perform cooling by forced convection. The jet method was being used. However, recently, a roll cooling method has been proposed which has higher cooling capacity and lower Sycamore running cost than this gas jet method. In this roll cooling method, a refrigerant is passed through the roll on which the strips F are applied, thereby cooling the roll and cooling the IJ tube that comes into contact with the roll. Furthermore, we have proposed a cooling method (published in Japanese Patent Application Laid-Open No. 56-35730) that adjusts the cooling temperature according to the thickness of the strip by changing the winding angle between the strip and the roll when the thickness of the strip changes. has been done.

かかるロール冷却装置としては、−例として第3図に示
すものがある。第3図において、2〜6は内部に冷媒を
流通させた冷却ロールである。このうち、冷却ロール3
および5は、巻付角度調整のため図面の土下方向に移動
可能に配置され、この移動はロール駆動装置7および8
にて行なわれる。なお、冷媒は冷却ロールから熱交換器
へ送られ冷却された後、再度冷却ロールに供給される。
An example of such a roll cooling device is shown in FIG. In FIG. 3, numerals 2 to 6 are cooling rolls through which a refrigerant is circulated. Of these, cooling roll 3
and 5 are disposed so as to be movable in the direction below the ground in the drawing to adjust the winding angle, and this movement is performed by roll drive devices 7 and 8.
It will be held at Note that, after the refrigerant is sent from the cooling roll to the heat exchanger and cooled, it is supplied to the cooling roll again.

このようなロール冷却法で問題となるのは、通猟ストリ
ツfVrCo、x条前後存在するかた伸び(縁(耳)の
び、もしくは中のび)のため、ストリップの一部が冷却
ロールに接触しない現象が生じ、この結果冷却が不均一
となってしわを発生する事態が生ずることである。
The problem with this type of roll cooling method is that part of the strip does not come into contact with the cooling roll because of the elongation (edge (edge) or middle elongation) that exists before and after the passing strip fVrCo. This phenomenon occurs, resulting in uneven cooling and the appearance of wrinkles.

この問題を解決すべく、特願昭57−129069号公
報では、ロール一本当シのス) IJツf温度降下量に
上限値を設けて冷却の不均一を軽減する冷却方法が提案
されている。ここで、ストリ上式中、 ΔTs:ロール一本当りのストIJツブ17ffi [
降下量、[’C] TS、:冷却ロールとの接触開始力におけるストリップ
温度。〔℃〕 Tw:冷却ロール内冷媒潟度、〔℃〕 Vニライン速度、〔m/h〕 d;板厚、〔m〕 Cニストリップ比熱、[kcal /ky”c]γ;ス
トリップ比重量、Ck’/m3)k:ストリップ及び冷
媒間熱通過率、 [kcal/J h ℃] θ:ロール巻伺角(ロール一本における)、〔厩〕 DR:冷却ロールの外径、〔m〕である。
In order to solve this problem, Japanese Patent Application No. 57-129069 proposes a cooling method that sets an upper limit on the amount of temperature drop per roll to reduce uneven cooling. . Here, in the formula above, ΔTs: strike IJ knob 17ffi per roll [
Amount of drop, ['C] TS,: Strip temperature at contact initiation force with the cooling roll. [°C] Tw: Latency of refrigerant in cooling roll, [°C] V Niline speed, [m/h] d: Plate thickness, [m] C Nistrip specific heat, [kcal/ky”c] γ: Strip specific weight, Ck'/m3) k: Heat transfer rate between strip and refrigerant, [kcal/J h °C] θ: Roll winding angle (for one roll), [stability] DR: Outer diameter of cooling roll, [m] be.

この式から判明するように、ストリップの板J?−d、
ライン速度V等に応じてストリップ温度降下量ΔTsを
上限1的ΔTSCRに等しくすること全条件として、し
かもス) IIツゾの最終冷却温度を所定の許容範囲内
におさえるような巻付角度で焼鈍するのが、スト+7ツ
ゾの形状不良音生ずることなく最大生産効率で所定の材
質を得る最適運転ということになる。
As can be seen from this formula, the strip plate J? -d,
The overall condition is to make the strip temperature drop ΔTs equal to the upper limit ΔTSCR according to the line speed V, etc., and also annealing at a winding angle that keeps the final cooling temperature of the II tube within a predetermined tolerance range. This is the optimum operation to obtain the desired material at maximum production efficiency without producing any sound or defective shapes.

