JPS60124367A - Electrolyte circulation system of fuel cell - Google Patents
Electrolyte circulation system of fuel cellInfo
- Publication number
- JPS60124367A JPS60124367A JP58230656A JP23065683A JPS60124367A JP S60124367 A JPS60124367 A JP S60124367A JP 58230656 A JP58230656 A JP 58230656A JP 23065683 A JP23065683 A JP 23065683A JP S60124367 A JPS60124367 A JP S60124367A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- circulation system
- piping
- fuel cell
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2459—Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔1発明の属する技術分野〕
本発明は電池本体の液区画内に保有される電解序が電池
本体外の電解液循環系を介して繰り返しそ循環使用され
るいわゆる自由電解液形の燃料電油の雷解滌循珊系であ
って、陀循環系内に電池本体内で電解液中に混入ないし
含有されるガスを電解液から分離する分離装置が設けら
れるものに関し、より具体的には酸化ガスとして空気を
用い、電解液としてアルカリ電解質を用いる燃料電池の
電解液循環系として好適なものである。Detailed Description of the Invention [1] Technical field to which the invention pertains [1] The present invention relates to a so-called free electrolyte system in which the electrolyte stored in the liquid compartment of the battery body is repeatedly used via an electrolyte circulation system outside the battery body. Regarding a lightning dissolution circulation system for electrolyte-type fuel cell oil, in which a separation device is installed in the circulation system to separate gas mixed in or contained in the electrolyte within the battery body from the electrolyte. Specifically, it is suitable as an electrolyte circulation system of a fuel cell that uses air as an oxidizing gas and an alkaline electrolyte as an electrolyte.
前述のような自由電解液形の燃料電池の電解液循環系は
、元来電池本体内で電解液が電池への供給ガス中の不純
物;とくに供給空気中の炭酸ガスと反応して生じる固相
の反応生成物を系内で電解液から分離するため、あるい
は電池本体内で発生する熱によって温度が上昇した電解
液を−たん本体外に導出して系内で冷却するために設け
られる電極層として構成されておυ、電極層内には電池
内のガス区画から燃料ガスまたは酸化ガスが拡散19て
来ると同時に電解液区画から電解質が浸透して来て、固
相の電極とくにその中に含有された触媒と、気相の反応
ガスと、液相の電解液との三相゛;
が共存する条件で電気化学的反応が円滑に進行して発電
作用が生じるのであるが、電解液が電極層内に過剰に浸
出してガス相を追い出してしまい、前記の三相共存条件
が保たれなくなると、いわゆる電極層の濡れ現象のだめ
に発電作用が正常に起こらなくなってしまう。The electrolyte circulation system of a free electrolyte type fuel cell as described above originally prevents the electrolyte from reacting with impurities in the gas supplied to the battery, especially solid phase produced when the electrolyte reacts with carbon dioxide gas in the supplied air. An electrode layer provided in order to separate the reaction products from the electrolyte within the system, or to lead the electrolyte whose temperature has risen due to heat generated within the battery body outside the battery body and cool it within the system. The fuel gas or oxidizing gas is diffused into the electrode layer from the gas compartment in the cell, and at the same time the electrolyte permeates from the electrolyte compartment, and the solid-phase electrode, especially into the electrode layer, is The electrochemical reaction proceeds smoothly and power generation occurs under the coexistence of the three phases of the contained catalyst, gas phase reaction gas, and liquid phase electrolyte, but when the electrolyte is If the gas phase is expelled by excessive leaching into the electrode layer and the above-mentioned three-phase coexistence condition is no longer maintained, power generation will not occur normally due to the so-called wetting phenomenon of the electrode layer.
この問題を解決する有利な手段は、運転時のガス区画内
の圧力を液区画内の圧力に比べて僅かでも高く維持する
ことである。第1図はこのように企図された従来の電解
液循環系を模式的に示すものである。図では燃料電池本
体は1で示され、複数個の単位電池2を積層して1対の
締付板3.3の間に図示しない締結手段を用いて一体化
されており、内部に電解液が満たされる電解液区画4と
燃料ガスまたは酸化ガスが導入されるガス区画5とが画
成されている。各単位電池2は枠2a と燃料ガス用の
電極2bと酸化ガス用の電極2Cを含んでおシ、前述の
側区画4,5はこれらの板状の電極2b、2cによシ相
互に隔てられている。なお、通路部4cとを含んでいる
。前述のように電池の運転中は、ガス区画5内の圧力が
電解液区画4内の圧力よりも高くなるように該ガス圧力
が制御される。An advantageous means of solving this problem is to maintain the pressure in the gas compartment during operation at least slightly higher than the pressure in the liquid compartment. FIG. 1 schematically shows a conventional electrolyte circulation system designed as described above. In the figure, the fuel cell main body is indicated by 1, and is made up of a plurality of unit cells 2 stacked together and integrated between a pair of clamping plates 3.3 using a fastening means (not shown), and an electrolytic solution is contained inside. An electrolyte compartment 4 is filled with an electrolyte and a gas compartment 5 is defined into which fuel gas or oxidizing gas is introduced. Each unit cell 2 includes a frame 2a, an electrode 2b for fuel gas, and an electrode 2C for oxidizing gas, and the aforementioned side sections 4 and 5 are separated from each other by these plate-shaped electrodes 2b and 2c. It is being Note that it also includes a passage section 4c. As mentioned above, during operation of the cell, the gas pressure is controlled such that the pressure in the gas compartment 5 is higher than the pressure in the electrolyte compartment 4.
