JPS5959239A - Granulation method and apparatus - Google Patents

Granulation method and apparatus

Info

Publication number
JPS5959239A
JPS5959239A JP16899382A JP16899382A JPS5959239A JP S5959239 A JPS5959239 A JP S5959239A JP 16899382 A JP16899382 A JP 16899382A JP 16899382 A JP16899382 A JP 16899382A JP S5959239 A JPS5959239 A JP S5959239A
Authority
JP
Japan
Prior art keywords
granulation
powder
chamber
laminar flow
granulation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16899382A
Other languages
Japanese (ja)
Other versions
JPS6055176B2 (en
Inventor
Shinji Moriya
守屋 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP16899382A priority Critical patent/JPS6055176B2/en
Publication of JPS5959239A publication Critical patent/JPS5959239A/en
Publication of JPS6055176B2 publication Critical patent/JPS6055176B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To efficiently granulate a heavy spherical granule high in fine and minute particle density within a short time, by a method wherein a powder thrown into a granulation chamber is revolved and fluidized in a twisted rope form and a liquid for adhering and coagulating the powder is supplied to the revolved and fluidized powder. CONSTITUTION:A powder is thrown into an upright cylindrical granulation chamber 1 and a revolving laminar stream revolving and fluidizing a ring shaped or a rope twisting configuration is formed by the rotary disc 7 provided to the inner bottom part thereof while a liquid is supplied from above by a sprayer 20 and the powder is adhered to the formed liquid droplets to be coagulated. Adhered and coagulated particles are grown while rotated and revolved in the ring shaped revolving laminar stream while the rotary speed of a beating blade 12 is adjusted so as to collide excessively grown particles in the laminar stream with the heating blade 12 rotated at the center of the revolving laminar stream at a hight speed to limit the max. particle size of the powder in the revolving laminar stream. By this method, a heavy spherical granule high in fine and minute particle density can be prepared efficiently within a short time and, by adjusting the rotary speed of each rotary member, a particle size, density or the like can be arbitrarily adjusted.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、造粒室内に投入した粉体を縄ない状に旋回
流動させ、これに粉体を付着凝集させるための液体を供
給して所要径の顆粒ないし粒体を得る造粒方法とその装
置に関し、また2種以上の粉体を投入してこれを短時間
に均一に混合することが可能な装置に関する。 従来の造粒方法として、例えば特開昭55−49135
号公報に示される如く、気流中で流動させている原料粉
体に結合剤溶液を噴露して、その液滴に粉粒体を付着凝
集させて顆粒とする方法が知られているが、この方法で
は、造粒時間に比例して粒子径が大きく戊長し、凝集顆
粒では顆粒表面の凹凸が著るしくて流り1性に劣り、粒
子間の空隙が大きくて軽質のものしか得られず、核粒子
に結合剤を被覆させて顆粒を得るときけ、凝集顆粒に比
較して表面の平滑度がやや良好であり、粒子間の空防も
小さくなってくるが、顆粒同志が付着して2次的な凝集
を起こすのを避けられないという欠点がある。 そこで結合剤の散布を数次に分けて間欠的に行い、結合
剤の散布を中断している間に流動層を機械的に攪拌し乾
燥する方法が提案されている。しかしこの方法では、比
較的13I質(空隙率が小さい)の粒径の小さい!1′
This invention relates to a granulation method for obtaining granules or granules of a desired diameter by swirling and flowing powder introduced into a granulation chamber and supplying a liquid for adhering and agglomerating the powder. The present invention relates to an apparatus, and also relates to an apparatus capable of uniformly mixing two or more types of powder in a short period of time. As a conventional granulation method, for example, Japanese Patent Application Laid-Open No. 55-49135
As shown in the above publication, a method is known in which a binder solution is sprayed onto raw material powder that is being fluidized in an air stream, and the powder particles are attached to the droplets and agglomerated to form granules. With this method, the particle size increases in proportion to the granulation time, and in the case of agglomerated granules, the surface of the granules has significant irregularities, resulting in poor flow properties, and the voids between particles are large, resulting in only light particles. However, when granules are obtained by coating the core particles with a binder, the surface smoothness is slightly better than that of agglomerated granules, and the air barriers between particles are smaller, but the granules adhere to each other. The disadvantage is that secondary aggregation cannot be avoided. Therefore, a method has been proposed in which the binder is dispersed intermittently in several steps, and the fluidized bed is mechanically stirred and dried while the binder dispersion is interrupted. However, with this method, the particles of relatively 13I quality (low porosity) are small! 1′
!