ところが、実際には次のように問題がある。However, in reality, there are problems as follows.

すなわち、ストリップが冷却帯を通過する時間は、数秒
程度の時間しかかからないのに比べ、巻付角度調整のだ
めのロール移動速度は、ストリップの張力制御に股、影
響全没ぼさないように制限される。−例として巻付角度
を60度から120度まで変化させるためのロールを移
動する時間は、約2分かかる。
In other words, while it takes only a few seconds for the strip to pass through the cooling zone, the speed of roll movement for adjusting the winding angle is limited to control the tension of the strip, so as not to completely immerse the strip. Ru. - As an example, the time to move the rolls to change the winding angle from 60 degrees to 120 degrees takes approximately 2 minutes.

したがって、第4図(a)に示すように(ストリップの
先行相板厚く後行側板N)の関係がある場合、もしくは
第4図(b)に示すように(ストリップの先行制板厚〉
後行材板厚)の関係がある場合のいずれにしても、先行
相と後行材との板厚の異なる境界部(溶接部)が冷却帯
の入口を通過すると同時に後行相に対する巻付角度の変
更が行なわれる。すなわち、板厚変更に伴い後行拐の最
終冷却温度を所定の許容範囲内に冷却ししかもΔTs≦
ΔTscRとなるのに必要な巻付角度に変すコされる。
Therefore, as shown in FIG. 4(a), if there is a relationship such as (the leading phase plate of the strip is thick and the trailing side plate N is thick), or as shown in FIG. 4(b) (the leading controlling plate thickness of the strip
In any case where there is a relationship between the thickness of the trailing material and the thickness of the trailing material, the boundary part (weld part) between the leading phase and the trailing material with different thicknesses passes through the entrance of the cooling zone and at the same time wraps around the trailing phase. An angle change is made. In other words, as the plate thickness changes, the final cooling temperature of the trailing strip is cooled to within a predetermined tolerance range, and ΔTs≦
The winding angle is changed to a value necessary to achieve ΔTscR.

ところが、前述した巻伺角度の低応答性のため、一時的
にΔTs>ΔTSCRとなることがあり板形状不良をお
こす可能性がある。
However, due to the low responsiveness of the winding angle described above, ΔTs>ΔTSCR may temporarily occur, which may result in a defective plate shape.

このことは第4図(b)に示すように後行材が先行材に
比べて薄い場合に特に顕著である。
This is particularly noticeable when the trailing material is thinner than the preceding material, as shown in FIG. 4(b).

1だ、一旦ストリップの形状が乱れると後続のストIJ
ツブに影響を及はし、Δ’I’s<ΔTscnとなった
後でもストIJツブの形状を正常に戻すのは困難で、最
悪の場合には板われを起こす場合がある。
1. Once the shape of the strip is disturbed, the subsequent strike IJ
Even after Δ'I's<ΔTscn, it is difficult to restore the shape of the strike IJ knob to its normal shape, and in the worst case, the plate may break.

そこで、本発明−:ストIJツブの板厚変更があっても
前述のΔTs≦ΔTSCHの関係を保持しストリップの
板形状不良や板切れを防止するようにした連続焼鈍炉冷
却帯の銅帯冷却方法の提供を目的とする。
Therefore, the present invention--copper strip cooling in a continuous annealing furnace cooling zone that maintains the above-mentioned relationship of ΔTs≦ΔTSCH even if the thickness of the strike IJ tube changes and prevents strip shape defects and strip breakage. The purpose is to provide a method.

かかる目的を達成する本発明は、内部に冷媒を流通させ
た冷却ロールに銅帯をかけ回し、銅帯冷却温度を変化す
る場合には上記冷却ロールを移動して上記鋼帯と冷却ロ
ールとの巻付角度を変えるようにした連続焼鈍炉冷却帯
において。
The present invention achieves this object by passing a copper strip around a cooling roll through which a refrigerant is circulated, and when changing the cooling temperature of the copper strip, moving the cooling roll to connect the steel strip and the cooling roll. In the cooling zone of a continuous annealing furnace where the wrapping angle is changed.

