JPS60125002A - Input and output cable for superconductive integrated circuit - Google Patents
Input and output cable for superconductive integrated circuitInfo
- Publication number
- JPS60125002A JPS60125002A JP58233951A JP23395183A JPS60125002A JP S60125002 A JPS60125002 A JP S60125002A JP 58233951 A JP58233951 A JP 58233951A JP 23395183 A JP23395183 A JP 23395183A JP S60125002 A JPS60125002 A JP S60125002A
- Authority
- JP
- Japan
- Prior art keywords
- line
- ground conductor
- input
- signal line
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 42
- 239000000126 substance Substances 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
Landscapes
- Communication Cables (AREA)
- Waveguides (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、極低温環境で動作する超伝導集積回路と室温
環境で動作する装置間で信号伝送するための入出カケ−
プルにおいて、伝送信号間での漏洩、外部からの雑音(
クロストーク)が少なく伝送特性にすぐれた高密度入出
カケ−プルに関するものである。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an input/output cable for transmitting signals between a superconducting integrated circuit operating in a cryogenic environment and a device operating in a room temperature environment.
In the pull process, leakage between transmission signals and external noise (
This invention relates to high-density input/output cables with low crosstalk (crosstalk) and excellent transmission characteristics.
従来、この種入出カケーブルは、マイクロストリップ線
路単体あるいは遮へい形マイクロストリップ線路単体で
形成されていた。このため、この種入出カケーブルを使
用し、装置間を接続する場合には、上記入出カケ−プル
両端を特別に加工することで、装置に合致したコネクタ
を取シ付ける事が必要であった。このため上記入出カケ
−プルでは、使用時に加工可能な寸法以下に小さく、す
るいは高密度に製作する事は無意味でアシ、又製作、加
工可能だとしても、線路の特性を変化させる事なくコネ
クタを取シ付ける事は困難であった。Conventionally, this kind of input/output cable has been formed of a single microstrip line or a single shielded microstrip line. Therefore, when using this type of input/output cable to connect devices, it is necessary to specially process both ends of the input/output cable to attach a connector that matches the device. Ta. For this reason, it is meaningless to manufacture the input/output cables smaller than the dimensions that can be processed during use, or at a higher density, and even if it is possible to manufacture and process them, it will change the characteristics of the line. It was difficult to attach the connector without any problems.
このため、P、A、Moskowi tz rら(CR
YOGENIC8P107〜1092月1983)はマ
イクロストリップ線路と装置との接続の一方法を着果じ
ている。この方法は、信号線の一方の面に第1の誘電体
を介して接地導体が設けられると共に他方の面に第2の
誘電体が設けられたマイクロストリップ線路を用い、こ
のマイクロストリップ線路の信号線を他装置の信−号線
に導体を介して接続すると共に、マイクロストリップ線
路の接地導体を他装置の接地導体に導体を介して接続す
るものである。この方法によると、高密度に製作された
マイクロストリップ線路と装置接続は可能で゛あ凶。し
かしながら、このマイクロストリ・ゾ線路に=仏て、は
、〜イク・ストリ・=ジグ線路の他方の面は第2の誘電
体だけであるため、高密度化に伴なって漏洩、雑音(ク
ロストーク)が大きくなシ、実用上よシ以上の高密度化
は困難と考えられる。さらに複数本の信号線を一体化形
成したマイクロストリップ線路体を複数組使用する場合
等においては、マイクロストリップ線路の信号線に他紙
のマイクロストリップ線路の信号線あるいは接地導体が
近接し、線路の特性が変化したシ、漏洩、雑音(クロス
トーク)が予想以上に増大することが十分考えられる。For this reason, P, A, Moskowitz r et al. (CR
YOGENIC 8P107-1092 (February 1983) has developed a method for connecting microstrip lines to devices. This method uses a microstrip line in which a ground conductor is provided on one side of the signal line via a first dielectric and a second dielectric is provided on the other side, and the signal of this microstrip line is The line is connected to the signal line of another device via a conductor, and the ground conductor of the microstrip line is connected to the ground conductor of another device via a conductor. According to this method, it is possible to connect devices to microstrip lines manufactured in high density. However, since the other side of the microstrip line is only the second dielectric material, leakage and noise (cross In practice, it is considered difficult to increase the density beyond that because the talk size is large. Furthermore, when using multiple sets of microstrip line bodies in which multiple signal lines are integrally formed, the signal line or ground conductor of another microstrip line may come close to the signal line of the microstrip line, and the line It is quite conceivable that characteristics change, leakage, and noise (crosstalk) will increase more than expected.