【粒が得られるとしても、結合剤溶液の供給工程と乾
燥工程とを数次に分けて交互に行うことから、その制御
方法が面倒であると共に、制御装置が複雑かっシ゛h価
になることを避けられない。 この発明は、例えば細粒(直径10〜0.17−、; 
)、徽細粒(直径05〜O1%)の密度の高い重質の球
影顆粒を、簡腰な構造と操作で著るしく高い歩留りをも
って造粒することを目的とし、1台の装置で、粉体の混
合、造粒、乾・嵐、および過大粒の解砕を一貫して行う
ことを可能となすものである。 実施例について説明すれば、第1図、第2図および第3
図において、直立円筒形をなす造粒室1上に、ダンパ−
2付材料投入口3を有する蓋4を設け、底部に蓋5で開
閉される排出口6を設ける。 造粒室1の内底部に、その軸線のまわシで回転する第1
回転部材としての円板7をできるだけ近接して配置し、
軸8、プーリ9を介して図示しない駆動手段により任意
の速度、例えば200〜2000 R,P、Mの間でそ
の回転速度を可変にして駆動する構成とする。回転円板
7は、その表面に凹凸10等を設け、造粒室1内で後述
の如く流動する旋回層流に対する摩擦面を形成させであ
る。 造粒室1の中央部には、さらにその軸線のまわりで回転
する第2回転部材としてのロータ11を設け、その外周
に水平方向に延びる多数の解砕羽根12を突設する。ロ
ータ11は軸受13等を介してフレーム14に支承した
筒体により形成し、その内径に、回転円板7の軸8を軸
受15等を介して同心に支持し、筒体の一端に固定した
プーリ16等を介して図示しない駆動手段により任意の
速度、例えば1000〜4000 R,P、Mの間で変
辻して駆動しうるようにする。 フレーム14の前記軸受13を支承する篩部14aの外
周には、さらに軸受17を介してプーリ18を支承し、
造粒室1の円筒形内壁面に沿って垂直方向に延び、該内
壁面に近接ないし摺接して該内壁面に付着する粉粒体を
かき落とすスクレーツク−]9を回転駆動するようにす
るO 蓋4には、水又は粉体を付着凝集させる液体を供給する
供給手段としてのスプレー20を設け、図示し力い加液
装置により適宜の成分とされ、加用された前記液を、後
述のリング状旋回層流に対しその上方から適量供給する
。 解砕羽根12は、第3図にその詳細を示す如く、ロータ
】1の回転においてその下面に斜めに粒体が衝突するよ
うに粒体解砕面12&を水平向に対し適宜の角度だけ傾
けである。 第4図、第5図は、第1回転部月として前記円板7に代
えて1a径方向に延びる旋回821としたものであって
、旋回翼21はその断面形状を第6図に示す如く断面が
ほぼ梯形をなす構成とし1、その回転(A8矢符)に対
し、旋回層流中の粉粒体が矢符Bの如く旋回翼21を粱
り越える構成となし、さらにその翼端部には図示しない
が上方に突出しその回転により旋回層流中の粉粒体を、
造粒室lの中心に向って押動する傾きを与えた突起を設
けてもよい。さらに旋口翼21は、第7図に21aで示
すように、断面をスクレーバー状に形成してもよ<、翼
の先端に至るに従って旋回層流中の粉粒体を上方に押し
上げるような形の大きなひねりを与えた形状としてもよ
い。 第8図はさらに他の実施例を示す図であって、造粒室1
内に乾燥用ガスの導入を可能としたものであって、実施
例の場合、造粒室1の底壁中心にガス導入管22を挿入
し、そのジヨイント部23にガス供給管(図示せず)を
接続する。ガス導入管22ば、円板7(−またけ旋回翼
)中心のボス部24の中心穴25a内にその先端を臨ま
せ、ボス部24に円周等配に設けだ横孔251)を介し
て0矢符で示すように造粒室1内にガスを供給する。 ガスは一般に加熱空気を使用するが、酸化しやすい物質
を造粒する場合には、適当な不活性ガスを使用する。2
6は円板7(または旋回翼)の中心ボス部24の外周に
放射方向に設けた羽根であって、その回転により生ずる
風圧で粉粒体が造粒室1の中央に集るのを防止する6、
27は、乾燥用ガスの導入により増大する造粒室1の内
用を逃がす排気口であって、図示しない集じん装置を介