上記鋼帯の後行材の板厚が先行材の板厚より薄い場合V
Cは、上記後行材と先行材との境界部が上記冷却帯の入
口に至る時点よりも上記巻付角度の変更応答時間分だけ
前の時刻に上記巻付角度の設定替えを開始することを特
徴とする。
When the thickness of the succeeding material of the above steel strip is thinner than that of the preceding material V
C starts changing the setting of the winding angle at a time corresponding to the winding angle change response time before the time when the boundary between the trailing material and the leading material reaches the entrance of the cooling zone. It is characterized by

ここで、第5図および第6図を参照して本発明の詳細な
説明する。第5図は実施例方法のための設備である。冷
却ロール5,3のロール駆動装置7.8は、ロール位置
検出器9.10で得たロール位置から巻付角度を計鏝−
シかっこの巻付角度が入力される巻付角度の設定値■に
なるよう作動する巻付角度制御装置11.12により制
御される。したがって、ロール駆動装置Ff: 7 、
8は巻付角度制御装置:11.12の指令に基づき駆動
されロール5.3を移動させるものである。
The present invention will now be described in detail with reference to FIGS. 5 and 6. FIG. 5 shows the equipment for the example method. The roll driving device 7.8 for the cooling rolls 5, 3 measures the winding angle from the roll position obtained by the roll position detector 9.10.
It is controlled by a winding angle control device 11.12 which operates so that the winding angle of the bracket becomes the inputted winding angle setting value (3). Therefore, roll drive device Ff: 7,
8 is a winding angle control device which is driven based on the command of 11.12 and moves the roll 5.3.

巻+j角度の設定値■は演算装置13から出力されるが
、この演算装置13ではス) IJツブ長LT、板厚、
ライン速度、目標ヒートサイクルが入力され、これらか
ら所要の巻付角度を演算し91要のタイミングにて演算
結果である設定値■が出力される。
The setting value ■ of the winding + j angle is output from the calculation device 13, but this calculation device 13 calculates the IJ tongue length LT, plate thickness,
The line speed and target heat cycle are input, the required winding angle is calculated from these, and the set value (2), which is the calculation result, is output at a timing of 91 seconds.

加熱帯Aの入口にはデフレクタロール14が配置され、
このデフレクタロール14の軸には/やルスジエネレー
タ15が取付けられ、こ(DAルスソエネレータ15に
接続されたパルスカウンタ16にて回転数の割数がイ)
なわれる。・臂ルスカウンタ16には境界部(溶接点)
の通過でυセットイa号が出力される境界部検出器17
が接続されるので、パルスカウンタ16の計数値によっ
て回転数に比例したス) IJツブ長LT が得られる
A deflector roll 14 is arranged at the entrance of the heating zone A,
A pulse generator 15 is attached to the shaft of the deflector roll 14, and a pulse counter 16 connected to the DA pulse generator 15 measures the number of revolutions.
be called.・The armature counter 16 has a boundary (welding point)
Boundary detector 17 outputs υ set a upon passage of
is connected, the IJ tube length LT proportional to the rotational speed can be obtained from the count value of the pulse counter 16.

更に、加熱帯Aにはライン速度検出器18が配置法れる
。このライン速度検出器18の速度信号と先行イ珂のス
) lラグ長LT とが演算装置13にて次式により処
理され境界部が冷却帯入口を通過するタイミングが得ら
れる。
Furthermore, a line speed detector 18 is arranged in the heating zone A. The speed signal of the line speed detector 18 and the lag length LT of the preceding line are processed by the following equation in the arithmetic unit 13 to obtain the timing at which the boundary passes through the cooling zone entrance.

