JPS60164639A - Drive system for fuel injection valve - Google Patents

Drive system for fuel injection valve

Info

Publication number
JPS60164639A
JPS60164639A JP1941184A JP1941184A JPS60164639A JP S60164639 A JPS60164639 A JP S60164639A JP 1941184 A JP1941184 A JP 1941184A JP 1941184 A JP1941184 A JP 1941184A JP S60164639 A JPS60164639 A JP S60164639A
Authority
JP
Japan
Prior art keywords
pulse width
fuel injection
fuel
injection valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1941184A
Other languages
Japanese (ja)
Other versions
JPH0372827B2 (en
Inventor
Tokuo Kosuge
小菅 徳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1941184A priority Critical patent/JPS60164639A/en
Publication of JPS60164639A publication Critical patent/JPS60164639A/en
Publication of JPH0372827B2 publication Critical patent/JPH0372827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To precisely control the air-fuel ratio always irrespective of variations in the frequency of an injection valve drive signal, by giving a compensation in consideration with the frequency characteristic of a fuel injection valve to a pulse by which the fuel injection valve gives a basic air-fuel ratio to the engine. CONSTITUTION:When a computer 24 computes a basic pulse TP, a TP compensation map 2 is searched in accordance with an engine rotational speed Ne to calculate a compensating coefficient (k). At this time the map 32 is divided into nXn, and a compensating coefficient (kij) in accordance with the vairation ranges of the rotational speed Ne and the pulse width TP is stored in each divided map section. The larger (i) and (j), the less the value of (kij) would be. Further, the pulse width of a drive signal fed to an injector is given by an equation: Ti=k.K.TP, and the compensating coefficient (k) takes a value necessary for compensating the frequency characteristic of the injector. With this arrangement, by removing various compensating date K such as for example, an engine temperature, etc., the fuel injection amount Qf has no relation to the rotational speed Ne and the pulse width TP so that the air-fuel ratio may be given always, corresponding to the control of TP.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料噴射方式の内燃機関における燃料噴射弁
の制御に係り、%に駆動信号のパルス幅だけで単位開弁
動作ごとの燃料噴射量を制御するようKした電磁作動型
燃料噴射弁の制御方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the control of a fuel injection valve in a fuel injection type internal combustion engine, and the invention relates to the control of a fuel injection valve in a fuel injection type internal combustion engine, and the amount of fuel injected per unit valve opening operation is controlled by only the pulse width of a drive signal. The present invention relates to a control method for an electromagnetically actuated fuel injection valve.

〔発明の背景〕[Background of the invention]

ガソリンエンジンなどの混合気供給手段としては、従来
から気化器が広く用いられていた。
Conventionally, carburetors have been widely used as an air-fuel mixture supply means for gasoline engines and the like.

しかして近年、厳しい排ガス規制をクリアし、しかも高
性能を保つため、電子制御燃料噴射方式の混合気供給手
段が広く採用されるようになって動式の燃料噴射弁が用
いられ、これにより吸入空気流通路中にガソリンなどの
燃料を噴射し、混合気を得るようになっている。
However, in recent years, in order to meet strict exhaust gas regulations and maintain high performance, electronically controlled fuel injection type air-fuel mixture supply means have been widely adopted, and dynamic fuel injection valves have been used. Fuel, such as gasoline, is injected into the airflow passage to create an air-fuel mixture.

そこで、このような電磁作動式燃料噴射弁の一例を第1
図に示す。
Therefore, an example of such an electromagnetically actuated fuel injection valve is
As shown in the figure.

なお、このような燃料噴射方式のシステムは例えば特開
昭56−9626号公報、特開昭57−243’7号公
報などに開示されている。
Incidentally, such a fuel injection system is disclosed in, for example, Japanese Patent Application Laid-Open No. 56-9626, Japanese Patent Application Laid-Open No. 57-243'7, and the like.

