JPS60140204A - Light guide lens and its manufacture - Google Patents

Light guide lens and its manufacture

Info

Publication number
JPS60140204A
JPS60140204A JP24517783A JP24517783A JPS60140204A JP S60140204 A JPS60140204 A JP S60140204A JP 24517783 A JP24517783 A JP 24517783A JP 24517783 A JP24517783 A JP 24517783A JP S60140204 A JPS60140204 A JP S60140204A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
refractive index
layer
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24517783A
Other languages
Japanese (ja)
Inventor
Akiya Goto
後藤 顕也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24517783A priority Critical patent/JPS60140204A/en
Publication of JPS60140204A publication Critical patent/JPS60140204A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve diffraction efficiency and to reduce the propagation loss of a light guide which has a higher refractive index than a substrate by forming a light guide layer which has curved grating areas at irregular intervals on the light guide, and forming a clad layer which has a lower refractive index than the light guide layer thereupon. CONSTITUTION:Variation in the refractive index of the substrate by an ion exchange method is utilized to form the light guide layer and diffraction gratings. Namely, irregular interval curved grating areas 30 having the higher refractive index than the substrate are formed at part of the surface of the substrate 30, and then the light guide layer 34 having the higher refractive index than the substrate is formed in the surface area of the substrate. Then, the clad layer 36 having the smaller refractive index than the light guide layer 34 is formed to obtain a light guide lens. Thus, the light guide lens applied with variation in the refractive index of the substrate by the ion exchange method has large variation in refractive index and the transmission loss of the light guide is small.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は回折格子を用いた光導波路レンズおよびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an optical waveguide lens using a diffraction grating and a method for manufacturing the same.

[発明の技術的背景] 近年、光を利用した情報通信や情報記録再生が注目され
ている。そしてこのような光情報の伝達を担う光部品と
して例えば光導波路と光ファイバとを結合したり、ある
いはコンパクト・ディスク等の光情報媒体から光学的に
情報を読出したり書込んだりする、所謂非接触形の光情
報入出力装置が種々開発されている。
[Technical Background of the Invention] In recent years, information communication and information recording and reproducing using light have been attracting attention. Optical components responsible for transmitting such optical information include, for example, so-called non-contact devices that connect optical waveguides and optical fibers, or optically read and write information from optical information media such as compact discs. Various types of optical information input/output devices have been developed.

光情報入出力装置のひとつとして、例えば特開昭58−
169107号公報に記載された、平板型光導波路に不
等間隔曲線格子状の回折格子を設けたものがある。即ち
、第1図に断面図を示すように、誘電体10の表面近傍
に誘電体光導波路層12を形成し、この先導波路層、1
2上に更にクラッド層14を設け、このクラッド層を微
細パターンにエツチングによって形成した不等間隔曲線
群からなる回折格子16構造を有づるものである。光導
波路層12を伝播する導光波11を回折格子16にて回
折させて外部光として取出し、焦点19に収束させるも
のである。
For example, as one of the optical information input/output devices,
There is a planar optical waveguide provided with a diffraction grating in the form of an unevenly spaced curved grating, as described in Japanese Patent No. 169107. That is, as shown in the cross-sectional view in FIG.
A cladding layer 14 is further provided on the cladding layer 2, and the cladding layer has a structure of a diffraction grating 16 consisting of a group of unevenly spaced curves formed by etching the cladding layer into a fine pattern. A guided wave 11 propagating through an optical waveguide layer 12 is diffracted by a diffraction grating 16, extracted as external light, and converged at a focal point 19.

[背景技術デの問題点] 上述の光導波路レンズは、光導波路層上にエツチングに
よって形成された所謂リリーフ型回折格子を設けたもの
であり、散乱損失が大きく、また光導波路の伝播損失も
大きいという問題がある。
[Problems with Background Art D] The optical waveguide lens described above has a so-called relief type diffraction grating formed by etching on the optical waveguide layer, and the scattering loss is large, and the propagation loss of the optical waveguide is also large. There is a problem.