し、前記内用を大気中に放出する。また集じんを都合よ
く行わせるために、造粒室J内のガスを吸引し大気に放
出する吸引ブロワ−(図示せず)を設ける。 以上の各実施例において、第】、第2回転部材、および
スクレーバーの各駆動機構、および各駆動部の配置は、
前記実施例に限定されるものではなく、他の適宜の駆動
機構、配置とすることができる。寸だ各回転部材および
スクレーバーの回転方向は、必ずしも同一方向でなくて
もよく、例えば第1.第2回転部材を互に逆方向に回転
させて相対回転速度を上げる構成とすることができる。 なお第1回転部材7,21のボス24部に設けた羽根2
6は、その回転により粉体を遠心方向に排除して、筒状
をなすロータ11内に粉体が侵入するのを防止し、また
乾燥用ガスを旋回層流中に強制的に送り込むのに役立つ
。 この発明の装置は以上のような構成であって、該装置を
用いた造粒方法を以下に説明する。 所定刊の粉体、または2種以上の粉体、或は粉末バイン
ダ等を造粒室1に投入し、第1回転部材としての円板7
、および第2回転部材としてのロータ11を図中A1矢
符、A、矢符に示す如く高速で回転させ、またスクレー
バー19をA8矢符の如く回転させる。 これにより造粒室1内には、円板70回転力と遠心力、
解砕羽根12の回転による遠心気流の作用によって、第
1図に矢符X、第2図に矢符Yで示す如く、造粒室1の
内壁如沿って手直方向に上昇してから求心方向に向かい
つつ流動するリング状をなして絆ない状述動を行う粉体
の旋回層流2が形成される。すなわちこの縄ない状旋回
層流Z内で投入された粉体が急速に、かつ均一に攪拌混
合される。またスクレーバー19が前記攪拌を助ける。 このことは、この発明の装置が、高速攪拌混合装置とし
ての機能をも具備するものであるととを示している。 円板7およびロータ11の高速回転により前記混合が行
われると、次にスプレー20によシ粉体を付着凝集させ
るだめの所要量の液体を旋回層流Zの上方から供給する
。粉体自体が加湿により付着凝集する性状のもの、或は
粉体内にベントナイト等の適宜のバインダーを混合した
もの等では、前記液体は水でよく、粉体自体に付着凝集
性がないか、小さい場合には例えばポリビニールアルコ
ール溶液等、目的に適合した結合剤溶液を供給する。ま
だ造粒物が食品、医曇品、その他のものであるような場
合、適宜の添加剤溶液を同時に供給してもよい。この液
体供給方法は、スプレーを用いた噴霧式の他、シャワー
、バケツ等を用いて一気に所要量の液を供給するように
してもよい。要は、造粒室1内の粉体の量、物性、湿潤
度等に適応した量の給液が行われればよい。 かくて前記旋回層流中に、液滴に付着凝集して顆粒の芯
となる微細粒子、および一部粒径の太きい粒子が形成さ
れる。旋回層流2は、前記の如くリング状をなしX方向
、Y方向に縄ない状に高速に旋回流動させられているた
め、発生した前記の芯は、旋回層流内でUにこすり合い
、強いM拙作用をうけながら球形にまるめられて成長し
、大径のもの程遠心力で層の表面を流動する。従って大
径に成長した粒子は、層の表面に出ることにより高速回
転するロータ11の解砕羽根12に衝突して解砕され、
造粒室lの底面側に送られる。そしてさらに円板7の摩
擦面により球形にまるめられて旋回層流内に看き込まれ
て行く。一方、微細な粒子は、それ自体の遠心力が小さ
いた−めに、旋回層流2の純ない運動の芯に入り込む傾
向があり、該芯部で小さい粒子同志が結合しそしてまる
められ、所要の粒度に成長する。 に成長した顆粒の強い衝撃力により解砕して希望する粒
径に制限する機能を有するものであり、回転速度を速く
する程、前記衝撃力が大きくなって粒径を小さくする傾
向があり、従ってその回転速度を調節することにより希
望の粒度に揃えることが可能となる。 一方、旋回層流内の粒子は、円板7の回転速度に対応し
てその旋回流動速度が変化し、旋回層流内における粒子
の自転、公転作用により、供給されだ液滴に凝集しなが
ら成長し、円板7の回転速度を増すことにより、前記自
転、公転における粒子同志のこすV合い作用が強くなっ