ΔL=Lo LT LT≧Lcのとき、 ΔT−ΔL/V 十LC/V LT < LCのとき、 ΔT = LC/V−LT/’TJ ここで、ΔL ;境界部検出器の位置での先行材の残長
、 Lo:先行材の全長 LT:先行材が境界部検出器を通過 した分のストリップ長す、 Lc:境界部検出器から冷却帯入口 までの距離、 717次の境界部が冷却帯入口全通 過するまでの時間、 V ニライン速度である。
ΔL=Lo LT When LT≧Lc, ΔT-ΔL/V 1LC/V When LT<LC, ΔT=LC/V-LT/'TJ Here, ΔL; Leading material at the position of the boundary detector Lo: Total length of the preceding material LT: Strip length of the preceding material passing through the boundary detector, Lc: Distance from the boundary detector to the cooling zone inlet, 717 The next boundary is the cooling zone The time it takes to completely pass through the entrance is V niline speed.

こうして、上記条件によシ境界部が冷却帯入口に至る時
間ΔTが決定される。
In this way, the time ΔT for the boundary portion to reach the cooling zone entrance is determined according to the above conditions.

また、巻付角度の応答時間は予め実験などによって得て
おき、演算装置13内に記憶しておけばよい。
Further, the response time of the winding angle may be obtained in advance through experiments or the like and stored in the arithmetic unit 13.

第6図は冷却帯最終冷却温度と巻伺角度の時間応答であ
る。i@6図(a)は後行材の板1’%、 >先行材の
板Jツの場合を示し−こおり、この場合は冷却帯出口に
スh IJツブの境界部が至ると巻付角度設定値が変更
され、この時点から巻付角度が変化を開始する。したが
って、冷却帯出口にストリップの境界部が至った時点で
はストIJツブ温度は、その板厚により冷却しにくく々
す、このためストリツf温度は上昇する。よって、スト
リップの湯度降下量は、第6図(a)の末口にて示すよ
うに低下する。かかる場合には、前述のΔTs≦T S
CRの関係が保持され、問題はない。
FIG. 6 shows the time response of the final cooling temperature of the cooling zone and the winding angle. i@6 Figure (a) shows the case where the trailing material is 1'% and the preceding material is J2. The angle setting value is changed, and the wrapping angle starts changing from this point. Therefore, when the boundary of the strip reaches the outlet of the cooling zone, the temperature of the strip IJ becomes difficult to cool due to its thickness, and therefore the temperature of the strip f increases. Therefore, the amount of drop in hot water temperature of the strip decreases as shown at the end of FIG. 6(a). In such a case, the aforementioned ΔTs≦TS
The CR relationship is maintained and there are no problems.

一方、第6図(b)は後行材の板厚く先行材の板厚の場
合を示す。すなわち、後行材の板厚が先行側の板厚より
薄い場合には、後行材と先行材との境界部が冷却帯の入
口に至る時点より、巻付角度を変更する応答時間分だけ
前の時刻にて巻付角度の設定替えを行なっている。この
設定替えの時刻は前述した冷却帯入口に境界部が至る時
間ΔTを巻付角度を変更させる応答時間に相応させてい
る。この結果、境界部が冷却帯入口に至るときには、後
行材の板厚に応じた巻付角度が得られるため、ストリッ
プ温度降下量ΔTsが上限値ATSCRよシ多くなるこ
とがない。
On the other hand, FIG. 6(b) shows a case where the succeeding material is thicker and the preceding material is thicker. In other words, if the thickness of the trailing material is thinner than that of the leading material, from the point at which the boundary between the trailing material and the leading material reaches the entrance of the cooling zone, the winding angle is changed by the response time. The winding angle setting was changed at the previous time. The time for this setting change is such that the time ΔT for the boundary portion to reach the cooling zone entrance corresponds to the response time for changing the winding angle. As a result, when the boundary reaches the cooling zone inlet, a winding angle corresponding to the thickness of the trailing material is obtained, so the strip temperature drop ΔTs does not exceed the upper limit value ATSCR.

よって、ΔT3♀T8CRの関係が保持される。Therefore, the relationship ΔT3♀T8CR is maintained.

