JPS60120289A - Neutron detector - Google Patents

Neutron detector

Info

Publication number
JPS60120289A
JPS60120289A JP58228452A JP22845283A JPS60120289A JP S60120289 A JPS60120289 A JP S60120289A JP 58228452 A JP58228452 A JP 58228452A JP 22845283 A JP22845283 A JP 22845283A JP S60120289 A JPS60120289 A JP S60120289A
Authority
JP
Japan
Prior art keywords
control rod
neutron
region
core
rod withdrawal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58228452A
Other languages
Japanese (ja)
Other versions
JPH0449676B2 (en
Inventor
大橋 正久
博之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58228452A priority Critical patent/JPS60120289A/en
Publication of JPS60120289A publication Critical patent/JPS60120289A/en
Publication of JPH0449676B2 publication Critical patent/JPH0449676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子炉の中性子検出装置、特に出力運転中に通
常的に制御棒を駆動させる原子炉の制御棒引抜停止装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a neutron detection device for a nuclear reactor, and particularly to a control rod withdrawal and shutdown device for a nuclear reactor that normally drives control rods during power operation.

〔発明の背景〕[Background of the invention]

従来の原子炉の制御棒引抜停止装置の例を第1図を用い
説明する。第1図の炉心中に配置された中性子検出器の
信号は最大値選択回路により、その最大値L P M 
(MAX)が選択される。次にこのL P M (MA
X)の値は制御棒引抜停止判定装置に伝達され、R8M
設定値V。と比較され、LPM(MAX)がVo より
大きい場合は制御棒引抜停止信号が発せられ制御棒駆動
装置の駆動を停止させていた。この従来の制御棒引抜停
止装置の構成は炉心が比較的小さい原子炉に対しては有
効であったが、炉心が大型になった場合、制御棒引抜時
に制御棒近傍の出力が上昇するが炉心全体の出力上昇は
遅れるため、制御棒近傍の中性子検出器が故障し接続を
はずされている場合、有効に制御棒引抜停止信号を発生
できない場合が考えられる。
An example of a conventional control rod withdrawal/stop device for a nuclear reactor will be described with reference to FIG. The signal of the neutron detector placed in the reactor core shown in Fig. 1 is selected by the maximum value selection circuit, L P M
(MAX) is selected. Next, this L P M (MA
The value of X) is transmitted to the control rod withdrawal stop determination device, and R8M
Set value V. When LPM (MAX) is larger than Vo, a control rod withdrawal stop signal is issued to stop the control rod drive device. The configuration of this conventional control rod withdrawal and stop device was effective for reactors with relatively small cores, but when the core becomes large, the power near the control rods increases when the control rods are withdrawn, but the Since the increase in overall output is delayed, if a neutron detector near the control rod has failed and is disconnected, it may not be possible to effectively generate a control rod withdrawal stop signal.

また従来の原子炉の制御棒引抜停止装置の他の例を第2
図で説明する。
In addition, other examples of conventional control rod withdrawal and stop devices for nuclear reactors are shown in the second section.
This will be explained with a diagram.

第2図の原子炉の炉心は1/4象限毎に4領域に区分し
、第1領域の中性子検出器信号は加算装置により加算さ
れPx(りが定められる。他の領域のPも同様にめられ
る。ここでtは時刻でありPiは第1領域の中性子検出
器加算結果を示す。
The core of the reactor shown in Figure 2 is divided into four regions in each quarter quadrant, and the neutron detector signals in the first region are added by an adding device to determine Px(ri). Here, t is time and Pi indicates the neutron detector addition result in the first region.

制御棒引抜停止装置R8Mの校正時刻をt。とすると時
刻toにおけるP+(to)はR8M校正装置に伝達さ
れる。次にR8M校正装置は原子炉の主蒸気流量等の各
種流量や各部温度測定結果からめられる炉心で発生して
いる炉心全出力測定値と炉心プロセス計算機によって計
算された炉心径方向出力分布をもとに第1領域から第4
領域までのそれぞれの領域の出力をめる。第1領域の例
で示すと、第1領域のめられた領域出力PRI (to
 )を用い、次式で校正係数α、をめる。
The calibration time of the control rod withdrawal stop device R8M is t. Then, P+(to) at time to is transmitted to the R8M calibration device. Next, the R8M calibration device uses the core total power measurement value generated in the reactor core, which is determined from various flow rates such as the main steam flow rate of the reactor, and the temperature measurement results of each part, and the core radial power distribution calculated by the core process computer. from the first area to the fourth area
Calculate the output of each area up to the area. Taking the example of the first area, the area output PRI (to
), calculate the calibration coefficient α using the following formula.