このように、従来この種の入出カケ−プルにおいては、
漏洩、干渉(クロストーク)が少なく伝送特性にすぐれ
しかも使用時に特別な加工を要しない入出カケ−プルを
高密度に製作することがきわめて困難であった。In this way, conventionally, in this type of input/output cable,
It has been extremely difficult to fabricate high-density input/output cables that have low leakage and interference (crosstalk), excellent transmission characteristics, and do not require special processing during use.
本発明は、これらの欠点を除去するため、信号線と第1
の接地導体が第1の誘電体を介して設けられたマイクロ
ストリップ線路の1部に、前記信号線上に第2の誘電体
を介して第2の接地導体を設けて構成した遮へいストリ
、・ゾ線路を一体的に設けると共に1前記マイクロスト
リツプ線路に前記信号線の端部を平面的に広げてコネク
タの取シ付はスペースを確保したコネクタ取付は部を設
けることにょシ、伝送信号間での漏洩、雑音(クロスト
ーク)が少なく伝送特性を向上させかつ、高密度化を可
能としたもので、以下図面について詳細に説明する。In order to eliminate these drawbacks, the present invention provides a connection between the signal line and the first line.
A shielding strip configured by providing a second ground conductor on the signal line via a second dielectric material on a part of a microstrip line in which a ground conductor is provided via a first dielectric material, In addition to providing the lines integrally, it is recommended to spread out the ends of the signal lines on the microstrip line to secure space for installing the connector, and to provide a section between the transmission signals. The device reduces leakage and noise (crosstalk), improves transmission characteristics, and enables higher density.The drawings will be explained in detail below.
第1図(a) 、 (b)は本発明の第1の実施例であ
って、1は遮へいストリップ線路、2はマイクロス)
IJツブ線路、3はコネクタ取付は部、4は他装置との
接続部、5はコネクタ配置部、6は辿へい形ス) IJ
ッゾケーブル部、7は低温装置接続部である。FIGS. 1(a) and 1(b) show a first embodiment of the present invention, in which 1 is a shielded strip line, 2 is a microscopy line)
IJ tube line, 3 is the connector installation part, 4 is the connection part with other equipment, 5 is the connector placement part, 6 is the trace type (IJ)
The zzo cable section 7 is a low temperature device connection section.
すなわち、遮へいストリップ線路1は第1図(b)に示
す様に、信号線Sが第1の接地導体GAと第2の接地導
体GBとで第1の誘電体Iム、第2の誘電体rlをAし
、て遮へいされておシ、マイクロス) +Jッグ゛線赫
2は、接地導体Glが藩、〈・、信号線Sと接地導体G
Aが誘導体■、を介して設けられている。又コネクタ取
付は部3は、マイクロス) IJッデ線路2に設けられ
、高密度集合信号線Sの端部を平面的に広げて設けられ
る。これはコネクタを取シ付けるスペースを確保するた
めである。とのコネクタ取シ付は部3は第2図に一例と
して示す様に同軸コネクタ等を取付ける部分であシ、第
2図中、coは同軸コネクタで、Gcは同軸コネクタの
外被(接地)導体、s、は同軸コネクタの内部(信号)
導体である。マイクロストリップ線路2の開放端で信号
線Sと内部導体S。がハン/Y等で接続され、外部導体
Gcと接地導体GAが接続され、入出カケ−プルの一端
はコネクタが取付けられる。That is, in the shielded strip line 1, as shown in FIG. 1(b), the signal line S has a first ground conductor GA and a second ground conductor GB, and a first dielectric material I and a second dielectric material. rl is A, shielded by micros) +J G wire 2, ground conductor Gl is connected, <・, signal line S and ground conductor G
A is provided via the derivative (2). The connector mounting section 3 is provided on the microscopy IJ line 2, and is provided by expanding the end of the high-density aggregate signal line S in a plane. This is to ensure space for installing the connector. As shown in Figure 2 as an example, the connector mounting section 3 is the part where a coaxial connector, etc. is installed. The conductor, s, is inside the coaxial connector (signal)
It is a conductor. A signal line S and an internal conductor S at the open end of the microstrip line 2. The external conductor Gc and the ground conductor GA are connected to each other, and a connector is attached to one end of the input/output cable.