す、上説明したように本発明によれば、ス) IJツデ
の後行材の&厚が先行材の板厚よシ厚い場合はもちろん
、後行材の板厚が先行側の板厚よシ薄い場合にも、巻付
角度の応答時間を予めみこしてストリップ温度降下量Δ
1゛Sを上限値ΔT SCRよシも太きくならないよう
に巻付角度の設定替えを行なうようにしたため、ストリ
ップの板形状不良や最悪の場合の板切れを引起こすのを
防止できて安定な焼鈍運転が可能となった。゛
As explained above, according to the present invention, S) If the thickness of the trailing material of the IJ Tsude is thicker than the thickness of the preceding material, the thickness of the trailing material is equal to the thickness of the leading material. Even if the strip is thin, the response time of the winding angle is calculated in advance to determine the strip temperature drop Δ.
Since the winding angle setting is changed so that 1゛S does not become thicker than the upper limit ΔT SCR, it is possible to prevent a defective strip shape or, in the worst case, breakage of the strip. Annealing operation is now possible.゛

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続焼鈍設備の一例を示す構成図、第2図は連
続焼鈍炉で熱処理する場合のヒートサイクルを示すグラ
フ、第3図は冷却ロールを用いた連続焼鈍炉冷却帯の設
備例を示す構成図、第4図は従来のス) IJツゾ冷却
の一例の時間応答例で、(a)Fi後行材の板厚が先行
材の板厚よシ厚い場合、(b)は後行材の板厚が先行材
の板厚よシ薄い場合をそれぞれ示すタイムチャート、第
5図は本発明方法の一実施例のための説明に供する設備
構成図、第6図は本発明の鋼帯冷却方法の一例の時間応
答例で、(a)は後行劇の板厚が先行材の板厚よυ厚い
場合、(b)は後行材の板厚が先行側の板厚よシ薄い場
合全それぞれ示すタイムチャートである。 図面中、 ■はストリップ、 2;3,4,5.6は冷却ロール、 7.8はロール駆動装置、 9.10はロール位置検出器、 11.12は巻伺角度制御装竹、 13は演舞、装置、 14はデフレクタロール、 15はノぐルスソエネレータ、 16はパルスカウンタ、 17は境界部検出器、 18はライン速度検出器、 ■は巻イリ角度の設定値、 Aは加熱帯、 Bは均熱帯、 Cは第1冷却帯、 Dil−1:過時効帯、 Eは2.2冷却帯、 ΔTsはストリップ温度降下量、 ΔTscn は上限値である1、 特許出願人 三菱重工業株式会社 川崎製鉄株式会社 復代理人 弁理士 光 石 士 部(他1名) 第1図 都11F;11! (0) 第4図
Figure 1 is a configuration diagram showing an example of continuous annealing equipment, Figure 2 is a graph showing the heat cycle when heat treatment is performed in a continuous annealing furnace, and Figure 3 is an example of equipment for a continuous annealing furnace cooling zone using cooling rolls. Fig. 4 is a time response example of an example of conventional IJ tube cooling. A time chart showing the cases in which the plate thickness of the row material is thinner than that of the preceding material, Fig. 5 is an equipment configuration diagram for explaining an embodiment of the method of the present invention, and Fig. 6 is a diagram showing the case where the plate thickness of the steel of the present invention is thinner than that of the preceding material. This is an example of the time response of an example of the zone cooling method. (a) shows when the thickness of the trailing material is υ thicker than that of the preceding material, and (b) shows that the thickness of the trailing material is υ thicker than that of the leading material. This is a time chart showing all cases of thinness. In the drawing, ■ is a strip, 2; 3, 4, and 5.6 are cooling rolls, 7.8 is a roll drive device, 9.10 is a roll position detector, 11.12 is a winding angle control device, and 13 is a Performance, equipment, 14 is the deflector roll, 15 is the noguru soenator, 16 is the pulse counter, 17 is the boundary detector, 18 is the line speed detector, ■ is the setting value of the winding angle, A is the heating zone, B is the Soaking zone, C is the first cooling zone, Dil-1 is the overaging zone, E is the 2.2 cooling zone, ΔTs is the strip temperature drop, ΔTscn is the upper limit value 1, Patent applicant: Mitsubishi Heavy Industries, Ltd. Kawasaki Steel Patent Attorney Sub-Agent, Patent Attorney Shibu Mitsuishi (1 other person) Figure 1 Capital 11F; 11! (0) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 内部に冷媒を流通させた冷却ロールに銅帯をかけ回し、
銅帯冷却温度を変化する場合には上記冷却ロール全移動
して上記鋼帯と冷却ロールとの巻伺角度を変えるように
した連続焼鈍炉冷却帯において、上記鋼帯の後行側の板
厚が先行杓の板厚よシ薄い場合には、上記後行材と先行
材との境界部が上記冷却帯の入口に至る時点よシも上記
巻付角度の賛更応答時間分だけ前の時刻に上記巻付角度
の設定替えを開始することを特徴とする連続焼鈍炉冷却
帯の銅帯冷却方法。
A copper strip is wrapped around a cooling roll with refrigerant flowing inside.
In the continuous annealing furnace cooling zone where the cooling roll is moved completely to change the winding angle between the steel strip and the cooling roll when the copper strip cooling temperature is changed, the plate thickness of the trailing side of the steel strip is is thinner than the plate thickness of the leading ladle, the time when the boundary between the trailing material and the leading material reaches the entrance of the cooling zone is also a time earlier than the time corresponding to the response time of the winding angle. A method for cooling a copper strip in a continuous annealing furnace cooling zone, characterized in that changing the setting of the winding angle is started at .
JP2524584A 1984-02-15 1984-02-15 Method for cooling steel strip in cooling zone of continuous annealing furnace Granted JPS60169525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2524584A JPS60169525A (en) 1984-02-15 1984-02-15 Method for cooling steel strip in cooling zone of continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2524584A JPS60169525A (en) 1984-02-15 1984-02-15 Method for cooling steel strip in cooling zone of continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS60169525A true JPS60169525A (en) 1985-09-03
JPS6337170B2 JPS6337170B2 (en) 1988-07-25