男にその表面を、表面波長を無視できる程度の平坦度と
することが困難であるために、例えばium前後の微小
スポットに光を収束させることができないという問題が
ある。また回折効率が低い欠点もあった。
However, since it is difficult to make the surface so flat that the surface wavelength can be ignored, there is a problem in that it is not possible to converge light onto a minute spot around the ium, for example. It also had the disadvantage of low diffraction efficiency.

なお、リリーフ型以外の回折格子としては、ホログラフ
ィックグレーテングがある。しかし、ホログラフィック
グレーティングは、形成に際し、光源レーザ波長が赤よ
りも短波長でなければならない事と、現像時にウェット
処シをするので、平坦度が損なわれるという欠点がある
“。また、読出し波長と書込み波長が異なれば、収差が
大になり、微小スポットに収束させることができない。
Note that as a diffraction grating other than the relief type, there is a holographic grating. However, when forming holographic gratings, the light source laser wavelength must be shorter than the red wavelength, and wet processing is required during development, which impairs flatness. If the writing wavelength is different, the aberration will be large and it will not be possible to converge it to a minute spot.

また電子ビーム描画によって不等間隔曲線格子を光導波
路層に直接描画する方法もあるが、描画できる領域が非
常に狭く、屈折率の変化も小さいので、生産性がきわめ
て低くまた回折効率が非常に低い。
There is also a method of directly writing nonuniformly spaced curved gratings on the optical waveguide layer by electron beam writing, but the area that can be written is very narrow and the change in refractive index is small, resulting in extremely low productivity and very low diffraction efficiency. low.

[発明の目的] 本発明は、上記の問題点を全て解決した光導波路レンズ
及びその製造方法を提供するものである。
[Object of the Invention] The present invention provides an optical waveguide lens that solves all of the above problems and a method for manufacturing the same.

[発明の概要] 本発明によれば、基板と、この基板上に形成された基板
よりも屈折率の高い物質からなる光導波路と、この光導
波路上に形成され光導波路層よりも屈折率の低い物質か
らなるクラッド層とを備え、前記光導波路層が光導波路
層と異なる屈折率を有する不等間隔曲線格子領域を有す
る光導波路レンズが提供される。本発明のレンズ←よれ
ば回折格子がエツチングバターニングによって形成され
たリリーフ型回折格子ではなく、光導波路層の表面は平
担となっていて散乱損失を小さくすることができるとい
う大きな特徴がある。従って面の歪(平坦度)により生
ずるレンズの収差が少なく、かつ回折効率の高い光導波
路レンズが提供される。
[Summary of the Invention] According to the present invention, there is provided a substrate, an optical waveguide formed on the substrate made of a material having a higher refractive index than the substrate, and an optical waveguide formed on the optical waveguide and made of a material having a refractive index higher than that of the optical waveguide layer. and a cladding layer made of a low-density material, the optical waveguide layer having unevenly spaced curved grating regions having a different refractive index than the optical waveguide layer. According to the lens of the present invention, the diffraction grating is not a relief type diffraction grating formed by etching buttering, but the surface of the optical waveguide layer is flat, which is a major feature in that scattering loss can be reduced. Therefore, an optical waveguide lens is provided which has less aberration caused by surface distortion (flatness) and has high diffraction efficiency.

また本発明によれば、上述の光導波路し゛ンズの製造方
法が提供される。これによれば光導波路層及び回折格子
がイオン交換法による基板の屈折率変化を利用しており
、屈折率変化が大きく、回折効率が大きくなり、また光
導波路の伝播損失を低くすることができる。また基板の
平坦度を高度に保つことができ、散乱損失を低く押えて
、微小スポットにレーザ光を収束させることができる。
Further, according to the present invention, a method for manufacturing the above-mentioned optical waveguide lenses is provided. According to this, the optical waveguide layer and the diffraction grating utilize the change in the refractive index of the substrate due to the ion exchange method, and the change in refractive index is large, the diffraction efficiency is increased, and the propagation loss of the optical waveguide can be reduced. . Further, the flatness of the substrate can be maintained at a high level, scattering loss can be kept low, and the laser beam can be focused on a minute spot.