又第1図の4は他装置との接続部であって、その接続部
の一例を第3図に示した。第3図は本発明の入出カケ−
プルの信号線Sと他装置Cの信号線S、及び接地導体G
Bと他装置Cの接地導 一体GPを各々M、 # M、
なる導体を介して接続した様子を示したもので、入出カ
ケ−プルの端の部分つまシ接続部まで同一の形状を保ち
しかも゛接地導体Gムによシ接続部が遮へいされた構造
で他装置Cと接続可能ガ様子を示している。Further, 4 in FIG. 1 is a connection part with other devices, and an example of this connection part is shown in FIG. Figure 3 shows the input/output mechanism of the present invention.
Pull signal line S, signal line S of other device C, and ground conductor G
Connect the grounding conductor integrated GP of B and other equipment C to M, #M, respectively.
This figure shows how the input and output cables are connected through a conductor, which maintains the same shape up to the connection part at the end of the cable, and has a structure in which the connection part is shielded by the ground conductor G. It shows how it can be connected to device C.
本発明の超伝導集積回路用入出カケ−プルを製作するに
は、第4図に示す様に、接地導体Gムと信号線Sとなる
導体が誘電体エムをはさんで構成された例えば両面銅張
Iリイミド板T1等を用い、信号線S用の導体をノ母タ
ーニングすることでマイクロストリップ線路を構成する
□。さらに片面銅張ポリイミド板T2を両面銅張ポリイ
ミド板T1に張多合わせる。バターニングにはフォト工
程を用いる事が可能であシ、その露光範囲内で折曲した
形状で製作する。このとき例えば銅箔厚30μm前後、
ポリイミド厚50μm前後の材料を用いると、完成した
ケーブルにはフレキシブル性を持たせられる為、長く引
き延ばして使用でき、ろ光範囲の形状によってケーブル
の長さが制限されることはない。In order to manufacture the input/output cable for a superconducting integrated circuit according to the present invention, as shown in FIG. □ Construct a microstrip line by turning the conductor for the signal line S using a copper-clad I-imide board T1 or the like. Further, the single-sided copper-clad polyimide plate T2 is bonded to the double-sided copper-clad polyimide plate T1. A photo process can be used for patterning, and the shape is bent within the exposure range. At this time, for example, the copper foil thickness is around 30 μm,
By using a polyimide material with a thickness of around 50 μm, the completed cable can be given flexibility, so it can be stretched and used for a long time, and the length of the cable is not limited by the shape of the filtration range.
ここ+ホ゛−例、と、して銅張のポリイミは板をとシあ
げたが、低門で弾性を有するポリー友チルを誘電体とし
て使用する事あるいは、銅板外の金属導体を用いる、あ
るいはメッキ等を施すなど種々の場合が考えられる。As an example, we used copper-clad polyimide as a dielectric, but it is also possible to use low-temperature and elastic polyimide as a dielectric, or use a metal conductor other than the copper plate, or Various cases such as applying plating etc. are possible.
本発明の第一の目的は、伝送信号間での漏洩、干渉(ク
ロストーク)が少ない高品質な伝送線路を高密度に実現
することで、これらの特性は主に、第1図の遮へいスト
リップ線路1の部分で決定される。第1図の遮へいスト
リップ線路1の部分の断面■−aの一例を第5図(、)
に示す。The first objective of the present invention is to realize a high-density transmission line with low leakage and interference (crosstalk) between transmitted signals, and these characteristics are mainly achieved by the shielding strip shown in Figure 1. It is determined by the line 1 section. Figure 5 (,) shows an example of the cross section ■-a of the shielded strip line 1 in Figure 1.
Shown below.
第5図(、)では、導体厚T1幅Wの特性インピーダン
ス50Ωの信号線SをピッチPで製作した場合である。In FIG. 5(,), a signal line S having a conductor thickness T1 and a width W and a characteristic impedance of 50Ω is manufactured at a pitch P.
このときの誘電体厚みをDとし、T 35 μm、D=
=100μmとした場合のピッチとクロストーク量を算
出すると第5図(b)を得る。The dielectric thickness at this time is D, T 35 μm, D=
When the pitch and the amount of crosstalk are calculated when = 100 μm, the result shown in FIG. 5(b) is obtained.
第5図(b)中、Fが算出値であシ、八、T3及びfs
は実測値である。又Eは前記文献
(P、A、Moakowitz、et、al、 CRY
OGENICP 107〜P109 2月1983)に
示されたクロストーク量である。In Fig. 5(b), F is a calculated value, 8, T3 and fs
is an actual measured value. Also, E refers to the above-mentioned literature (P, A, Moakowitz, et al, CRY
This is the amount of crosstalk shown in OGENICP 107-P109 February 1983).