一方、電解液循環系は総称して6で示されており、電解
液タンク7とポンプ8と配管系9とを含んでいる。ポン
プ8は電解液を図の矢印の方向に付勢し、これによって
電解液は電池本体1に送り込まれ、該本体1内の電解液
区画4の下方のマニホールド部4b、下方の連通路部4
c、電解液室部4a、上方の連通路部4c、上方のマニ
ホールド部4bを順次下方から上方に向かって通流した
後本体1外に出て、電解液タンク7に入って再びポンプ
いる。On the other hand, the electrolyte circulation system is generally indicated by 6 and includes an electrolyte tank 7 , a pump 8 , and a piping system 9 . The pump 8 urges the electrolyte in the direction of the arrow in the figure, whereby the electrolyte is sent into the battery body 1, and the electrolyte compartment 4 in the body 1 has a lower manifold section 4b and a lower communication passage section 4.
c. After passing through the electrolyte chamber 4a, the upper communication passage 4c, and the upper manifold part 4b in order from below to above, the electrolyte exits the main body 1, enters the electrolyte tank 7, and is pumped again.
さて、この従来の電解液循環系6では、電解液タンク7
はその液面7aが電池本体1内の電解液区画40頂部よ
シも上方に位置するように配置されている。これは電池
本体1内で多孔質の電極2b、2eを通して電解液区画
4よシも圧力の高いガス区画5通して電解液タンク7の
液面7a上の空間に排出す:、−、、、,6アああ。1
カ1.2゜ようよ、1つよ8.44内の電解液の圧力は
当然大気圧よりは若干でも高くなり、ガス区間内の圧力
はこれに応じて前述のようにさらに高めなければならな
くなる。燃料ガスの圧力はガス供給源が元々圧力をもっ
ていることが多いので、ガス圧を高めることにふつうは
あまシ問題はないが、酸化ガスの場合、とくに空気を用
いる場合にはブロワやコンプレッサで圧力を上げた上電
池に供給する必要が生じ、燃料電池発電設備の補機動力
に必要な電力が増し、それだけ設備の総合効率が低下す
ることになる1、また、第1図に示すように、電池本体
1がら電解液タンク7に電解液を導く配管部分9aは、
できるだけ屈曲しない形状にしないと配管の中途に気泡
が溜捷ったシ、気泡が電解液と一緒に電解液タンクに円
滑に排出されなく々ったりする問題が生じるので、この
配管部分の形状や経路に制約が生を課すことであって望
ましくないことが多い。Now, in this conventional electrolyte circulation system 6, the electrolyte tank 7
is arranged so that its liquid level 7a is located above the top of the electrolyte compartment 40 within the battery body 1. This is discharged into the space above the liquid level 7a of the electrolyte tank 7 through the porous electrodes 2b and 2e in the battery body 1, through the electrolyte compartment 4 and the gas compartment 5, which has a higher pressure. ,6aah. 1
F1.2゜Okay, one thing.8.The pressure of the electrolyte inside 44 will naturally be even slightly higher than atmospheric pressure, and the pressure within the gas section will have to be increased accordingly as mentioned above. . The pressure of fuel gas often comes from the gas supply source, so there is usually no problem in increasing the gas pressure, but in the case of oxidizing gas, especially when air is used, the pressure can be increased using a blower or compressor. In addition, it becomes necessary to increase the power supply to the battery, increasing the electric power required for the auxiliary power of the fuel cell power generation equipment, which reduces the overall efficiency of the equipment1.Also, as shown in Figure 1, The piping portion 9a that leads the electrolyte from the battery body 1 to the electrolyte tank 7 is
If the shape is not bent as much as possible, there will be problems such as air bubbles accumulating in the middle of the pipe, or air bubbles not being smoothly discharged into the electrolyte tank together with the electrolyte, so please be careful about the shape of this pipe part. Constraints impose restrictions on routes, which is often undesirable.