[発明の実施例] 以下本発明を実施例を示す図面を参照して説明する。ま
ず、第2図に示すように底面の一辺を除去した例えばL
iNb0aからなる光学基板20を用意し、基板の上面
にフォトレジスト膜22を形成し、例えば面積10m+
nX 10aunの領域に最小ピッチ0゜7Jlll 
、線幅0.35J1111.本数3000〜10000
本の不等問隔曲線格子領域23を有するフォトマスク2
4を介してフォトレジスト膜22を露光する。次にフォ
トレジスト膜を現像し、残った不等間隔曲線格子状のフ
ォトレジスト膜22の上から基板20に、第3図に示す
ようにOrを100 A、 Auを500A(7)厚さ
に蒸着してCr−Au1l126を形成する。この後リ
フト・オフ法によってフォトレジスト膜22上のCr−
Au膜を除去し、第4図に示すように、不等間隔曲線格
子領域の開孔25を有するCr−Al1膜を基板20上
に残す− 次に、この基板を第5図に示すように、210〜300
℃例えば250℃の安息香酸28に10〜20分間浸し
、Qr−Au膜の開孔部より基板20のLl イオンの
一部と安息香酸のHイオンの一部とをイオン交換し、基
板20の表面の一部に基板よりも屈折率の^い領域30
を形成する。この後、基板表面のCr −Au IIを
剥離し、基板ヲ再度210〜300℃の安息香酸に数分
間浸漬し、第6図に示すように、基板表面領域に基板よ
りも屈折率が高い光導波路層34を例えば1μmの厚さ
に形成する。次に安息香酸から基板を取出して乾燥後、
第1図に示すように先導波路層34よりも屈折率の低い
材料えばSiO□ を数Jjlllの厚さに先導波路層
34上に被着し、クラッド層36を形成して先導波路レ
ンズが形成される 上述のようにして形成された光導波路レンズは、イオン
交換法による基板の屈折率変化を応用しているので、屈
折率変化が大きく、また光導波路の伝播損失が低い。こ
のように基板ならびに光導波路中の屈折率変化を利用し
た所謂体積ホログラム型の回折格子の場合には、散乱損
失が少ないばかりでなく、回折効率そのものが非常に高
くなり、理想的には光導波路中を伝播している光の全部
(100%)が基板側へ回折され、基板の側面を通して
三次元的に収束ビームを基板外へ取出すことができる。
[Embodiments of the Invention] The present invention will be described below with reference to drawings showing embodiments. First, as shown in Figure 2, for example, L
An optical substrate 20 made of iNb0a is prepared, and a photoresist film 22 is formed on the upper surface of the substrate, for example, with an area of 10 m+.
Minimum pitch 0゜7Jlll in the area of nX 10aun
, line width 0.35J1111. Number of pieces: 3000-10000
Photomask 2 having book unequal spacing curved grid areas 23
4, the photoresist film 22 is exposed to light. Next, the photoresist film is developed, and as shown in FIG. Cr-Au11126 is formed by vapor deposition. After that, Cr- on the photoresist film 22 is removed by lift-off method.
The Au film is removed, leaving a Cr-Al1 film with openings 25 in irregularly spaced curved grid regions on the substrate 20, as shown in FIG. , 210-300
For example, the substrate 20 is immersed in benzoic acid 28 at 250° C. for 10 to 20 minutes, and a portion of the Ll ions of the substrate 20 and a portion of the H ions of the benzoic acid are ion-exchanged through the openings of the Qr-Au film. A region 30 with a higher refractive index than the substrate on a part of the surface
form. After that, the Cr-Au II on the surface of the substrate was peeled off, and the substrate was immersed again in benzoic acid at 210 to 300°C for several minutes, and as shown in Figure 6, a light guide having a higher refractive index than the substrate was formed on the surface area of the substrate. The wave path layer 34 is formed to have a thickness of, for example, 1 μm. Next, remove the substrate from the benzoic acid and dry it.
As shown in FIG. 1, a material having a refractive index lower than that of the leading waveguide layer 34, such as SiO□, is deposited on the leading waveguide layer 34 to a thickness of several Jjll, and a cladding layer 36 is formed to form a leading waveguide lens. The optical waveguide lens formed as described above utilizes the refractive index change of the substrate by the ion exchange method, so the refractive index change is large and the propagation loss of the optical waveguide is low. In the case of a so-called volume hologram type diffraction grating that utilizes changes in the refractive index in the substrate and optical waveguide, not only the scattering loss is small but also the diffraction efficiency itself is extremely high. All (100%) of the light propagating inside is diffracted toward the substrate, and a three-dimensional convergent beam can be taken out of the substrate through the side surface of the substrate.