Family

ID=12160597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2524584A Granted JPS60169525A (en) 1984-02-15 1984-02-15 Method for cooling steel strip in cooling zone of continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS60169525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068352A2 (en) * 2007-07-19 2008-06-12 Corus Staal Bv A strip of steel having a variable thickness in length direction
WO2008104610A1 (en) * 2007-07-19 2008-09-04 Corus Staal Bv Method for annealing a strip of steel having a variable thickness in length direction
US8721809B2 (en) 2007-02-23 2014-05-13 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015712A (en) * 1973-06-15 1975-02-19
JPS5186009A (en) * 1975-01-27 1976-07-28 Chugai Ro Kogyo Kaisha Ltd KINZOKUSUTORITSUPURENZOKUSHODONRONIOKERUONDOSEIGYOHOHO
JPS5228412A (en) * 1975-08-30 1977-03-03 Nippon Kokan Kk <Nkk> Temperature control method in continuous annealing furnaces at the cha nging of heating conditions
JPS5229410A (en) * 1975-08-30 1977-03-05 Nippon Kokan Kk <Nkk> Temperature controlling method for continuous annealing and heating ap paratus
JPS52150713A (en) * 1976-06-11 1977-12-14 Nippon Kokan Kk <Nkk> Controlling of continuous annealing furnace
JPS53130212A (en) * 1977-04-20 1978-11-14 Nippon Kokan Kk <Nkk> Controlling method for forced convective cooling
JPS5723036A (en) * 1980-07-18 1982-02-06 Mitsubishi Heavy Ind Ltd Method for cooling steel plate
JPS5847457A (en) * 1981-09-16 1983-03-19 Mitsubishi Acetate Co Ltd Method for coagulating soya milk
JPS5896824A (en) * 1981-12-03 1983-06-09 Nippon Kokan Kk <Nkk> Cooling method for strip by cooling roll in continuous annealing installation
JPS599130A (en) * 1982-07-08 1984-01-18 Kawasaki Steel Corp Roll cooling method of steel strip
JPS5920426A (en) * 1982-07-27 1984-02-02 Nippon Kokan Kk <Nkk> Method for controlling temperature of plate in continuous annealing installation
JPS5923826A (en) * 1982-07-28 1984-02-07 Mitsubishi Heavy Ind Ltd Cooling method of metallic strip by cooling roll