そこで、電解液タンク7は電池本体1の下方に置き、こ
れとは別に電解から気泡を分離する気液゛□分離装置を
設けてこれを電池本体の上方に配置することが考えられ
るが、当然余分の装置が必要となるほか、電解液が大気
と接触する機会がそれだけ多くなシ、電解液の管理上思
わしくない。Therefore, it is conceivable to place the electrolyte tank 7 below the battery main body 1 and separately provide a gas-liquid separator for separating air bubbles from the electrolysis and place it above the battery main body. In addition to requiring extra equipment, there are many opportunities for the electrolyte to come into contact with the atmosphere, which is undesirable in terms of electrolyte management.
電池の電解液循環系を得ることにある。 The objective is to obtain an electrolyte circulation system for batteries.
上述の目的は本発明によれば、電解液を電池本体から電
解液溜めなどの分離装置に導く配管の内径を電解液中に
気泡の形で混入するガスが電解液とともに当該分離装置
に送られる程度゛に十分に細く形成することにより簡単
に達成される。この際、配管の内径の大きさは電解液の
種類や配管内を通流する電′酢液の流量によって当然異
なって来るが、例の範囲に選べばよい。ただしqはcc
/lJで表わしだ電解液の流量とする。このような内
径dを有する配管を用いることによシ、電解液中にガス
の気泡がかなり混入していても、また配管の一部が下1
J方1に向けて電解液を流すように配置されていても、
気泡は電解液とともに円滑に分離装置まで運ばれる。According to the present invention, the above object is achieved by connecting the inner diameter of the pipe that leads the electrolyte from the battery body to a separation device such as an electrolyte reservoir so that gas mixed in the electrolyte in the form of bubbles is sent to the separation device together with the electrolyte. This can be easily achieved by forming the film to be sufficiently thin. At this time, the size of the inner diameter of the pipe naturally varies depending on the type of electrolytic solution and the flow rate of the electrolyte solution flowing through the pipe, but it may be selected within the range shown in the example. However, q is cc
The flow rate of the electrolyte is expressed as /lJ. By using a pipe with such an inner diameter d, even if a considerable amount of gas bubbles are mixed in the electrolyte, a part of the pipe can be
Even if the electrolyte is arranged to flow in the J direction 1,
The bubbles are smoothly transported to the separation device along with the electrolyte.
これによって前述のような電解液タンクを分離装置に利
用して電池本体の下方に配置してもなんら問題が生じな
くなジ、余分な分離装置を設ける必要も捷ったくなくな
る。なお配管の内径を細くすることは一本の配管内を流
[2うる電解液の流量が少なくなることは当然であるが
、容易にわかるように一本の配管では流量が不足する場
合は、上記のような内径を有する配管を複数本並列に用
いればよく、本発明によって得られる効果をなんら失な
うことなく本発明の実施をすることができる。As a result, there is no problem even if the electrolyte tank as described above is used as a separation device and placed below the battery main body, and there is no need to provide an extra separation device. Note that reducing the inner diameter of the piping means that the flow rate of the electrolyte flowing through one piping [2] will naturally decrease, but as can be easily seen, if the flow rate is insufficient in one piping, It is sufficient to use a plurality of pipes having the above-mentioned inner diameters in parallel, and the present invention can be carried out without losing any of the effects obtained by the present invention.
以下図面を参照しながら本発明の実施例を詳細に説明す
る。第2図は本発明による電解液循環系を7用いた燃料
電池発電装置の全体系統図を示すもので、分離装置とし
ての電解液溜め7は図示のように電池本体1の下方に配
置されておシ、電池本体1の雷解涜区画4からとの雪解
液溜め7に雪解液を導く配管10は本発明によって内径
が細目に構友、燃料電池本体1の内部は模式的に燃料ガ
ス側゛・、1゜
の電極2bと酸化ガス側の電極2Cとによって相互g隔
てられた電解質区画4と燃料ガス側のガス区画5fと酸
化ガス側のガス区画5aとに分離して示されている。燃
料ガスF2例えば水素は、その供給源としてのガスボン
ベ11からエジェクタ装置12を通して電池本体1内の
前述のガス区画5fに送られ、電池内で消費されなかっ
た燃料ガス−は、該ガス区画5fから下方に出て風冷の
熱交換器13を経てエジェクタ装置12のポンプ吸収作
用により再び電池本体1のガス区画5fに戻る。すなわ
ち、燃料ガス配管系は一種の循環系として構成されてお
9、電池本体1内には電池が消費する量の数倍の燃料ガ
スが通流されていて、電池内で発生した反応生成水を蒸
気の形で電池本体1から取シ去広熱交換器13内で凝集
させて凝縮水管14を介して凝縮水溜め15に集める。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an overall system diagram of a fuel cell power generation device using an electrolyte circulation system 7 according to the present invention, in which the electrolyte reservoir 7 as a separation device is arranged below the cell main body 1 as shown in the figure. According to the present invention, the piping 10 that leads the snowmelt from the lightning melting section 4 of the battery body 1 to the snowmelt reservoir 7 has a narrow inner diameter. It is shown separated into an electrolyte compartment 4, a gas compartment 5f on the fuel gas side, and a gas compartment 5a on the oxidizing gas side, which are separated from each other by an electrode 2b on the gas side and an electrode 2C on the oxidizing gas side. ing. The fuel gas F2, for example, hydrogen, is sent from the gas cylinder 11 as its supply source to the aforementioned gas compartment 5f in the battery body 1 through the ejector device 12, and the fuel gas not consumed within the battery is sent from the gas compartment 5f. It exits downward, passes through the air-cooled heat exchanger 13, and returns to the gas compartment 5f of the battery body 1 again by the pump absorption action of the ejector device 12. In other words, the fuel gas piping system is configured as a type of circulation system9, and several times the amount of fuel gas that is consumed by the battery is passed through the battery body 1, and the reaction product water generated within the battery is is removed from the battery body 1 in the form of steam, condensed in a wide heat exchanger 13, and collected in a condensed water reservoir 15 via a condensed water pipe 14.