て重質で球形の顆粒が得られる。 このように、円板70回転は、球形顆粒の形成と、その
見かけ比重(密度)に影響し、解砕羽根120回転は、
粒子の粒径を制限す/、役割を持ち、スクレーパー19
の回転は、湿潤した粒体が造粒室1の内H4面に付着す
るのを防止すると共に、造わ”f室1の中心部に向って
粒体の移動を促進する作用を持つものであるから、これ
らの却合作用によ抄、n粒時間の経過と共に粒径が一様
に揃い、これらの回転速度の調整によって希望する粒度
分布、見かけ比重の粒体を高速度に、かつ高収率をもっ
て製造することができる。 この発明は、数種の粉体の混合、乾粉に加液して行う造
粒、乾粉に脱水プレスケーキを投入して行う造粒等、任
意の用途に適応させることができ、液体供給手段として
、スプレーに代えてシャワ一方式を用いれば、造粒時間
の短縮も可能となる。 一方、第4図、第5図に示す如く、第1回転部材として
、円板7に代えて旋回fi21を使用すると、造粒室1
の内底面を遠心方向に移動する粒子に対する旋回翼21
によるW−操作用は小さくなるが、該晃21の断面を第
6図のようにしておくと、旋回X※21のA1矢符方向
の回転に対して、旋回層流中の粒子がB矢符に示すよう
に旋回翼21を乗り越え、このとき旋回層流Zを上方に
躍らせる結果となって、旋回層流2内における攪拌、混
合作用を促進する。旋回翼は、第7図に21&で示すよ
うな断面としてもよい。 さらに第8図に示すように、造粒室l内に乾燥用ガスの
導入を可能としたものにおいては、造粒−乾燥を一貫し
て実施することが可能となり、図中矢符Oで示すように
旋回層流中にガスを吹き込むことにより、該層の嵩を膨
張させて、湿潤した粉体の付着を防止することができる
。 乾燥工程を実施する際は、顆粒の乾燥の進行と逆にその
成長が止り、解砕羽根により粉砕される結果と々るから
、このときはローターの回転を停止[、第1回転部材の
回転を減速して旋回層流の流動速度を減速する。 造粒、乾燥が完了すると、第1回転部材の回転を減速し
、蓋5を開いて造粒室1内の顆粒を排出する。 この発明は以上のように、細粒、微細粒の密度の高い重
質の球形顆粒を、きわめて効率よく短時間に製造するこ
とができ、各回転部材の回転速度を調整することによっ
て、粒径、密度等を任意に調節することも可能であり、
操作に何ら面倒な手数を娶せず、複雑な制御装置を設け
ることを要しない造粒方法および装置を提供することが
できる0
[Even if grains can be obtained, the process of supplying the binder solution and the drying process are divided into several steps and performed alternately, so the control method is troublesome and the control device is complicated and expensive. cannot be avoided. This invention can be applied, for example, to fine particles (diameter 10 to 0.17 mm;
), the purpose is to granulate dense and heavy spherical granules (diameter 05 to 01%) with a simple structure and operation at a significantly high yield, and with one device. This makes it possible to consistently perform powder mixing, granulation, drying/storming, and crushing of oversized granules. To explain the embodiment, FIG. 1, FIG. 2 and FIG.