αs =PRt (to)/Pt (’a )ここでめ
られたαsは次回の校正まで第1領域R8Mの校正係数
として用いる。よって第1領域の中性子検出器を用いた
従来の制御棒引抜停止装置t (R8M装置)は次式で
表わされる。
αs = PRt (to)/Pt ('a) αs determined here is used as a calibration coefficient for the first region R8M until the next calibration. Therefore, the conventional control rod withdrawal stop device t (R8M device) using a neutron detector in the first region is expressed by the following equation.

第1領域のR8M信号Rt(りは Rs(す=Pt(t)Xα! 次に炉心内の4領域のR8M信号R−1(’)〜R4(
t)の最大値がR(’)m −tが最大値選択回路によ
り選択される。最終的にこのR(す、fi、8がRAM
設定値Roと比較されR(’) m a xO方がRo
よりも犬となった場合、制御棒引抜停止信号が発生した
。この従来のRAMは領域毎の領域出力検出装置RPM
と同一の信号であるため、R8MとRPMの信号を共有
化できるという利点があった。しかしこの従来のR8M
では領域毎の出力がほとんど違わない1/4回転対象炉
心とか、小型の炉心では問題がなかったが、炉心が大型
化した場合や1/4回転対象炉心ではなく1/4象限の
出力が異なる場合は領域毎にR8M信号発生までの出力
上昇幅が大幅に異なり、初期低出力領域で制御棒が引抜
かれる事象が生じた場合R8M信号発生が遅れるという
問題があった。特に炉心を多領域に区分し、各領域の出
力を自動で常時制御している場合、各領域の制御棒誤引
抜が同時に生じることが考えられ、第2図のよりなR8
Mでは領域間で)LSM発生までの出力上昇幅にバラツ
キが生じ家ましくない。
R8M signal Rt (R = Pt (t)
The maximum value of R(')m-t is selected by the maximum value selection circuit. Finally, this R (S, fi, 8 is RAM
Compared with the set value Ro, R(') m a xO is Ro
When the control rod became a dog, a control rod withdrawal stop signal was generated. This conventional RAM has a region output detection device RPM for each region.
Since they are the same signal, there is an advantage that the R8M and RPM signals can be shared. However, this conventional R8M
There was no problem with small cores such as 1/4 rotation target cores where the output in each region was almost the same, but when the core became larger or the output in the 1/4 quadrant instead of the 1/4 rotation target core differed. In this case, the range of increase in output until the R8M signal is generated differs greatly depending on the region, and there is a problem in that if a control rod is pulled out in the initial low output region, the generation of the R8M signal is delayed. In particular, when the reactor core is divided into multiple regions and the output of each region is automatically and constantly controlled, it is conceivable that control rods in each region may be accidentally withdrawn at the same time.
In M, there are variations in the output rise range until LSM occurs (between regions), which is undesirable.

以上、第1図、第2図に示した従来の制御棒を自動制御
で駆動させている原子炉のRAMで炉心が大型化し制御
棒引抜きが局所的に著しい上昇を伴う場合、あるいは炉
心を大型化し各領域の出力が通常状態で犬きぐ異なる場
合にはR8M信号に遅れあるいはバラツキが生じ望まし
くなかった。
As mentioned above, in the RAM of a nuclear reactor in which conventional control rods are driven under automatic control as shown in Figures 1 and 2, when the core becomes large and control rod withdrawal is accompanied by a significant rise locally, or when the reactor is enlarged. If the output of each region is significantly different under normal conditions, the R8M signal may be delayed or varied, which is undesirable.

よって炉心を大型化し複数の領域に分は出力を制御棒に
より自動制御する必要のある原子炉で制御棒異常駆動時
に直ちに制御棒引抜を停止させることができるR8Mの
発明が望まれていた。
Therefore, in a nuclear reactor where the reactor core is enlarged and the output needs to be automatically controlled by control rods in multiple regions, there has been a desire for an R8M invention that can immediately stop withdrawal of control rods in the event of abnormal drive of the control rods.

〔発明の実施例1〕 以下第3図を用い本発明の実施例について示す。[Embodiment 1 of the invention] An embodiment of the present invention will be described below with reference to FIG.