一方、酸化ガス、例えば空気Aは炭酸ガス除去器16を
介してブロワ17により大気から吸引されて、電池本体
1内の空気側一定預以上の#集水はこのオーバーフロー
15aから排出されるとともに、その下方に配置されて
いる前述の電解液溜め7内の電解液量が所定値よシ4少
”なくなったとき、その底部の補給水管15b中の電磁
弁18を開いて電解液溜め7に補給水として凝縮水を供
給する。On the other hand, oxidizing gas, for example air A, is sucked from the atmosphere by the blower 17 via the carbon dioxide remover 16, and the collected water above a certain amount on the air side in the battery body 1 is discharged from this overflow 15a. When the amount of electrolyte in the above-mentioned electrolyte reservoir 7 located below becomes less than a predetermined value, the solenoid valve 18 in the supply water pipe 15b at the bottom is opened to replenish the electrolyte reservoir 7. Condensed water is supplied as water.
電解液溜め7には、液面計7bとして略示さくれた。C
液面制御器が付属していて、液面7aが所定レベル以下
になったとき、前述の電磁弁18を開いて凝縮水溜め1
5から補給水を補充して電解液量を、従って電解液の濃
度を一定に保持するほか、その底部には弁7cを備えた
排出管7dが接続されていて、電解液と空気中の残留炭
酸ガスが電池本体内で反応して同相の反応生成物が発生
し配管1oを経て電解液溜め7の底部に沈澱を生じたと
き、弁7cを開いて該生成物を電解液とともに排出でき
るように考慮されている。電解液溜め7内の電解液はポ
ンプ8により付勢され、配管9を介して電池本体1内の
電解液区画4の底部に導入され、電極2b、2cの1際
、配管10内を流れる電解液中に混入されたガi11□
1
亥゛の気泡は、該配管10に上昇部や下降部や蛇管部、
”、b’j’Hpっても、円滑に電解液とともに電解液
溜め7にまで運ばれ、配管10の下端1oaを出た瞬間
に電解液から分離されて大気中に放出される。なお、図
では配管10の下端10aは電解液溜め7の液面7a上
に位置して描かれているが、このようにすることは特に
必要ではなく下端を10aを液面7a下にあまり深くな
らない程度に沈めて開口させても、気泡の分離に特に障
害を生じるわけではない。The electrolyte reservoir 7 is schematically indicated as a liquid level gauge 7b. C
A liquid level controller is attached, and when the liquid level 7a falls below a predetermined level, the above-mentioned solenoid valve 18 is opened and the condensed water reservoir 1 is
In addition to replenishing make-up water from 5 to maintain the electrolyte amount and therefore the electrolyte concentration constant, a discharge pipe 7d equipped with a valve 7c is connected to the bottom of the drain pipe 7d to drain the electrolyte and residual air. When carbon dioxide reacts within the battery body and a reaction product of the same phase is generated and precipitates at the bottom of the electrolyte reservoir 7 through the pipe 1o, the valve 7c is opened so that the product can be discharged together with the electrolyte. is taken into consideration. The electrolyte in the electrolyte reservoir 7 is energized by the pump 8 and introduced into the bottom of the electrolyte compartment 4 in the battery body 1 through the pipe 9, and the electrolyte flowing in the pipe 10 is introduced into the bottom of the electrolyte compartment 4 in the battery body 1 between the electrodes 2b and 2c. Gai11□ mixed in the liquid
1. The air bubbles in the pipe 10 are located in the rising part, the descending part, the serpentine part,
”, b'j'Hp, it is smoothly transported with the electrolyte to the electrolyte reservoir 7, and is separated from the electrolyte and released into the atmosphere the moment it exits the lower end 1 oa of the pipe 10. In the figure, the lower end 10a of the piping 10 is depicted as being located above the liquid level 7a of the electrolyte reservoir 7, but this is not particularly necessary, and the lower end 10a is positioned so as not to be too deep below the liquid level 7a. Even if it is opened by submerging it in water, there is no particular problem in separating the bubbles.