この第1図は弁体としてボールを用いた電磁作動屋燃料
噴射弁の一例を示したもので、図において、1は燃料噴
射弁全体を表わし、2はコア、3はヨーク、4はボビン
、5はコイル、6はプランジャ、7はプランジャロッド
、8はストッパ、9はノズル、10はフィルタ、11は
ボールパルプ、12はスワールチップ、13はリターン
孔、14はコイルの端子、15はスプリングアジャスタ
、16はリターンスプリングである。
This Figure 1 shows an example of an electromagnetically actuated fuel injection valve using a ball as a valve body. In the figure, 1 represents the entire fuel injection valve, 2 is a core, 3 is a yoke, 4 is a bobbin, 5 is a coil, 6 is a plunger, 7 is a plunger rod, 8 is a stopper, 9 is a nozzle, 10 is a filter, 11 is a ball pulp, 12 is a swirl tip, 13 is a return hole, 14 is a coil terminal, 15 is a spring adjuster , 16 is a return spring.

ボールバルブ10はプランジャロッド7の先端に溶接な
どによって取付けられており1通常はリターンスプリン
グ16によりノズル9のバルブシート面8に押付けられ
ている。
The ball valve 10 is attached to the tip of the plunger rod 7 by welding or the like, and is normally pressed against the valve seat surface 8 of the nozzle 9 by a return spring 16.

しかして、いま、端子14からコイ# 5 K電流を供
給するとコア2が磁化されプランジャ6を吸引し、プラ
ンジャロッド7をリターンスプリング16の張力に抗し
て引上げ、ボールバルブ10をシート面Sから所定寸法
だけ引離す。なお、このときの所定寸法はストッパ8に
プランジャロッド7の大径部分が当接することにより決
定される。
Now, when a coil #5 K current is supplied from the terminal 14, the core 2 is magnetized and attracts the plunger 6, and the plunger rod 7 is pulled up against the tension of the return spring 16, and the ball valve 10 is moved from the seat surface S. Pull apart by a predetermined distance. Note that the predetermined size at this time is determined by the large diameter portion of the plunger rod 7 coming into contact with the stopper 8 .

ガソリンなどの燃料は図示してないポンプなどの加圧手
段と圧力調整手段によって一定の圧力。
Fuels such as gasoline are kept at a constant pressure by pressurizing means such as pumps and pressure adjusting means (not shown).

例えば0,7 Kf/−の圧力に保たれた状態でフィル
タlOの部分に矢印で示すように供給されている。
For example, it is supplied to the filter lO portion as shown by the arrow while being maintained at a pressure of 0.7 Kf/-.

従って、上述のようK、コイル5に通電され。Therefore, the coil 5 is energized as described above.

ボールバルブ11がノズ/L−9のシート面Sから引離
されると、このボールバルブ11とシート面Sとの間に
形成される環状の空隙を通って燃料がノズル9の中に流
入し、スワールテップ12の外周に形成されているらせ
ん状の溝を通って旋回しながら矢印で示すように下方に
噴出され、エンジンの吸入空気流の中Kまじり込み、混
合気となる。
When the ball valve 11 is pulled away from the seat surface S of the nozzle/L-9, fuel flows into the nozzle 9 through the annular gap formed between the ball valve 11 and the seat surface S. It swirls through a spiral groove formed on the outer periphery of the swirl tip 12 and is ejected downward as shown by the arrow, and mixes with the intake air flow of the engine to form an air-fuel mixture.

そして、このとき、ボールバルブ11とシート面Sとの
間に形成される環状の空隙によって燃料が計量され、単
位時間当りの燃料の噴射量が規定されることになり、従
りて、コイル5に対してパルス電流を供給し、このパル
ス電流の流通比を変えることにより燃料供給量を制御す
ることができ。
At this time, the fuel is measured by the annular gap formed between the ball valve 11 and the seat surface S, and the injection amount of fuel per unit time is regulated. The amount of fuel supplied can be controlled by supplying pulsed current to the fuel cell and changing the flow ratio of this pulsed current.

混合気の空燃比制御を行なうことができる。なお、スプ
リングアジャスタ15はリターンスプリング16の圧縮
量を調整し、ボールバルブ1it−シートmsから引離
すのに必要な力を調節して開弁特性のバラツキの補正を
行なう働きをする。
The air-fuel ratio of the air-fuel mixture can be controlled. The spring adjuster 15 functions to adjust the amount of compression of the return spring 16 and the force necessary to separate the ball valve 1it from the seat ms, thereby correcting variations in the valve opening characteristics.