第3図は原子炉内の燃料集合体が600体以上の大型の
圧力管型原子炉での制御棒引抜停止装置を示す図である
。圧力管型原子炉ではキセノン振動を制御するために炉
心を複数領域に区分してそれぞれの領域の出力を制御す
る必要がある。また制御棒の誤引抜に対しても炉心が大
型化した場合は複数の領域に区分し、それぞれの領域出
力を監視することにより制御棒引抜を停止させる必要が
ある。
FIG. 3 is a diagram showing a control rod withdrawal and stop device for a large-scale pressure tube nuclear reactor having 600 or more fuel assemblies in the reactor. In pressure tube reactors, in order to control xenon oscillations, it is necessary to divide the core into multiple regions and control the output of each region. In addition, in order to prevent the control rods from being withdrawn accidentally, if the core becomes large, it is necessary to divide the core into multiple regions and stop the withdrawal of control rods by monitoring the output of each region.

第3図では径方向1/4象限毎の4領域と炉心中央の領
域の計5領域で中性子を検出する制御棒引抜停止装置の
構成としている。第3図の領域1の中性子検出器の信号
は加算装置により加算され、P1′(りがめられる。こ
こでPL′は加算装置からの信号であり、tは時刻を示
す。このP1′(りはR8M校正装置に送られる。几S
Mの校正は炉心全出力計測装置TPMの値TPM (t
olを用いてR8M校正係数αをめることによ沙実施す
る。
In FIG. 3, the control rod withdrawal and stop device is configured to detect neutrons in a total of five regions: four regions in each 1/4 quadrant in the radial direction and a region in the center of the reactor core. The signals of the neutron detectors in region 1 of FIG. is sent to the R8M calibration device.
Calibration of M is performed using the value TPM (t
This is carried out by calculating the R8M calibration coefficient α using OL.

校正係数αは次式でめる。Calibration coefficient α can be calculated using the following formula.

α+=TPM(fol/Pt’ (to)ここで α:R8M校正係数 1:領域番号 T PM:炉心全出力計測装置の信号 to二校正時刻 Pt:領域別中性子検出器加算信号 次に各領域の校正係数αIは各領域毎のR8M計算装置
に送られ各領域毎のR8M信号をめる。
α+=TPM(fol/Pt' (to) where α: R8M calibration coefficient 1: Region number T PM: Signal to 2 of core total power measuring device Calibration time Pt: Neutron detector addition signal by region Next, each region's The calibration coefficient αI is sent to the R8M calculation device for each region, and the R8M signal for each region is calculated.

各領域毎のRAM値であるR1 (りは次式でめる。The RAM value for each area, R1, is determined by the following formula.

R’(t)=P t’(す×α1 この方式は具体的には炉心全出力が8(lの場合RAM
校正を実施したとすると領域間に出力のずれがある場合
でもすべてのR8M値を80とするものである。すなわ
ちR8Mの制御棒引抜停止信号発生設定値を105とす
るとすべての領域に対し公平な出力上昇の制限をもうけ
ることになり、定格100に対し、各領域はぼ5チの出
力上昇で制御棒引抜停止信号が発生することになる。従
来の領域出力そのものを利用した場合は領域間で4チ程
度ずれがあり定格出力時102の領域では3チの出力上
昇で、98の領域では7チの出力上昇が出た間壜を本実
施例では解消できたことになる。
R'(t)=P t'(S×α1) Specifically, in this method, if the total core power is 8 (l), the RAM
If calibration is performed, all R8M values will be set to 80 even if there is a difference in output between regions. In other words, if the control rod withdrawal stop signal generation setting value for R8M is set to 105, a fair output increase limit will be set for all regions, and for a rating of 100, each region will not be able to withdraw the control rod with an output increase of about 5 inches. A stop signal will be generated. When using the conventional area output itself, there is a difference of about 4 inches between the areas, and in the rated output area, the output increases by 3 inches in the 102 area, and in the 98 area, the output increases by 7 inches. In this example, the issue has been resolved.