上述の説明かられかるように、本発明によれば電解液か
らの気泡の分離のために特別な分離装置を設ける必要け
々く、電解液溜めを分離装置として共用することで十分
である。まだ、従来と異なり電解液溜め7は電池本体1
の下方に配置してもなんら差し支えがなくなるので、電
池本体1の電解液区間4内の電解液の圧力をほぼ大気圧
と同じ榮件1で電池を運転できる。J:うになり、ガス
区画5a、5f内のガス圧力も大気圧より僅かに高目に
する程度でよく、従ってブロワ17に要する補機動力、
1@tiiできる。なお、電解液溜め7の液面は必ずし
も犬゛気開放にする必要は方く、この液面で電解液と大
“気中の炭酸ガスとの反応が懸念される場合には、xr
hlt、m ゛−力+l 小l 六n −1−MIN
194M 、 fi、力性f−61イ+、□気・、×半
閉的に連通させ、液面上に不活性ガスを微、す(
量流して電解液溜め7内で分離されたガスとともに該フ
ィルタを介して大気に排出するようにしてもよい。As can be seen from the above description, according to the present invention, it is not necessary to provide a special separation device for separating bubbles from the electrolyte, and it is sufficient to share the electrolyte reservoir as the separation device. However, unlike before, the electrolyte reservoir 7 is located in the battery body 1.
Since there is no problem even if the electrolyte is placed below the electrolyte section 4 of the battery body 1, the battery can be operated under conditions 1 in which the pressure of the electrolyte in the electrolyte section 4 of the battery body 1 is approximately the same as atmospheric pressure. J: The gas pressure in the gas compartments 5a and 5f only needs to be slightly higher than atmospheric pressure, so the auxiliary power required for the blower 17,
1@tii is possible. Note that the liquid level of the electrolyte reservoir 7 does not necessarily need to be completely open to the atmosphere, and if there is a concern that the electrolyte may react with carbon dioxide in the atmosphere at this liquid level,
hlt, m ゛-force +l small l 6n -1-MIN
194M, fi, force f-61 a +, □ air, × communicated semi-closedly, and a small amount of inert gas is flowed onto the liquid surface (along with the gas separated in the electrolyte reservoir 7) It may be discharged to the atmosphere through the filter.
第3図は第2図では簡略して示されていた電池本体1内
の単位電池2の具体構造を部品を展開した状態の斜視図
で示すもので、第1図と同じ部分には同一の符号が付さ
れている。図示のように単位電池2は枠2a、燃料ガス
側の電極2b、酸化ガス側の電極2c、単位電池相互を
分離する分離板2dが積み重ねられて構成され、電解液
区間4は枠2aの内部に形成された電解液室部4aと2
分離された状態の孔として示された下方のマニホールド
部4blと、同様に分離された状態の孔として示された
上方のマニホールド部4buとして示されている。なの
間に形成され、この区画を確保するための粂・条・5番
が分離板2dの各電極2b、2cに対応する部位、;
に設けられている。まだこの区画5f、5aへの連通路
として溝5Cが枠2aに設けられている。FIG. 3 is a perspective view showing the specific structure of the unit battery 2 in the battery body 1, which was shown in a simplified manner in FIG. 2, with parts expanded. A symbol is attached. As shown in the figure, the unit cell 2 is constructed by stacking a frame 2a, an electrode 2b on the fuel gas side, an electrode 2c on the oxidizing gas side, and a separation plate 2d that separates the unit cells from each other, and the electrolyte section 4 is inside the frame 2a. Electrolyte chamber portions 4a and 2 formed in
The lower manifold section 4bl is shown as separated holes, and the upper manifold section 4bu is also shown as separated holes. A number 5 thread is formed between the electrodes 2b and 2c of the separating plate 2d to secure this division. A groove 5C is provided in the frame 2a as a communication path to the sections 5f and 5a.