ところで、このような電磁作動式の燃料噴射弁を用いた
燃料噴射方式の混合気供給システムにおいては、上述の
とおり、燃料噴射弁をパルス状に開弁動作させることK
より燃料供給量の制御を行なっており、このためコイル
5にパルス電流を供給しているが、このときのパルス電
流の周波数は例えば自動車用のエンジンの場合、約20
 [Hz :]から200 (Hx )の範囲にわたっ
て変化し、この状態のもとでさらにそのパルス幅を変化
させることKより空燃比の制御を行なっている。
By the way, in a fuel injection type air-fuel mixture supply system using such an electromagnetically actuated fuel injection valve, as mentioned above, it is not possible to open the fuel injection valve in a pulsed manner.
In order to control the amount of fuel supplied, a pulse current is supplied to the coil 5. For example, in the case of an automobile engine, the frequency of the pulse current is approximately 20
The pulse width varies over a range from [Hz:] to 200 (Hx), and in this state, the air-fuel ratio is controlled by further varying the pulse width.

そこで、いま、燃料噴射弁に供給すべきパルス電流の周
波数が100[Hz)のときを基準Eし、そのときの撚
料供#童をQtとして横軸に周波数fを、そして縦軸に
燃料供給量の偏差ΔQf/QfC%]をとって燃料噴射
弁の特性の一例を示すと、第2図のようになっている。
Therefore, the reference E is when the frequency of the pulse current to be supplied to the fuel injector is 100 [Hz], the twisting material supply at that time is Qt, the frequency f is plotted on the horizontal axis, and the fuel is plotted on the vertical axis. An example of the characteristics of the fuel injection valve is shown in FIG. 2 by taking the supply amount deviation ΔQf/QfC%].

ここで、破線の特性を1パルス電流のパルス幅TIがt
、(:m8)のときを、そして実線の特性はパルス幅T
Iがt、(ms)のときをそれぞれ表わし、1. < 
1.となっている場合を示している。
Here, the characteristic of the broken line is that the pulse width TI of one pulse current is t
, (:m8), and the solid line characteristic is the pulse width T.
I represents t and (ms), respectively; 1. <
1. This shows the case where .

この第2図から明らかなように、第1図に示すような燃
料噴射弁(以下、インジェクタという)は動作に周波数
特性があり、周波数が高くなるにつれ、同一パルス幅T
+のもとでも噴射量Qtが増加する上、パルス幅TIK
も依存して増加する特性を有していることが判る。なお
、Δq1はパルス幅TI= t、のときの偏差ΔQt/
Qt を表わし、Δq。
As is clear from Fig. 2, the fuel injection valve (hereinafter referred to as an injector) shown in Fig. 1 has frequency characteristics in its operation, and as the frequency increases, the pulse width T
The injection amount Qt increases even under +, and the pulse width TIK
It can be seen that it also has the characteristic of increasing depending on the value. Note that Δq1 is the deviation ΔQt/ when pulse width TI = t.
Qt and Δq.

はTt=t、のときのΔQf/Q<を表わす。represents ΔQf/Q< when Tt=t.

第3図はインジェクタに対する駆動電流の波形とボール
バルブ11のストロークとの関係を示したもので、実線
は100 CHz )のときの特性を、破線は140 
(Hz :lのときの特性をそれぞれ表わし、いずれの
場合もパルス幅T+を一定に保った場合のものである。
Fig. 3 shows the relationship between the waveform of the drive current for the injector and the stroke of the ball valve 11, where the solid line shows the characteristics at 100 Hz) and the broken line shows the characteristics at 140 Hz.
(The characteristics are shown when Hz:l, and in each case, the pulse width T+ is kept constant.