上述の光導波路レンズは、例えば次の様にして用いられ
る。即ち、第8図に示すように、光導波路40の入射側
端面42に半導体レーザ44の輻射端面を直接結合する
方法を示している。半導体レーザから射出された光は、
光導波路を伝播し、図示した不等間隔曲線回折格子46
に到達してここで100%基板側に回折され、基板端面
を経由して外部に取出され収束される。収束面には例え
ばコンパクト令ディスクやビデオ・ディスクを配置する
The above-mentioned optical waveguide lens is used, for example, in the following manner. That is, as shown in FIG. 8, a method is shown in which the radiation end face of the semiconductor laser 44 is directly coupled to the entrance end face 42 of the optical waveguide 40. The light emitted from the semiconductor laser is
A non-uniformly spaced curved diffraction grating 46 propagating through an optical waveguide and illustrated.
At this point, the light is 100% diffracted toward the substrate, taken out to the outside via the end face of the substrate, and converged. For example, a compact disc or a video disc is placed on the converging surface.

[他の実施例1 上述した実施例では、基板表面に不等間隔曲線格子状の
屈折率の高い領域を予め形成し、この後光導波路層を形
成したが、光導波路層を形成した後、光導波路層に光導
波路層よりも屈折率の高い不等間隔曲線格子状領域を形
成してもよい。
[Other Example 1] In the above-mentioned example, regions with a high refractive index in the shape of an unevenly spaced curved lattice were formed in advance on the substrate surface, and then an optical waveguide layer was formed. However, after forming an optical waveguide layer, Unequally spaced curved lattice-like regions having a higher refractive index than the optical waveguide layer may be formed in the optical waveguide layer.

即ち例えば、Li Nb Oaからなる基板を安息香酸
中で210〜300℃、10〜20分間加熱し、基板の
Liイオンと安息香酸のHイオンとをイ゛′オン交換し
、基板の表面に屈折率の高い一光導波路層を形成する。
That is, for example, a substrate made of LiNbOa is heated in benzoic acid at 210 to 300°C for 10 to 20 minutes to exchange ions between Li ions in the substrate and H ions in benzoic acid, causing refraction on the surface of the substrate. Forms an optical waveguide layer with a high efficiency.

次に、上述の実施例と同様にして先導波路層上にフォト
レジストの塗布、露光、現像さらにCr 、Au膜を蒸
着しまたリフト・オフ法によって、光導波路層上に不等
間隔曲線格子領域の開孔を有する0r−Au膜を形成す
る。このcr −Au膜の形成された基板を更に安息香
酸中で210〜300℃で数分間加熱し、光導波路層中
にのLiイオンと安息香酸のHイオンとをイオン交換し
、光導波路層中に光導波路層の屈折率よりも屈折率の高
い不等間隔曲線格子領域を形成する。この後、Cr−A
u膜を除去し、光導波路層上にクラッド層を形成して光
導波路レンズが形成される。
Next, in the same manner as in the above embodiment, a photoresist is coated, exposed, and developed on the leading waveguide layer, and Cr and Au films are deposited, and by the lift-off method, unevenly spaced curved grating regions are formed on the optical waveguide layer. An Or-Au film having pores is formed. The substrate on which this cr-Au film was formed was further heated in benzoic acid at 210 to 300°C for several minutes to ion-exchange the Li ions in the optical waveguide layer with the H ions of benzoic acid. In this method, irregularly spaced curved grating regions having a refractive index higher than that of the optical waveguide layer are formed. After this, Cr-A
The U film is removed and a cladding layer is formed on the optical waveguide layer to form an optical waveguide lens.