第4図は電池本体1と配管10との接続部の構成を:示
す断面図であって、第3図の上方のマニホールド部4b
としての孔4buが設けられた隅部を斜め方向に切断し
て示すものである。また、この図は複数個の単位電池が
積層された状態を示してお広第1図および第3図と共通
の部分には同一の符号が付されている。図示のように枠
2aと分離板2dとは相互間にパツキンシート2eを介
して積層さ粗これらに設けられた孔4buは積層状態で
は連続した上方のマニホールド部4bを形成している。FIG. 4 is a cross-sectional view showing the structure of the connection between the battery body 1 and the piping 10, and shows the upper manifold part 4b in FIG.
The corner portion where the hole 4bu is provided is cut diagonally and shown. Further, this figure shows a state in which a plurality of unit batteries are stacked, and parts common to those in FIGS. 1 and 3 are given the same reference numerals. As shown in the figure, the frame 2a and the separation plate 2d are laminated with a packing sheet 2e interposed therebetween, and the holes 4bu formed therein form a continuous upper manifold portion 4b in the laminated state.
積層体の端部に配された締め付は板3の外側面には、前
述の上方のマニホールド部に整合して設けられた孔3a
に連通するように筒状の接続金具10aがパツキン10
cを介して液密にねじ込まれ、この接続、金具10aに
配管10の端部がパツキン10dを介して袋ナラ) 1
0t)Kより液密に取シ付けられている。The fasteners arranged at the ends of the laminate have holes 3a provided on the outer surface of the plate 3 in alignment with the upper manifold part described above.
A cylindrical connecting fitting 10a is connected to the packing 10 so as to communicate with the packing 10.
After this connection, the end of the piping 10 is screwed into the fitting 10a through the seal 10d in a liquid-tight manner.
0t)K is installed more liquid-tightly.
電極板2b、2Cの間に形成された各電解液室部4al
!・
酢液を気泡の移動に有利な上方に流すように屈曲されて
いるが、前述の説明かられかるように必ずしもこのよう
に上方に屈曲させる要はない。ただ、電池本体1からガ
スの気泡を除去するに有利なよう、配管10と電池本体
1との接続部を電解液室部4a、連通路4c、マニホー
ルド部4bからなる電解液区画4の頂部に位置させるこ
とが望ましい。第3図に示すようにこの実施例では上方
のマニホールド部4bは2個あるので、2本の配管10
が電池本体1に接続される。Each electrolyte chamber 4al formed between the electrode plates 2b and 2C
! - It is bent so that the vinegar solution flows upward, which is advantageous for the movement of air bubbles, but as can be seen from the above explanation, it is not necessarily necessary to bend it upward in this way. However, in order to be advantageous in removing gas bubbles from the battery body 1, the connecting part between the piping 10 and the battery body 1 is placed at the top of the electrolyte compartment 4 consisting of the electrolyte chamber 4a, the communication passage 4c, and the manifold part 4b. It is desirable to locate the As shown in FIG. 3, in this embodiment, there are two upper manifold parts 4b, so there are two pipes 10.
is connected to the battery body 1.
第5図は発明者達が行なった実験結果を1とめたグラフ
図であって、横軸に流量q(CC/wR)の対数を、縦
軸に配管の内径d (cm )をとシ、電解液の流量に
対してガスの気泡が電解液とともに配管内を下方に移動
しうる配管の内径dの範囲をハツチング部で示したもの
である。電解液としては燃料電池にふつうに用いられる
水酸化カリウムの水溶液などを主体にし、かつその濃度
も2〜10規定の範囲内で種々変えて実験を行なったが
電解液の種類や濃度に関係なく、図示の関係式が成立す
る。FIG. 5 is a graph showing the results of experiments conducted by the inventors, with the horizontal axis representing the logarithm of the flow rate q (CC/wR) and the vertical axis representing the inner diameter d (cm2) of the pipe. The hatched portion indicates the range of the inner diameter d of the pipe in which gas bubbles can move downward in the pipe together with the electrolyte in response to the flow rate of the electrolyte. The electrolyte was mainly an aqueous solution of potassium hydroxide, which is commonly used in fuel cells, and the concentration was varied within the range of 2 to 10 yen. However, regardless of the type or concentration of the electrolyte, , the illustrated relational expression holds true.
1↓お、実験条件としての温凌は、燃料電池とその、酢
液循環系の運転温度を含む前後の温度範囲が選ばれた。1↓As for the experimental conditions, a temperature range was selected that included the operating temperature of the fuel cell and its vinegar circulation system.