この第3図から明らかなように、インジェクタのパルプ
の動作は駆動電流の波形には完全には追従せず、電流波
形の立上ら時にはね、の、そして立下り時にはΔt、の
時間遅”れを伴ない、かつ、閉弁動作時での遅れ動作が
著しいことが判る。これヲマ、コイル5のインダクタン
スやパルプ可動部分の質量、それに磁気回路での残留磁
気の影響などによるものであり、この結果、駆動電流の
パルス%+ T iを一定に保っても、その周波数fが
変化するとパルプストロークの平均値が異なることにな
り、f=100〔H2〕のときの平均値は■、f = 
140(H2:]では■となる。そして、燃料噴射量Q
fはこのバルブストロークの平均値でほぼ決まるため、
結局、第2図に示すように、燃料噴射量Qtは周波数f
とパルス幅Tiとに依存することになるのである。なお
、パルス幅T1に対する依存性は、上記した残留磁気に
よるバルブストロークの立下り時での動作が、パルス幅
T+が大きくなるにつれて各パルス間で干渉を生じるた
めに現われるものである。
As is clear from Fig. 3, the operation of the injector pulp does not completely follow the drive current waveform, and there is a time delay of Δt when the current waveform rises, and Δt when the current waveform falls. It can be seen that this is accompanied by a significant delay in the valve closing operation.This is due to the inductance of the coil 5, the mass of the pulp movable part, and the influence of residual magnetism in the magnetic circuit. As a result, even if the drive current pulse % + T i is kept constant, if the frequency f changes, the average value of the pulp stroke will differ, and the average value when f = 100 [H2] is =
140 (H2:] becomes ■. Then, the fuel injection amount Q
Since f is approximately determined by the average value of this valve stroke,
After all, as shown in FIG. 2, the fuel injection amount Qt is determined by the frequency f
It depends on the pulse width Ti and the pulse width Ti. Note that the dependence on the pulse width T1 appears because the operation at the falling edge of the valve stroke due to the residual magnetism described above causes interference between each pulse as the pulse width T+ increases.

従って、従来の燃料噴射方式のシステムでは、エンジン
の回転速度が変化し、インジェクタに供給される駆動信
号の周波数が変化すると燃料噴射量制御の精度が低下し
、充分な空燃比制御特性を得ることができないという欠
点があった。
Therefore, in conventional fuel injection systems, when the engine speed changes and the frequency of the drive signal supplied to the injector changes, the accuracy of fuel injection amount control decreases, making it difficult to obtain sufficient air-fuel ratio control characteristics. The drawback was that it was not possible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を除き、イン
ジェクタに対する駆動信号の周波数が変化しても、駆動
信号のパルス幅に対する燃料噴射量が常に一定に保たれ
、常に空燃比制御を正確に行なうことができるようにし
たインジェクタの制御方式を提供するにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and even if the frequency of the drive signal to the injector changes, the fuel injection amount relative to the pulse width of the drive signal is always kept constant, and the air-fuel ratio can be controlled accurately at all times. An object of the present invention is to provide an injector control method that enables the above-mentioned control.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、エンジンの吸入空
気量と回転速度で決定され、そのときのエンジンに対し
て所定の空燃比を与えるのに必要な、インジェクタの駆
動信号のパルス幅に対して。
To achieve this objective, the present invention provides a method for determining the pulse width of the injector drive signal, which is determined by the intake air amount and rotational speed of the engine, and which is necessary to provide a predetermined air-fuel ratio to the engine at that time. hand.

駆動信号の周波数及びそのパルス幅の少くとも一方に依
存するインジェクタの周波数特性を考慮した補正を与え
るようにした点を特優とする。
The special feature is that the correction is provided in consideration of the frequency characteristics of the injector which depend on at least one of the frequency of the drive signal and its pulse width.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による燃料噴射弁の制御方式について、図
示の実施例により弁組に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the control method of the fuel injection valve according to the present invention will be explained with reference to the illustrated embodiment.

第4図は本発明の一実施例で、加は吸入空気量検出器、
22はエンジン回転数検出器、24は基本パルス幅演算
器、26は各種補正演算回路、28は各種の検出器、3
04−!、出力器、32はマツプ、34ヲ工基本パルス
幅袖正演算回路でおる。
FIG. 4 shows an embodiment of the present invention, in which the intake air amount detector is shown;
22 is an engine rotation speed detector, 24 is a basic pulse width calculator, 26 is various correction calculation circuits, 28 is various detectors, 3
04-! , output device, 32 is a map, and 34 is a basic pulse width sleeve plus calculation circuit.