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015712A (en) * 1973-06-15 1975-02-19
JPS5186009A (en) * 1975-01-27 1976-07-28 Chugai Ro Kogyo Kaisha Ltd KINZOKUSUTORITSUPURENZOKUSHODONRONIOKERUONDOSEIGYOHOHO
JPS5228412A (en) * 1975-08-30 1977-03-03 Nippon Kokan Kk <Nkk> Temperature control method in continuous annealing furnaces at the cha nging of heating conditions
JPS5229410A (en) * 1975-08-30 1977-03-05 Nippon Kokan Kk <Nkk> Temperature controlling method for continuous annealing and heating ap paratus
JPS52150713A (en) * 1976-06-11 1977-12-14 Nippon Kokan Kk <Nkk> Controlling of continuous annealing furnace
JPS53130212A (en) * 1977-04-20 1978-11-14 Nippon Kokan Kk <Nkk> Controlling method for forced convective cooling
JPS5723036A (en) * 1980-07-18 1982-02-06 Mitsubishi Heavy Ind Ltd Method for cooling steel plate
JPS5847457A (en) * 1981-09-16 1983-03-19 Mitsubishi Acetate Co Ltd Method for coagulating soya milk
JPS5896824A (en) * 1981-12-03 1983-06-09 Nippon Kokan Kk <Nkk> Cooling method for strip by cooling roll in continuous annealing installation
JPS599130A (en) * 1982-07-08 1984-01-18 Kawasaki Steel Corp Roll cooling method of steel strip
JPS5920426A (en) * 1982-07-27 1984-02-02 Nippon Kokan Kk <Nkk> Method for controlling temperature of plate in continuous annealing installation
JPS5923826A (en) * 1982-07-28 1984-02-07 Mitsubishi Heavy Ind Ltd Cooling method of metallic strip by cooling roll

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721809B2 (en) 2007-02-23 2014-05-13 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
US9481916B2 (en) 2007-02-23 2016-11-01 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
WO2008068352A2 (en) * 2007-07-19 2008-06-12 Corus Staal Bv A strip of steel having a variable thickness in length direction
WO2008068352A3 (en) * 2007-07-19 2008-07-24 Corus Staal Bv A strip of steel having a variable thickness in length direction
WO2008104610A1 (en) * 2007-07-19 2008-09-04 Corus Staal Bv Method for annealing a strip of steel having a variable thickness in length direction
JP2010533787A (en) * 2007-07-19 2010-10-28 コラス・スタール・ベー・ブイ Steel strip with varying thickness in the length direction
US8864921B2 (en) 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
CN105821199B (en) * 2007-07-19 2018-09-04 穆尔和本德公司 For the method to annealing in length direction steel band with different thickness

Also Published As

Publication number Publication date
JPS6337170B2 (en) 1988-07-25

Similar Documents

Publication Publication Date Title
US5743125A (en) Hot strip production plant for rolling thin rolled strip
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
JPS6314052B2 (en)
JP2003320402A (en) Method and apparatus for manufacturing hot rolled steel strip
JPS60169525A (en) Method for cooling steel strip in cooling zone of continuous annealing furnace
JPS6314050B2 (en)
EP3216881B1 (en) Steel sheet manufacturing method and steel sheet manufacturing device
KR100434847B1 (en) Hot Strip Production Facility for Rolling Sheet Rolling Strips
JPS6254373B2 (en)
JP3817153B2 (en) Hot-rolled steel sheet cooling equipment
JPH0910812A (en) Method for controlling coiling temperature of hot rolled steel sheet
JPH052728B2 (en)
JPS5831370B2 (en) Ondo Seigiyohou
JPS5944367B2 (en) Water quenching continuous annealing method
JP2003305502A (en) Method for producing hot rolled steel plate and hot rolling equipment
JPS60221532A (en) Method for controlling strip temperature of cooling furnace for continuous annealing installation
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JP4352951B2 (en) Method for producing hot-rolled steel sheet made of high carbon steel or high carbon alloy steel
JPH0931550A (en) Method for controlling strip width in continuous casting equipment
JPH06340928A (en) Cooling roll and roll cooling apparatus using the same roll
JPH0192323A (en) Method for controlling sheet temperature in continuous annealing furnace
JPH06108161A (en) Method for continuously annealing metal strip
KR100711386B1 (en) A method for controlling cooling of the hot steel strip
JPS637843B2 (en)
JPS6130632A (en) Cooling method of steel strip

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term