上述の通シ本発明によれば、同一のピッチであれば10
dB以上クロストークが改善されン又同−クロストー
ク量であれば約30チ・はど高密度化が可能となる。し
かも第2図で示した様にコネクタの取シ付けが簡便であ
シネ整合を生じにくく・、又第3図で示した様に他装置
との接続部分まで遮へい導体で被覆する事も可能な為、
漏洩、雑音(クロストーク)が少なく高品質な伝送線路
を高密度に実現でき、又その製作方法も従来の光工程、
エツチング工程等によシ製作可能であることよシ生産性
にもすぐれている等多くの利点がある。According to the above-described invention, if the pitch is the same, 10
If the crosstalk is improved by more than dB, and if the amount of crosstalk is the same, it becomes possible to increase the density by about 30 dB. Furthermore, as shown in Figure 2, the connector is easy to install and cine matching is less likely to occur.Also, as shown in Figure 3, it is possible to cover the connecting part with other devices with a shielding conductor. For,
It is possible to realize high-density transmission lines with low leakage and noise (crosstalk), and the manufacturing method is also similar to conventional optical processes.
It has many advantages such as being able to be manufactured by an etching process and having excellent productivity.
第6図は本発明の第2の実施例であって、スルーホール
Hによυ接地導体GAとGBを電気的に接続している。FIG. 6 shows a second embodiment of the present invention, in which ground conductors GA and GB are electrically connected through a through hole H.
このスルーホールHは信号線Sの間にも形成する事が可
能であ夛、この場合、クロストークをさらに低減するこ
とができる。This through hole H can also be formed between the signal lines S, and in this case, crosstalk can be further reduced.
第7図は本発明の第3の実施例でおる。本実施例では、
接地導体GAのみのマイクロストリップ線路゛2のイン
ピ−ダンスと、接地導aaAaG含有する遮へいストリ
ップ線路1のインピーダンスを等しくかつ少ない不整合
で直列接続する目的のため、2つの線路の線路幅をwl
、w。FIG. 7 shows a third embodiment of the present invention. In this example,
In order to connect the impedance of the microstrip line 2 containing only the ground conductor GA and the impedance of the shielding strip line 1 containing the ground conductor aaAaG in series with the same and with a small mismatch, the line width of the two lines is set to wl.
, w.
と各々異ならしめた例である。本例では、さらに接地導
体GBの形成誤差等を考慮して、WlとW、の間をΔD
の距離でテーノ母状に変化させることで、よシネ整合を
少なくし高品質な伝送線路を形成している。なお同一の
特性インピーダンスで直列接続するためには、通常接地
導体G。This is an example of how each is different. In this example, in consideration of the formation error of the ground conductor GB, ΔD is set between Wl and W.
By changing the line into a Theno matrix shape at a distance of Note that in order to connect in series with the same characteristic impedance, a ground conductor G is usually used.
のある遮へいストリップ線路1の線路幅の方がマイクロ
ストリップ線路2の線路幅よシも広くなるため、この線
路幅変更は不可欠なものである。This change in line width is essential because the line width of the shielded strip line 1 is wider than the line width of the microstrip line 2.
以上説明した様に本発明によれば、伝送信号間での漏洩
(クロストーク)が少なく、外部からの雑音を遮へいす
る効果もあシ、伝送特性にすぐれた高密度入出カケ−プ
ルが実現でき、さらに、一体で形成されたコネクタ取付
部又は他装置との接続部を有しているため、使用方法が
簡単でかつケーブル特性を劣化させる事なく他ケーブル
又は他装置と接続可能でおる。As explained above, according to the present invention, it is possible to realize a high-density input/output cable with low leakage (crosstalk) between transmission signals, the effect of shielding external noise, and excellent transmission characteristics. Furthermore, since it has an integrally formed connector mounting part or connection part with other devices, it is easy to use and can be connected to other cables or other devices without deteriorating the cable characteristics.