吸入空気量検出参加は可動フラップ式、ホ?/)ワイヤ
式などの空気流量センサ、或いは吸気負圧センサなどか
らなり、エンジンの吸入空気流量を表わす信号Q8を発
生する働きをする。
The intake air amount detection part is a movable flap type. /) It consists of a wire-type air flow rate sensor, an intake negative pressure sensor, etc., and functions to generate a signal Q8 representing the intake air flow rate of the engine.

エンジン回転数検出器nはクランク角センサなどからな
り、エンジンの回転速度を表わす信号N。
The engine rotation speed detector n consists of a crank angle sensor, etc., and provides a signal N representing the rotation speed of the engine.

を発生する働きをする。It functions to generate.

基本パルス@眞典器24は信号QIIとNeに基づいて
インジェクタに供給すべき駆動信号の基本パルス幅Tp
を発生する働きをする。なお、この基本ノくルス@Tp
はエンジンが標準的な運転状態にあるときに所定の空燃
比を与えるために必要な燃料供給量に対応したものであ
る。
The basic pulse @ authenticator 24 is the basic pulse width Tp of the drive signal to be supplied to the injector based on the signals QII and Ne.
It functions to generate. In addition, this basic nokurusu@Tp
corresponds to the fuel supply required to provide a predetermined air-fuel ratio when the engine is in standard operating conditions.

マツプ32は第5図に示すように、データTpと回転速
度Neに対応して第2図に示したインジェクタの周波数
特性の補正に必要な補正係数kを予じめ記憶しておいた
もので、これにより、そのときのデータTpとNaに対
応した係数k。!1−knnのいずれか一つを与える働
きをする。
As shown in FIG. 5, the map 32 stores in advance a correction coefficient k necessary for correcting the frequency characteristics of the injector shown in FIG. 2, corresponding to the data Tp and the rotational speed Ne. , thereby the coefficient k corresponding to the data Tp and Na at that time. ! 1-knn.

基本パルス幅補正演算回路あは基本パルス幅TpK対し
て補正係数kによる補正を与える働きをする。
The basic pulse width correction calculation circuit A functions to correct the basic pulse width TpK using a correction coefficient k.

各種補正演算回路部はエンジンの温度による燃料供給量
の補正や、エンジンが加速時又は減速時に必要な補正の
ために設けられ、補正演算回路Uで補正されたパルス幅
に対してさらに補正係数Kによる補正を与える働きをす
る。
Various correction calculation circuits are provided for correction of the fuel supply amount depending on the engine temperature and necessary corrections when the engine is accelerating or decelerating, and further apply a correction coefficient K to the pulse width corrected by the correction calculation circuit U. It functions to provide correction by.

検出器路はエンジン冷却水の温度が所定値に達したとき
に動作する水温スイッチなどの各種のセンサからなり、
各種補正演算回路部で必要とする補正用のデータKを発
生する働きをする。
The detector path consists of various sensors such as a water temperature switch that operates when the engine coolant temperature reaches a predetermined value.
It functions to generate correction data K required by various correction calculation circuit sections.

出力器Iはインジェクタの電磁コイルにパルス幅TIの
駆動信号を所定のタイミング例えばエンジンの回転に同
期したタイミングごとに供給し、燃料の噴射を行なわせ
る働きをする。
The output device I supplies a drive signal with a pulse width TI to the electromagnetic coil of the injector at predetermined timings, for example, at timings synchronized with the rotation of the engine, thereby injecting fuel.

なお、補正用のマツプ32と、係数klcよる基本パル
ス幅補正回路あを除けば、この第4図に示したシステム
の構成は従来のシステムとはげ同じである。
Note that, except for the correction map 32 and the basic pulse width correction circuit using the coefficient klc, the configuration of the system shown in FIG. 4 is the same as the conventional system.

次に動作について説明する。Next, the operation will be explained.

エンジンが回転すると、そのときの状態に応じて信号Q
IIとNeが発生され、これに応じて演算ロムから基本
パルス幅Tpが演算される。このときのパルス幅Tpの
演算は、その都度#算によってめてもよく、予じめ所定
のデータを格納したマツプの検索によってめるようにし
てもよい。
When the engine rotates, the signal Q is output depending on the state at that time.
II and Ne are generated, and the basic pulse width Tp is calculated from the calculation ROM accordingly. The pulse width Tp at this time may be calculated each time by # calculation, or may be determined by searching a map in which predetermined data is stored in advance.