上述の実施例では基板としてL + N b Oaを用
いたがLiTa0aを用いてもよく、また被イオン交換
溶液として安息香酸を用いたがAQNOa。
In the above embodiments, L + N b Oa was used as the substrate, but LiTaOa may also be used, and benzoic acid was used as the ion exchange solution, but AQNOa.

TI No、などの金属イオンを含む溶融塩としてもよ
い。
It may also be a molten salt containing metal ions such as TI No.

また、第9図及び第10図に示すように、°半導体レー
ザ50.54が結合される先導波路の入射側にさらに平
面導波路レンズ52.56を形成してもよい。
Furthermore, as shown in FIGS. 9 and 10, a planar waveguide lens 52.56 may be further formed on the incident side of the leading waveguide to which the semiconductor laser 50.54 is coupled.

[発明の効果] 以上説明したように本発明によれば、回折格子がエツチ
ングパターニングによって形成されたリリーフ型回折格
子ではないので、光導波路層の表面は平担となっていて
散乱損失を小さくすることが罰−貴るという大きな特徴
がある。従って面の歪(平担度)により生ずるレンズの
収差の少なく、かつ回折効率の高い光導波路レンズが提
供される。
[Effects of the Invention] As explained above, according to the present invention, since the diffraction grating is not a relief type diffraction grating formed by etching patterning, the surface of the optical waveguide layer is flat, reducing scattering loss. There is a big characteristic that koto is punishment - honor. Therefore, it is possible to provide an optical waveguide lens with less lens aberration caused by surface distortion (flatness) and with high diffraction efficiency.