さらに、高密度に製作可能な事より11例泉ば°超伝導
集積回路を動作させる際など堺温、クライオスタット内
から多くの信号線を取シ出す事が必要であるとき、クラ
イオスタットーロ径を従来のケーブルを使用するよシも
小さ゛くする事等が可能と々ル、同一のクロストーク量
を許容したときの低温環境への熱流入をさらに少なくす
る事が可能である。Furthermore, since it can be manufactured at high density, when it is necessary to extract many signal lines from inside the cryostat, such as when operating a superconducting integrated circuit, the diameter of the cryostat can be reduced. It is possible to make the cable smaller than the conventional cable, and it is also possible to further reduce the heat flow into the low-temperature environment when the same amount of crosstalk is allowed.
なおかつ、生産性、再現性に富む光工程によって製作可
能々ことよシ、量産性、再現性良く製作され生産コスト
も低くおさえる事が可能であると考えられる。Furthermore, it is thought that it is possible to manufacture the device using an optical process that is highly productive and reproducible, and that it is possible to manufacture the device with high mass productivity and reproducibility, and to keep the production cost low.
第1図(a) t (b)は本発明の一実施例の平面図
及び立面図、第2図は第1図のコネクタ取付は部の一例
を示す拡大断面図、第3図は第1図の他装置接続部の一
例を示す拡大説明図、第4図は本発明の製作方法の一例
を説明するための図、第5図(a)・は第1図の■−■
lを断面して示した拡ロストーク量実測図、第6図は本
発明の他の実施例を示す構成説明図、第7図は本発明の
他の実施例を示す構成説明図である。
1・・・遮へいストリッグ線路、2・・・マイクロスト
リップ線路、3・・・コネクタ取付は部、4・・・他装
置接続部、S・・・信号線、GムIGB・・・接地導体
、IA ’i III・・・誘電体、Gc・・・コネク
タの外被(接地)導体、Sc・・・コネクタ内部(信号
)線、Y・・・ハンダ、■・・・スルーホール、SP・
・・他装置の信号線、ap・・・他装置の接地導体。
出願人代理人 弁理士 鈴 江 武 彦第1図
(a)
(b)
第 2 図
■
C
第3図
第4図
(dB)
第5図
(a)
B
第5rI!I
ス厄オ各イ巳゛シ;・・チ 旦Figures 1(a) and 1(b) are a plan view and an elevation view of an embodiment of the present invention, Figure 2 is an enlarged sectional view showing an example of the connector installation part of Figure 1, and Figure 3 is an enlarged sectional view of an example of the connector mounting section of Figure 1. Fig. 1 is an enlarged explanatory diagram showing an example of the connecting part to other devices; Fig. 4 is a diagram for explaining an example of the manufacturing method of the present invention; Fig. 5(a) and Fig. 5 (a) are the same as ■-■ in Fig. 1;
FIG. 6 is an explanatory diagram showing another embodiment of the present invention, and FIG. 7 is an explanatory diagram showing another embodiment of the present invention. 1... Shielded string line, 2... Microstrip line, 3... Connector installation part, 4... Other device connection part, S... Signal line, Gmu IGB... Ground conductor, IA 'i III...Dielectric, Gc...Connector outer sheath (ground) conductor, Sc...Connector internal (signal) wire, Y...Solder, ■...Through hole, SP
...Signal line of other devices, ap...Ground conductor of other devices. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) Figure 2 ■ C Figure 3 Figure 4 (dB) Figure 5 (a) B 5rI! I. Each of the evil spirits;...chi Dan
Claims (3)
設けられたマイクロストリップ線路と、このマイクロス
トリップ線路の信号線上の1部に第2の誘電体を介して
第2の接地導体が設けられて構成された遮へいストリッ
プ線゛路と、この遮へいストリップ線路の端部に設けら
れた他装置接続部と、前記マイクロストリ、プ線路に設
けられ前記信号線の端部を平面的に広げて設けられたコ
ネクタ取付は部とを具備することを特徴とする超伝導集
積回路用入出カケ−プル。(1) A microstrip line in which a signal line and a first ground conductor are provided via a first dielectric, and a second ground conductor is provided on a part of the signal line of this microstrip line via a second dielectric. A shielded strip line provided with a ground conductor, a connecting portion for other equipment provided at the end of the shielded strip line, the microstrip, and a planar end of the signal line provided on the microstrip line. 1. An input/output cable for a superconducting integrated circuit, characterized in that the input/output cable for a superconducting integrated circuit is provided with a connector mounting portion that is widely spread out.