こうして基本パルス幅Tpがまると、これとエンジン回
転速度Neとによりマッグ32の検索を行ない、補正係
数にの算出を行なり。
Once the basic pulse width Tp is equalized in this way, the mag 32 is searched using this and the engine rotational speed Ne, and a correction coefficient is calculated.

このときのマツプ32ハ、第5図に示すように、所定の
数nによりnXn個に分割してあり、エンジン回転速度
Neとパルス幅Tpの変化範囲に応じてそれぞれに対応
した補正係数kBが格納しである。
As shown in FIG. 5, the map 32 at this time is divided into nXn pieces by a predetermined number n, and the corresponding correction coefficient kB is determined according to the range of change of the engine speed Ne and pulse width Tp. It is stored.

即ち、エンジンの回転速度Neは実用土埃われる最小回
転速度N0から最大回転速度N、まで、そしてパルス幅
Tpも最小パルス幅TpoからTpnまでそれぞれ分割
されている。なお、パルス幅TpKついては、それが小
さい方の値TpOがエンジンの軽負荷側に対応し、大き
い方の値Tpnが全開運転9i11に相当する。そして
、インジェクタの特性は、第2図で説明したように、駆
動信号の周波数fが高くなる程、それKよる燃料噴射量
(単位開弁数当りの噴射量)は駆動信号のパルス幅が同
じでも増加するようになっており、さらにパルス幅T[
、が太になる程、上記傾向が強く現われるようKなって
いるから、マツプ32の中に書込むべき補正係数に+1
としてはlが大きくなる程、モして」が大きくなる程小
さな値となっている。
That is, the rotational speed Ne of the engine is divided from the minimum rotational speed N0 to the maximum rotational speed N, and the pulse width Tp is also divided from the minimum pulse width Tpo to Tpn. Regarding the pulse width TpK, the smaller value TpO corresponds to the light load side of the engine, and the larger value Tpn corresponds to full throttle operation 9i11. As explained in Fig. 2, the characteristics of the injector are that as the frequency f of the drive signal increases, the fuel injection amount (injection amount per unit number of valve openings) depends on the frequency f of the drive signal, and the pulse width of the drive signal remains the same. However, the pulse width T[
The thicker the K, the stronger the above tendency appears, so the correction coefficient to be written in the map 32 is +1.
As l becomes larger, the value becomes smaller as "mo" becomes larger.

従って、この実施例によれば、インジェクタに供給され
る駆動信号のパルス幅T1は、Ti = k・K −’
l”p で与えられることになり、上述のように、補正係数kが
第2図に示すようなインジェクタの周波数特性を補正す
るのに必要な値となるため、エンジン温度などの6復の
補正データKを除いて考えれば、燃料噴射1t、Qfは
駆動信号の周波数f、つまりエンジンの回転速度N、や
基本パルス幅Tpの変化と無関係に、 (Jr=C−Tp 但し、C:インジェクタなどで定まる定数となり、富に
パルス幅Tpの制御に対応した空燃比を与えることがで
き、正確な空燃比制御を行なうことができる。
Therefore, according to this embodiment, the pulse width T1 of the drive signal supplied to the injector is Ti = k·K −'
As mentioned above, the correction coefficient k is the value necessary to correct the frequency characteristics of the injector as shown in Figure 2, so six times the correction for engine temperature, etc. If we consider excluding the data K, the fuel injection 1t, Qf is independent of the frequency f of the drive signal, that is, the engine rotational speed N, and the basic pulse width Tp. It is possible to provide an air-fuel ratio that corresponds to the control of the pulse width Tp, and to perform accurate air-fuel ratio control.

ところで、第4図の実施例をコンピュータのプログラム
によって実現させた場合に&工、第6図のフローチャー
トで示すようになり、いずれによっても本発明の効果を
充分に達成することができる。
By the way, when the embodiment shown in FIG. 4 is realized by a computer program, the flowchart shown in FIG.