また本発明の先導波路レンズの製造方法によれば、光導
波路層及び回折格子がイオン交換法による基板の屈折率
変化を利用しており、屈折率変化が大きく、回折効率が
大きくなり、また光導波路の伝播損失を低くすることが
できる。また基板の平担度を高度に保つことができ、散
乱゛損失を低く押えて、微小スポットにレーザ光を収束
させることができる。
Further, according to the method for manufacturing a guiding waveguide lens of the present invention, the optical waveguide layer and the diffraction grating utilize the change in the refractive index of the substrate by the ion exchange method, and the change in refractive index is large, the diffraction efficiency is large, and the optical waveguide layer and the diffraction grating are The propagation loss of the wave path can be reduced. Furthermore, the flatness of the substrate can be maintained at a high level, scattering loss can be kept low, and the laser beam can be focused on a minute spot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光導波路レンズを示す断面図、第2図乃
至第7図は本発明の実施例における光導波路レンズの製
造工程を示す図、第8図は本発明の光導波路レンズの使
用例を示す図、第9図乃至第10図は他の実施例を示す
図である。 20・・・・・・基板、 22・・・・・・フォトレジ
スト24・・・・・・フォト・マスク、26・・・・・
・0r−Au膜、28・・・・・・安息香酸、 30・
・・・・・屈折率の高い領域、34・・・・・・光導波
路層1、36・・・・・・クラッド層。 代理人弁理士 則近 憲佑(他−名) 第 1 図 第2図 第 4 図 第 5 図 第 6 図 第7図 第8図 第 9 図
FIG. 1 is a cross-sectional view showing a conventional optical waveguide lens, FIGS. 2 to 7 are diagrams showing the manufacturing process of an optical waveguide lens in an embodiment of the present invention, and FIG. 8 is a diagram showing the use of the optical waveguide lens of the present invention. Figures illustrating examples, FIGS. 9 and 10 are diagrams showing other embodiments. 20...Substrate, 22...Photoresist 24...Photomask, 26...
・0r-Au film, 28...benzoic acid, 30.
. . . High refractive index region, 34 . . . Optical waveguide layer 1, 36 . . . Clad layer. Representative Patent Attorney Kensuke Norichika (other names) Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1) 基板と、この基板上に形成された基板よりも屈
折率の“高い物質からなる先導波路と、この光導波路上
に形成され光導波路層よりも屈折率の低い物質からなる
クラッド層とを備え、前記光導波路層が光導波路層と異
なる屈折率を有する不等間隔曲線格子領域を有する光導
波路レンズ。
(1) A substrate, a leading waveguide formed on the substrate and made of a material with a higher refractive index than the substrate, and a cladding layer formed on the optical waveguide and made of a material with a lower refractive index than the optical waveguide layer. An optical waveguide lens, wherein the optical waveguide layer has unevenly spaced curved grating regions having a different refractive index than the optical waveguide layer.
(2) 前記不等間隔曲線格子領域が前記光導波路層の
屈折率よりも高い事を特徴とする特許請求の範囲第一項
記載の光導波路レンズ。
(2) The optical waveguide lens according to claim 1, wherein the unevenly spaced curved grating regions have a refractive index higher than the refractive index of the optical waveguide layer.
(3) 光学材料からなる基板上に不等間隔曲線格子状
開孔を有するマスクを形成する工程と、上記マスクが形
−成された基板を被イオン交換溶液中で加熱し基板を構
成する物質のイオ゛□ンと溶液のイオンとをイオン交換
して基板の表面層に選択的に基板よりも屈折率の高い領
域を形成する工程と、前記基板から前記マスクを除去す
る工程と、前記マスクが除去された基板を被イオン交換
溶液中で加熱し、基板を構成する物質のイオンと溶液の
イオンとをイオン交換して基板の表面層に基板よりも屈
折率の高い光導波路層を形成する工程と、該光導波路層
上に光導波路層よりも屈折率の低い物質からなるクラッ
ド層を形成する工程とを備えた光導波路レンズの製造方
法。
(3) A step of forming a mask having irregularly spaced curved lattice-like openings on a substrate made of an optical material, and heating the substrate on which the mask is formed in an ion exchange solution to remove the material constituting the substrate. a step of ion-exchanging the ions of the solution with ions of the solution to selectively form a region having a higher refractive index than the substrate on the surface layer of the substrate; a step of removing the mask from the substrate; and a step of removing the mask from the substrate; The substrate from which has been removed is heated in an ion-exchange solution, and the ions of the substance constituting the substrate are ion-exchanged with the ions of the solution to form an optical waveguide layer on the surface layer of the substrate that has a higher refractive index than the substrate. A method for manufacturing an optical waveguide lens, comprising: a step of forming a cladding layer made of a material having a refractive index lower than that of the optical waveguide layer on the optical waveguide layer.
(4) 光学材料からなる基板を被イオン交換溶液で加
熱し基板を構成する物質のイオンと溶液のイオンとをイ
オン交換して基板の表面層に基板よりも屈折率の高い光
導波路層を形成する工程と、この後光導波路層上に不等
間隔曲線格子状開孔を有するマスクを形成する工程と、
マスクが形成された基板を被イオン交換溶液中で加熱し
て前記光導波路層を構成する物質のイオンと溶液のイオ
ンとをイオン交換して先導波路層に光導波路層よりも屈
折率の高い不等間隔曲線状領域を形成する工程と、前記
光導波路層上のマスクを除去する工程と、前記マスクが
除去された光導波路層上に光導波路層よりも屈折率の低
い物質からなるクラツド層を形成する工程とを備えた光
導波路レンズの製造方法。
(4) A substrate made of an optical material is heated with an ion-exchange solution, and ions of the substance constituting the substrate are ion-exchanged with ions of the solution to form an optical waveguide layer on the surface layer of the substrate that has a higher refractive index than the substrate. a step of forming a mask having irregularly spaced curved grid-like openings on the optical waveguide layer;
The substrate on which the mask is formed is heated in an ion-exchange solution to exchange ions of the substance constituting the optical waveguide layer with ions of the solution, thereby forming a guide waveguide layer with an impurity having a higher refractive index than the optical waveguide layer. a step of forming equally spaced curved regions, a step of removing a mask on the optical waveguide layer, and a cladding layer made of a material having a lower refractive index than the optical waveguide layer on the optical waveguide layer from which the mask has been removed. 1. A method for manufacturing an optical waveguide lens, comprising a step of forming an optical waveguide lens.
JP24517783A 1983-12-28 1983-12-28 Light guide lens and its manufacture Pending JPS60140204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24517783A JPS60140204A (en) 1983-12-28 1983-12-28 Light guide lens and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24517783A JPS60140204A (en) 1983-12-28 1983-12-28 Light guide lens and its manufacture