In the figure, a damper is placed above the granulation chamber 1, which has an upright cylindrical shape.
A lid 4 having a material input port 3 with two attachments is provided, and a discharge port 6 that is opened and closed by the lid 5 is provided at the bottom. At the inner bottom of the granulation chamber 1, there is a first plate that rotates around its axis.
Discs 7 as rotating members are arranged as close as possible,
It is configured to be driven by a drive means (not shown) via a shaft 8 and a pulley 9 at an arbitrary speed, for example, between 200 and 2000 R, P, and M, with the rotational speed being varied. The rotating disk 7 is provided with irregularities 10 on its surface to form a friction surface against the swirling laminar flow flowing in the granulation chamber 1 as described later. A rotor 11 as a second rotating member that rotates about its axis is further provided in the center of the granulation chamber 1, and a large number of crushing blades 12 extending horizontally are provided protruding from the outer periphery of the rotor 11. The rotor 11 is formed of a cylindrical body supported on a frame 14 via a bearing 13 etc., and the shaft 8 of the rotating disk 7 is supported concentrically on the inner diameter of the rotor 11 via a bearing 15 etc., and is fixed to one end of the cylindrical body. It can be driven at arbitrary speeds, for example, between 1000 and 4000 R, P, and M, by means of a drive means (not shown) via a pulley 16 and the like. A pulley 18 is further supported via a bearing 17 on the outer periphery of the sieve portion 14a that supports the bearing 13 of the frame 14,
A scraper 9 extending vertically along the cylindrical inner wall surface of the granulation chamber 1 and scraping off powder and granules adhering to the inner wall surface by coming into close or sliding contact with the inner wall surface is rotatably driven. The lid 4 is provided with a spray 20 as a supply means for supplying a liquid that causes water or powder to adhere and coagulate. An appropriate amount is supplied to the ring-shaped swirling laminar flow from above. As shown in detail in FIG. 3, the crushing blade 12 has a granule crushing surface 12& tilted at an appropriate angle with respect to the horizontal direction so that the granules obliquely collide with the lower surface of the rotor 1 during rotation. It is. 4 and 5, the first rotary part is replaced by a swirl 821 extending in the radial direction 1a in place of the disk 7, and the swirl wing 21 has a cross-sectional shape as shown in FIG. It has a configuration in which the cross section is almost trapezoidal 1, and when it rotates (arrow A8), the powder in the swirling laminar flow passes over the swirling blade 21 as shown by arrow B, and furthermore, the tip of the blade is Although not shown in the figure, it protrudes upward and its rotation causes the powder and granules in the swirling laminar flow to
A protrusion inclined toward the center of the granulation chamber 1 may be provided. Further, the swirler blade 21 may have a scraper-like cross section, as shown by 21a in FIG. It is also possible to have a shape with a large twist. FIG. 8 is a diagram showing still another embodiment, in which the granulation chamber 1
In the embodiment, a gas introduction pipe 22 is inserted into the center of the bottom wall of the granulation chamber 1, and a gas supply pipe (not shown) is inserted into the joint part 23. ) to connect. The gas introduction pipe 22 has its tip facing into the center hole 25a of the boss part 24 at the center of the disk 7 (straddled swirler), and is inserted through horizontal holes 251) provided in the boss part 24 at equal intervals on the circumference. Gas is supplied into the granulation chamber 1 as shown by the zero arrow. Generally, heated air is used as the gas, but when granulating a substance that is easily oxidized, an appropriate inert gas is used. 2
6 is a vane provided in the radial direction on the outer periphery of the central boss portion 24 of the disc 7 (or swirler), which prevents the powder and granules from gathering in the center of the granulation chamber 1 due to the wind pressure generated by its rotation. Do 6,