なお、この第6図の実施例では、パルス幅Tpとエンジ
ン回転速度Neの演算により補正係I!kをめるように
しであるが、これに代えてマツプ検索を用いるようにし
てもよいのはいうまでもなく、一般にマツプ検索とは演
算の一楕とみることができるものである。
In the embodiment shown in FIG. 6, the correction factor I! is calculated by calculating the pulse width Tp and the engine rotational speed Ne. Although it is preferable to use k, it goes without saying that a map search may be used instead, and a map search can generally be regarded as an ellipse of arithmetic.

また、以上の実施例では、第1図に示したようなボール
パルプを用いたインジェクタの場合について説明したが
、一般に電磁作動式のインジェクタならバルブの形式を
問わず第2図に示すような周波数特性を有するものであ
るから、本発明はインジェクタのバルブ形式などを問わ
ず実施可能なことはいうまでもない。
In addition, in the above embodiment, the case of an injector using ball pulp as shown in Fig. 1 was explained, but in general, an electromagnetically actuated injector, regardless of the type of valve, has a frequency as shown in Fig. 2. It goes without saying that the present invention can be implemented regardless of the type of valve of the injector because of the characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、エンジンの回転
速度や負荷状態が変化しても、常に基本パルス幅に正確
に対応した燃料噴射量を与えることができるから、従来
技術の欠点を除き、高い精度で容易に空燃比制御が可能
な燃料噴射弁の制御方式を提供することができる。
As explained above, according to the present invention, even if the engine speed and load condition change, it is possible to always provide a fuel injection amount that accurately corresponds to the basic pulse width, thereby eliminating the drawbacks of the conventional technology. , it is possible to provide a fuel injection valve control method that allows easy air-fuel ratio control with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料噴射弁の一例を示す断面図、第2図は燃料
噴射弁の特性の一例を示す説明図、第3図は燃料噴射弁
の駆動電流波形とストロークの関係の一例を示す説明図
、第4図は本発明による燃料噴射弁の制御方式の一実施
例を示すブロック図。 第5図は補正用マツプの一実施例を示す概念図。 Wc6図は本発明の他の一実施例の動作を示すフp−チ
ャートである。 加・・・・・・吸入空気量検出器、22・・・・・・エ
ンジン回転速度検出器、24・・・・・・基本パルス幅
演算器、26・・・・・−各種演算補正回路、28・・
・・・・各種の検出器、30・・・・・・出力器、32
・・・・・・マツプ、34・・・・・・基本ノくルス幅
補正演算回路。 第1図 Fuel out 第2図 第3図 第4図 R 第5図
Fig. 1 is a sectional view showing an example of a fuel injection valve, Fig. 2 is an explanatory drawing showing an example of the characteristics of the fuel injection valve, and Fig. 3 is an explanatory drawing showing an example of the relationship between the drive current waveform and stroke of the fuel injection valve. FIG. 4 is a block diagram showing an embodiment of a control system for a fuel injection valve according to the present invention. FIG. 5 is a conceptual diagram showing one embodiment of a correction map. Figure Wc6 is a flowchart showing the operation of another embodiment of the present invention. Addition: Intake air amount detector, 22: Engine rotation speed detector, 24: Basic pulse width calculator, 26: Various calculation correction circuits , 28...
... Various detectors, 30 ... Output device, 32
...Map, 34...Basic pulse width correction calculation circuit. Figure 1 Fuel out Figure 2 Figure 3 Figure 4 R Figure 5

Claims (1)