Publications (1)

Publication Number Publication Date
JPS60140204A true JPS60140204A (en) 1985-07-25

Family

ID=17129752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24517783A Pending JPS60140204A (en) 1983-12-28 1983-12-28 Light guide lens and its manufacture

Country Status (1)

Country Link
JP (1) JPS60140204A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638721A (en) * 1986-06-30 1988-01-14 Matsushita Electric Ind Co Ltd Optical switch device
JP2020122984A (en) * 2016-05-06 2020-08-13 マジック リープ, インコーポレイテッドMagic Leap,Inc. Metasurfaces with asymmetric gratings for redirecting light and methods of fabricating the same
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11243338B2 (en) 2017-01-27 2022-02-08 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL PHYS LETT=1983 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638721A (en) * 1986-06-30 1988-01-14 Matsushita Electric Ind Co Ltd Optical switch device
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11789198B2 (en) 2015-11-06 2023-10-17 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
JP2020122984A (en) * 2016-05-06 2020-08-13 マジック リープ, インコーポレイテッドMagic Leap,Inc. Metasurfaces with asymmetric gratings for redirecting light and methods of fabricating the same
US11360306B2 (en) 2016-05-06 2022-06-14 Magic Leap, Inc. Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating
US11796818B2 (en) 2016-05-06 2023-10-24 Magic Leap, Inc. Metasurfaces with asymetric gratings for redirecting light and methods for fabricating
US11243338B2 (en) 2017-01-27 2022-02-08 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces

Similar Documents

Publication Publication Date Title
JPH0642291B2 (en) Integrated optical head
US4865407A (en) Optical waveguide element, method of making the same and optical coupler employing optical waveguide element
JP2754785B2 (en) Method for manufacturing high-density optical disk
JPH09318826A (en) Optical waveguide type filter and its production
JPS59124306A (en) Optical integrated circuit element and its manufacture
JPH0435726B2 (en)
JPS60188911A (en) Optical coupler
JPS60140204A (en) Light guide lens and its manufacture
JPS63192004A (en) Waveguide type optical element and its production
JP2624783B2 (en) Optical integrated circuit
KR100261297B1 (en) Optical fiber device with grating at the end-surface and the fabrication method
KR20010074638A (en) Laser direct writing of planar lightwave circuits
JPS60188909A (en) Manufacture of grating coupler
JPH0680444B2 (en) Luneburg lens manufacturing method
JP2728732B2 (en) Method of forming hologram by electron beam lithography
JP3799638B2 (en) Waveguide type diffraction grating and manufacturing method thereof
JP3662134B2 (en) Planar probe and method for forming the same
JPS63132205A (en) Optical fiber device
JPS6053904A (en) Ridge type light guide
JP2517772B2 (en) Grating optical coupler
JPS5983111A (en) Preparation of optical integrated circuit
JP2645595B2 (en) Manufacturing method of optical waveguide lens
JP3487338B2 (en) Method of manufacturing hologram master
JP2605139B2 (en) Loading grating, focusing grating coupler, waveguide type optical deflector
JPS6271907A (en) Grating optical device