・〔発明の効果〕
一1゛以上に説明のとおシ、本発明によれば電池本体内
゛で電解液中に混入されて来るガスを分離するた1め、
あ分断1装置を電解液循環系内に設けるに際して、電池
本体から分離装置に至るまでの電解液の移送用配管の内
径を所定の関係式を満たすように選ぶことによって、配
管が下方に向けて電解液を流すように向けられる場合に
おいても、電解液中罠気泡の形で混入するガスを電解液
とともに確実に移送できるようになり、従来のように分
離装置とくに電解液溜めを↑It池本鉢本体方に配置し
なければならないという制約を全く取り除くことができ
る。・[Effects of the Invention] As explained above, according to the present invention, in order to separate the gas mixed into the electrolyte within the battery body,
When installing the A-separator 1 device in the electrolyte circulation system, by selecting the inner diameter of the electrolyte transfer piping from the battery body to the separation device so as to satisfy a predetermined relational expression, the piping can be directed downward. Even when the electrolyte is directed to flow, gases trapped in the electrolyte in the form of air bubbles can be reliably transferred together with the electrolyte, and the separator, especially the electrolyte reservoir, can be The restriction that it must be placed on the main body side can be completely removed.
これにより、電池本体内の電解液区画内の圧力を大気圧
よシも高める必要もなくなるので、ガス区画内のガス圧
力を下げることが可能になり、これしろ発電装置全体の
下部に配置して電解液の液量制御や濃度制御を最も合理
的にかつ余分な補機動′ニー
仙′Il′II#Jやむシのない理想的な設計を施すこ
とが本発This eliminates the need to increase the pressure in the electrolyte compartment within the battery body above atmospheric pressure, making it possible to lower the gas pressure in the gas compartment, which would otherwise be located at the bottom of the entire generator set. The goal of this project is to provide the most rational and ideal design for controlling the amount and concentration of the electrolyte solution, without any unnecessary auxiliary motors.
第1図は燃料電池の従来技術による電解液循環系の要部
を模式的に示す系統図、第2図以降はすべて本発明によ
る燃料電池の電解液循環系の実施例を示すもので、内第
2図は本発明による電解液循環系を用いた燃料電池発電
装置の全体系統図、第3図は電池本体内の単位電池の分
解斜視図、第4図は電池本体と電解液循環系の配管との
接続部を示す断面図、第5図はガスの気泡を電解液とと
もに自由に移動さゼうる範囲を示す実験結果をまとめた
グラフ図である。図において、
1:燃料電池の電池本体、4:電池本体内の電解液区画
、5:電池本体内のガス区画、6:電解液循環系、7
: ’;2j泡の分離t゛置と[7ての電解液溜め、1
0二電解液循壌系内の配管、d:配管の内径1、である
。
特詳出り人 川 1)裕 部
門
第3図
第5図Figure 1 is a system diagram schematically showing the main parts of the electrolyte circulation system of a fuel cell according to the prior art, and everything from Figure 2 onwards shows examples of the electrolyte circulation system of the fuel cell according to the present invention. Fig. 2 is an overall system diagram of a fuel cell power generation device using an electrolyte circulation system according to the present invention, Fig. 3 is an exploded perspective view of a unit cell in the battery main body, and Fig. 4 is a diagram of the battery main body and electrolyte circulation system. FIG. 5 is a cross-sectional view showing the connection with the piping, and is a graph summarizing the experimental results showing the range in which gas bubbles can freely move together with the electrolyte. In the figure, 1: fuel cell main body, 4: electrolyte compartment within the battery main body, 5: gas compartment within the battery main body, 6: electrolyte circulation system, 7
: ';2j Bubble separation position and [7 electrolyte reservoir, 1
02 Piping within the electrolyte circulation system, d: inner diameter of the piping 1. Special details person Kawa 1) Yu Division Figure 3 Figure 5
Claims (1)
本体外の電解液循環系を介して繰シ返して循環され、該
電解液循環系内に電池本体内で電解液中に混入ないし含
有されるガスを電解液から分分離装置に導きうるよう細
く形成されたことを特徴とする燃料電池の電解液循環系
。 2、特許請求の範囲第1項記載の電解液循環系にお□゛
いて、分離手段が自由液面を有する電解液溜めとして構
成され、該電解液溜め内において電池本体からの配管を
通じて電解液溜めに流入する電解液中のガスが前記、液
面上の空間に分離、排出されるようにしたことを特徴と
する燃料電池の電解液2活母ネ− 3)特許請求の範囲第2項記載の電解液循環系において
、電解液溜め内の電解液面上の空間が大気に連通々いし
開放され、電池本体が電解液にほぼ大気圧が掛かった状
態で運転されることを特徴とする燃料電池の電解液循環
系。 4)特許請求の範囲第1項記載の電解液循環系において
、配管の内径d (cm )が該配管内の電解液の流量
q(cc/i)に対して、式 %式%) を満たすように選ばれたことを特徴とする燃料電池の電
解液循環系。[Claims] 1) The electrolytic solution held in the liquid compartment of the fuel cell main body is repeatedly circulated through an electrolytic solution circulation system outside the battery main body, and the electrolytic solution inside the battery main body is An electrolyte circulation system for a fuel cell, characterized in that the electrolyte circulation system for a fuel cell is formed to be narrow so that gas mixed or contained in the electrolyte can be guided from the electrolyte to a separator. 