【特許請求の範囲】 1、単位動作回数当りの燃料噴射量を駆動信号のパルス
幅で制御する方式の電磁作動型燃料噴射弁を用いた内燃
機関において、この燃料噴射弁により内燃機関の基本空
燃比を与えるのに必要な基本パルス幅に対して、この燃
料噴射弁の周波数特性を考慮した補正を与えるように構
成したことを特徴とする燃料噴射弁の制御方式。 2、特許請求の範囲第1項において、上記補正が、内燃
機関の回転速度及び上記基本パルス幅の少くとも一方の
関数として与えられる補正係数によって行なわれるよう
に構成したことを特徴とする燃料噴射弁の制御方式。 3、特許請求の範囲第2項において、上記補正係数が、
マツプ検索によって与えられるように構成したことを特
徴とする燃料噴射弁の制御方式。
[Claims] 1. In an internal combustion engine using an electromagnetically actuated fuel injection valve that controls the amount of fuel injected per unit number of operations using the pulse width of a drive signal, the fuel injection valve controls the basic air flow of the internal combustion engine. A control method for a fuel injector, characterized in that the basic pulse width required to provide a fuel ratio is corrected in consideration of the frequency characteristics of the fuel injector. 2. The fuel injection according to claim 1, wherein the correction is performed by a correction coefficient given as a function of at least one of the rotational speed of the internal combustion engine and the basic pulse width. Valve control method. 3. In claim 2, the correction coefficient is
A control method for a fuel injection valve characterized in that the control method is configured to be given by map search.
JP1941184A 1984-02-07 1984-02-07 Drive system for fuel injection valve Granted JPS60164639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1941184A JPS60164639A (en) 1984-02-07 1984-02-07 Drive system for fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1941184A JPS60164639A (en) 1984-02-07 1984-02-07 Drive system for fuel injection valve

Publications (2)

Publication Number Publication Date
JPS60164639A true JPS60164639A (en) 1985-08-27
JPH0372827B2 JPH0372827B2 (en) 1991-11-19

Family

ID=11998507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1941184A Granted JPS60164639A (en) 1984-02-07 1984-02-07 Drive system for fuel injection valve

Country Status (1)

Country Link
JP (1) JPS60164639A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102722A (en) * 1975-03-07 1976-09-10 Nissan Motor
JPS5357324A (en) * 1976-11-05 1978-05-24 Yamaha Motor Co Ltd Electric system fuel injector for internal combustion engine
JPS5549071U (en) * 1978-09-27 1980-03-31
JPS5557635A (en) * 1978-10-20 1980-04-28 Nissan Motor Co Ltd Fuel injection system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT334385B (en) * 1973-12-20 1976-01-10 Chemie Linz Ag PROCESS FOR THE PREPARATION OF NEW PHENOXYPROPYLAMINE DERIVATIVES AND THEIR SALTS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102722A (en) * 1975-03-07 1976-09-10 Nissan Motor
JPS5357324A (en) * 1976-11-05 1978-05-24 Yamaha Motor Co Ltd Electric system fuel injector for internal combustion engine
JPS5549071U (en) * 1978-09-27 1980-03-31
JPS5557635A (en) * 1978-10-20 1980-04-28 Nissan Motor Co Ltd Fuel injection system

Also Published As

Publication number Publication date
JPH0372827B2 (en) 1991-11-19

Similar Documents

Publication Publication Date Title
US6176209B1 (en) Electromagnetically operated valve control system and the method thereof
JP5759142B2 (en) Control device for internal combustion engine
US3831563A (en) Electronic fuel metering apparatus for internal combustion engine
US4590912A (en) Air-fuel ratio control apparatus for internal combustion engines
US4003350A (en) Fuel injection system
JP6304156B2 (en) Fuel injection control device for internal combustion engine
JPH0152570B2 (en)
US4333440A (en) Apparatus for controlling recirculated exhaust gas quantities in self-igniting internal combustion engines
US4442818A (en) Fuel injection apparatus for internal combustion engines
US5803057A (en) Method and apparatus for dosing a gaseous fuel
US4127086A (en) Fuel injection control system
JPS62284956A (en) Magnetic fuel injection valve
US3799133A (en) Solenoid valve control for exhaust gas recirculation
US4250853A (en) Method and apparatus for controlling the fuel supply of an internal combustion engine
EP0296464B1 (en) Air/fuel ratio control system for internal combustion engine with correction coefficient learning feature
JPS60164639A (en) Drive system for fuel injection valve
US6463916B1 (en) Fuel injection system for an internal combustion engine
US4475518A (en) Fuel injection apparatus for internal combustion engines
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
GB2157761A (en) Electromagnetic ball fluid flow control valve
JPS5832964A (en) Fuel injection device for engine
JPS5937263A (en) Fuel injection device for internal-combustion engine
US4367713A (en) Air/fuel ratio control system for internal combustion engines, having air/fuel control function at engine deceleration
JPS59138737A (en) Fuel feeding apparatus for diesel engine
JPH04321736A (en) Fuel supply device for internal combustion engine