Reference numeral 27 denotes an exhaust port for releasing the internal waste of the granulation chamber 1 which increases due to the introduction of the drying gas, and discharges the internal waste into the atmosphere via a dust collector (not shown). Further, in order to conveniently perform dust collection, a suction blower (not shown) is provided for sucking gas in the granulation chamber J and releasing it to the atmosphere. In each of the above embodiments, the drive mechanism of the first rotary member, the second rotating member, and the scraper, and the arrangement of each drive unit are as follows:
The present invention is not limited to the above embodiments, and other suitable drive mechanisms and arrangements may be used. The rotational directions of each rotating member and the scraper do not necessarily have to be the same direction. The second rotating members may be configured to rotate in opposite directions to increase the relative rotational speed. Note that the blade 2 provided on the boss 24 portion of the first rotating member 7, 21
6 is used to expel powder in the centrifugal direction by its rotation, to prevent the powder from entering into the cylindrical rotor 11, and to forcibly send drying gas into the swirling laminar flow. Helpful. The apparatus of the present invention has the above configuration, and a granulation method using the apparatus will be explained below. Powder from a predetermined publication, two or more types of powder, a powder binder, etc. are introduced into the granulation chamber 1, and a disk 7 as a first rotating member is introduced.
, and the rotor 11 as a second rotating member are rotated at high speed as shown by arrows A1 and A in the figure, and the scraper 19 is rotated as shown by arrow A8. As a result, in the granulation chamber 1, the rotational force of the disk 70, the centrifugal force,
Due to the action of centrifugal airflow caused by the rotation of the crushing blades 12, it rises in the vertical direction along the inner wall of the granulation chamber 1 and then centripetally, as shown by the arrow X in Fig. 1 and the arrow Y in Fig. 2. A swirling laminar flow 2 of the powder is formed, which flows in a ring shape and moves in an unbounded manner. That is, the powder introduced into this rope-shaped swirling laminar flow Z is rapidly and uniformly stirred and mixed. A scraper 19 also assists in the agitation. This indicates that the device of the present invention also has the function of a high-speed stirring and mixing device. When the mixing is performed by high-speed rotation of the disk 7 and rotor 11, a required amount of liquid for adhering and coagulating the powder is then supplied to the spray 20 from above the swirling laminar flow Z. If the powder itself has a property of adhering and coagulating when humidified, or if an appropriate binder such as bentonite is mixed in the powder, the liquid may be water, and the powder itself has no adhesion or cohesive property or has a small adhesion property. If necessary, a suitable binder solution is supplied, for example a polyvinyl alcohol solution. If the granulated product is a food product, medical product, or other product, an appropriate additive solution may be supplied at the same time. This liquid supply method may be an atomization method using a spray, or a shower, a bucket, etc. may be used to supply the required amount of liquid at once. In short, it is sufficient to supply liquid in an amount that is appropriate to the amount, physical properties, wetness, etc. of the powder in the granulation chamber 1. In this way, in the swirling laminar flow, fine particles that adhere to and aggregate on the droplets and become the core of the granules, and some particles with larger particle sizes are formed. As mentioned above, the swirling laminar flow 2 has a ring shape and is swirled at high speed in a loop-like manner in the X and Y directions, so the generated core rubs against the U in the swirling laminar flow, It grows into a spherical shape under the strong influence of M, and the larger the diameter, the more it flows on the surface of the layer due to centrifugal force. Therefore, the particles that have grown to a large diameter come out to the surface of the layer, collide with the crushing blades 12 of the rotor 11 rotating at high speed, and are crushed.