2. In the electrolyte circulation system according to claim 1, the separation means is configured as an electrolyte reservoir having a free liquid level, and the electrolyte is supplied through piping from the battery body within the electrolyte reservoir. A fuel cell electrolytic solution 2-active motherboard characterized in that gas in the electrolytic solution flowing into the reservoir is separated and discharged into the space above the liquid surface. 3) Claim 2. The electrolyte circulation system described above is characterized in that the space above the electrolyte surface in the electrolyte reservoir is communicated with or opened to the atmosphere, and the battery body is operated with approximately atmospheric pressure applied to the electrolyte. Fuel cell electrolyte circulation system. 4) In the electrolyte circulation system according to claim 1, the inner diameter d (cm) of the piping satisfies the formula % with respect to the flow rate q (cc/i) of the electrolyte in the piping. An electrolyte circulation system for a fuel cell characterized by being selected as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230656A JPS60124367A (en) | 1983-12-08 | 1983-12-08 | Electrolyte circulation system of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230656A JPS60124367A (en) | 1983-12-08 | 1983-12-08 | Electrolyte circulation system of fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60124367A true JPS60124367A (en) | 1985-07-03 |
JPH02826B2 JPH02826B2 (en) | 1990-01-09 |
Family
ID=16911219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58230656A Granted JPS60124367A (en) | 1983-12-08 | 1983-12-08 | Electrolyte circulation system of fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60124367A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007102028A1 (en) * | 2006-03-07 | 2007-09-13 | Afc Energy Plc | Fuel cell assembly |
JP2008300215A (en) * | 2007-05-31 | 2008-12-11 | Toyota Motor Corp | Fuel cell |
US8241796B2 (en) | 2006-03-07 | 2012-08-14 | Afc Energy Plc | Electrodes of a fuel cell |
JP2014209489A (en) * | 2010-01-25 | 2014-11-06 | ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッドRamot At Tel−Avivuniversity Ltd | Energy storage and generation system |
-
1983
- 1983-12-08 JP JP58230656A patent/JPS60124367A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007102028A1 (en) * | 2006-03-07 | 2007-09-13 | Afc Energy Plc | Fuel cell assembly |
US8241796B2 (en) | 2006-03-07 | 2012-08-14 | Afc Energy Plc | Electrodes of a fuel cell |
JP2008300215A (en) * | 2007-05-31 | 2008-12-11 | Toyota Motor Corp | Fuel cell |
JP2014209489A (en) * | 2010-01-25 | 2014-11-06 | ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッドRamot At Tel−Avivuniversity Ltd | Energy storage and generation system |
US9627693B2 (en) | 2010-01-25 | 2017-04-18 | Ramot At Tel-Aviv University Ltd. | Energy storage and generation systems |
Also Published As
Publication number | Publication date |
---|---|
JPH02826B2 (en) | 1990-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5829565B2 (en) | Fuel cell system | |
JP5591074B2 (en) | Fuel cell system | |
JPH01163977A (en) | Metal/air cell | |
JP2001006711A (en) | Fuel cell system | |
EP1575110A1 (en) | Direct methanol fuel cell system | |
JP6100065B2 (en) | Ion exchanger for fuel cell system | |
JP2007242491A (en) | Fuel cell system and its operation control method | |
JP7412480B2 (en) | Water electrolysis device, water electrolysis method, water electrolysis system, water electrolysis/fuel cell device, water electrolysis/fuel cell operating method, and water electrolysis/fuel cell system | |
JP2005235586A (en) | Fuel cell system | |
JPS60124367A (en) | Electrolyte circulation system of fuel cell | |
CN100454633C (en) | Fuel cell with high operation stability | |
JP5437089B2 (en) | Fuel cell system | |
JP4944403B2 (en) | Cathode gas supply device for polymer electrolyte fuel cell | |
JP7110079B2 (en) | fuel cell system | |
KR100448692B1 (en) | Fuel feed system for fuel cell | |
JP2016051521A (en) | Fuel cell system | |
JP2000357527A (en) | Fuel cell system | |
JP2007227014A (en) | Fuel cell system | |
JP2006040846A (en) | Fuel cell system and its operating method | |
JP4221981B2 (en) | Fuel cell system | |
JP6378508B2 (en) | Fuel cell system | |
JP2020030972A (en) | Fuel cell system | |
JP2013241639A (en) | Water electrolysis system and operation method of the same | |
EP2803102B1 (en) | A liquid electrolyte fuel cell system | |
JP2016051612A (en) | Fuel cell system |