第2の接地導体間をスルーホールで接続した遮へいスト
リップ線路を用いることを特徴とする特許請求の範囲第
1項記載の超伏−集積回路屑y<’出力、ケミプル。(2) The super-concealed integrated circuit according to claim 1, characterized in that a shielded strip line in which the first ground conductor and the second ground conductor are connected by a through hole is used as the shielded strip line. Scrap y<'output, chemical pull.
路を相異なる線路幅に形成し、かつマイクロストリップ
線路幅と遮へいストリップ線路幅の境界部分でテーノ4
状に線路幅変更が行なわれていることを特徴とする特許
請求の範囲第1項記載の超伝導集積回路用入出カケ−プ
ル。(3) The micro strip line and the shielded strip line are formed to have different track widths, and the border between the micro strip line width and the shielded strip line width is
An input/output cable for a superconducting integrated circuit according to claim 1, characterized in that the line width is changed in a manner similar to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58233951A JPS60125002A (en) | 1983-12-12 | 1983-12-12 | Input and output cable for superconductive integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58233951A JPS60125002A (en) | 1983-12-12 | 1983-12-12 | Input and output cable for superconductive integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60125002A true JPS60125002A (en) | 1985-07-04 |
Family
ID=16963175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58233951A Pending JPS60125002A (en) | 1983-12-12 | 1983-12-12 | Input and output cable for superconductive integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60125002A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0318309A2 (en) * | 1987-11-27 | 1989-05-31 | General Electric Company | A disconnectable microstrip to stripline transition |
EP0849793A3 (en) * | 1996-12-18 | 2000-05-10 | Texas Instruments Incorporated | Improvements in or relating to integrated circuit device packages |
JP2021536685A (en) * | 2018-09-07 | 2021-12-27 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Stripline formation for high density connections in quantum applications |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892101A (en) * | 1981-11-27 | 1983-06-01 | Mitsubishi Electric Corp | Microwave circuit |
-
1983
- 1983-12-12 JP JP58233951A patent/JPS60125002A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892101A (en) * | 1981-11-27 | 1983-06-01 | Mitsubishi Electric Corp | Microwave circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0318309A2 (en) * | 1987-11-27 | 1989-05-31 | General Electric Company | A disconnectable microstrip to stripline transition |
EP0849793A3 (en) * | 1996-12-18 | 2000-05-10 | Texas Instruments Incorporated | Improvements in or relating to integrated circuit device packages |
JP2021536685A (en) * | 2018-09-07 | 2021-12-27 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Stripline formation for high density connections in quantum applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69324112T2 (en) | Method and device for connecting radio-frequency (RF) monolithically integrated microwave circuits | |
US7053735B2 (en) | Waveguide in multilayer structures and resonator formed therefrom | |
US7196273B2 (en) | Flat cable, flat cable sheet, and flat cable sheet producing method | |
JP2910736B2 (en) | Stripline-waveguide converter | |
KR101160497B1 (en) | Flat cable | |
US8598961B2 (en) | Waveguide transition for connecting U-shaped surface mounted waveguide parts through a dielectric carrier | |
JP2010530690A (en) | Impedance-managed coplanar waveguide system for three-dimensional distribution of high bandwidth signals | |
WO2017031723A1 (en) | Substrate integrated coaxial wave guide interconnection array structure | |
JPH10173410A (en) | Transmission circuit using strip line | |
US6622370B1 (en) | Method for fabricating suspended transmission line | |
WO2008086626A1 (en) | Systems, methods, and apparatus for electrical filters | |
US4425549A (en) | Fin line circuit for detecting R.F. wave signals | |
CN109301424A (en) | A kind of integrated gap waveguide coupler design method of substrate | |
CN105226359A (en) | The coaxial substrate integration wave-guide interconnection structure in side | |
CN107534200A (en) | Coaxial microband circuit change-over circuit | |
US5796321A (en) | Self-supported apparatus for the propagation of ultrahigh frequency waves | |
US4288761A (en) | Microstrip coupler for microwave signals | |
JPS60125002A (en) | Input and output cable for superconductive integrated circuit | |
US8227707B2 (en) | Coaxial connector mounted circuit board | |
DE102005056263B4 (en) | Electronic assembly with external impedance matching component connections with uncompensated leads and their method of manufacture | |
CN112186321A (en) | Ridge-added square coaxial substrate integrated waveguide interconnection device | |
JPH07120888B2 (en) | Multi-plane waveguide coupler | |
US5691566A (en) | Tapered three-wire line vertical connections | |
CN113540733A (en) | Vertical switching structure | |
JP3091020B2 (en) | High frequency wiring board |