第3図の実施例では各領域別のR8M値は最大値選択回
路によりR(す□8が選択され制御棒引抜信号設定値R
oよりR(す□工が犬の場合は制御棒引抜停止信号を発
生させる構成としている。
In the embodiment shown in FIG. 3, the R8M value for each area is selected by the maximum value selection circuit, and the control rod withdrawal signal setting value R
o to R (If the worker is a dog, the control rod withdrawal stop signal is generated.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1、原子炉の中性子検出装置において、原子炉の炉心を
複数の領域に区分し、任意の校正時刻における各領域の
平均出力と炉心出力の比を校正時刻以降の各領域平均出
力に乗算した信号を用い、炉心全領域共通の制御棒引抜
停止の設定値と比較、判定することにより、設定値を超
過した場合は制御棒引抜停止信号を発生させることを特
徴とする中性子検出装置。 2、特許請求の範囲第1項記載の中性子検出装置におい
て、領域の境界に制御棒が配置されている場合、複数の
区分領域に重複した、領域境界制御棒周囲の領域の平均
出力と炉心出力の任意の校正時刻における比を、境界制
御棒の周囲領域の平均出力に乗算した信号を用い、炉心
全領域共通の制御棒引抜停止の設定値と比較、判定する
ことにより、設定値を超過した場合は制御棒引抜停止信
号を発生させることを特徴とする中性子検出装置。 3、特許請求の範囲第1項及び第2項記載の中性子検出
装置において中性子装置の信号は任意の校正時刻の一炉
心の熱バランスからめられた炉心全出力と、その時刻に
おける領域中の中性子検出器の値の平均値との比を校正
時刻以降の領域中の中性子検出器の平均値に乗算するこ
とによりめ、その制御棒引抜停止信号が炉心全領域共通
の制御棒引抜停止の設定値を越えた場合、制御棒引抜停
止信号を発生させることを特徴とする中性子検出装置。
[Claims] 1. In a neutron detection device for a nuclear reactor, the reactor core is divided into a plurality of regions, and the ratio of the average power of each region to the core power at a given calibration time is calculated for each region after the calibration time. A neutron system that uses a signal multiplied by the average output and compares and judges it with a control rod withdrawal stop setting value common to all areas of the reactor core, and generates a control rod withdrawal stop signal if the set value is exceeded. Detection device. 2. In the neutron detection device according to claim 1, when control rods are arranged at the boundaries of regions, the average power and core power of the region around the region boundary control rods overlapped in a plurality of divided regions. By using a signal obtained by multiplying the ratio at an arbitrary calibration time by the average output of the area surrounding the boundary control rod, and comparing it with the control rod withdrawal stop setting value common to all areas of the reactor core, it is possible to determine whether the set value has been exceeded. A neutron detection device characterized in that it generates a control rod withdrawal stop signal. 3. In the neutron detection device according to claims 1 and 2, the signal of the neutron device is based on the total core power determined from the heat balance of one core at any calibration time and the neutron detection in the area at that time. By multiplying the average value of the neutron detector values in the region after the calibration time by the ratio of the average value of the neutron detector values, the control rod withdrawal stop signal is determined to be the control rod withdrawal stop setting value common to all areas of the reactor core. A neutron detection device characterized by generating a control rod withdrawal stop signal when the neutron exceeds the limit.
JP58228452A 1983-12-05 1983-12-05 Neutron detector Granted JPS60120289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228452A JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228452A JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Publications (2)

Publication Number Publication Date
JPS60120289A true JPS60120289A (en) 1985-06-27
JPH0449676B2 JPH0449676B2 (en) 1992-08-12

Family

ID=16876711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228452A Granted JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Country Status (1)

Country Link
JP (1) JPS60120289A (en)

Also Published As

Publication number Publication date
JPH0449676B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
US3998693A (en) Thermal margin control
JPH04335197A (en) Apparatus and method for monitoring output vibration range for nuclear reactor
EP0100640B1 (en) Systems for monitoring operating conditions within nuclear reactors
KR940003801B1 (en) Controlling a nuclear reactor with dropped control rods
JP2005241657A (en) Method and device for monitoring state of reactor
JPS60120289A (en) Neutron detector
JPH05256978A (en) Nuclear reactor protection device
JP7581120B2 (en) Reactor protection device and reactor protection method for fast reactor
JPH01301196A (en) Nuclear reactor safety protection device
JP3288821B2 (en) Digital control rod pull-out monitoring system
JPH0198995A (en) Method and device for monitoring drawing-out of control rod
JP6856577B2 (en) Reactor protection device for fast reactors and reactor protection method
JP3621589B2 (en) Boiling water nuclear power plant operating area restriction system
JPS59180480A (en) Fault detector for neutron detector
JPH04315995A (en) Nuclear reactor output monitoring device
JPH07253495A (en) Digital rod block monitor
JPH053558B2 (en)
JPH022982A (en) Nuclear reactor protecting method
JPS60152989A (en) Nuclear instrumentation device for nuclear reactor
JPS62479B2 (en)
JPH112690A (en) Neutron bundle measuring device in nuclear reactor
JPS59107294A (en) Reactor monitoring device
Bevilacqua et al. Application of Digital Computer Systems in Nuclear Power Plants
JPS6252497A (en) Method and device for measuring neutron in nuclear reactor
JPS6029697A (en) Method of monitoring reactor