It is sent to the bottom side of the granulation chamber l. Then, it is further rounded into a spherical shape by the friction surface of the disk 7 and is inserted into the swirling laminar flow. On the other hand, since fine particles themselves have a small centrifugal force, they tend to enter the core of the pure motion of the swirling laminar flow 2, where the small particles are combined and rounded to meet the required requirements. granularity. It has the function of crushing the grown granules by the strong impact force and limiting the particle size to the desired size, and as the rotation speed increases, the impact force increases and the particle size tends to become smaller. Therefore, by adjusting the rotation speed, it is possible to obtain the desired particle size. On the other hand, the particles in the swirling laminar flow change their swirling flow velocity in accordance with the rotational speed of the disk 7, and due to the rotation and revolution of the particles in the swirling laminar flow, they are aggregated into droplets that are supplied. By growing and increasing the rotational speed of the disk 7, the rubbing effect between the particles during the rotation and revolution becomes stronger, and heavy spherical granules are obtained. In this way, 70 revolutions of the disc affects the formation of spherical granules and their apparent specific gravity (density), and 120 revolutions of the crushing blade affects the formation of spherical granules and their apparent specific gravity (density).
Scraper 19 has the role of limiting the particle size of particles.
The rotation has the effect of preventing the wet granules from adhering to the inner H4 surface of the granulation chamber 1 and promoting the movement of the granules toward the center of the granulation chamber 1. Due to these agglomeration effects, the grain size becomes uniform over time during papermaking, and by adjusting these rotational speeds, grains with the desired grain size distribution and apparent specific gravity can be produced at a high speed and at a high speed. This invention can be produced with a high yield.This invention can be applied to any application, such as mixing several types of powder, granulation by adding liquid to dry powder, and granulation by adding dehydrated press cake to dry powder. If a shower type is used instead of a spray as a liquid supply means, the granulation time can be shortened.On the other hand, as shown in FIGS. 4 and 5, as the first rotating member, If the rotating fi21 is used instead of the disk 7, the granulation chamber 1
A swirler blade 21 for particles moving in the centrifugal direction on the inner bottom surface of the
Although the W-operation is smaller, if the cross section of the Ko 21 is made as shown in Fig. 6, the particles in the swirling laminar flow will move in the direction of the arrow B in response to the rotation of the swirling X*21 in the direction of the arrow A1. As shown in the figure, the swirling blade 21 is overcome, and at this time, the swirling laminar flow Z is made to jump upward, and the stirring and mixing action within the swirling laminar flow 2 is promoted. The swirler may have a cross section as shown by 21& in FIG. Furthermore, as shown in Fig. 8, in the case where drying gas can be introduced into the granulation chamber l, it is possible to carry out granulation and drying in an integrated manner, as shown by the arrow O in the figure. By blowing gas into the swirling laminar flow, the volume of the layer can be expanded and adhesion of wet powder can be prevented. When carrying out the drying process, the growth of the granules stops contrary to the progress of drying, and the result is that they are crushed by the crushing blades. to reduce the flow velocity of the swirling laminar flow. When granulation and drying are completed, the rotation of the first rotating member is decelerated, the lid 5 is opened, and the granules in the granulation chamber 1 are discharged. As described above, this invention can produce heavy spherical granules with a high density of fine particles and fine particles in a very efficient manner in a short time, and by adjusting the rotational speed of each rotating member, the particle size It is also possible to arbitrarily adjust the density etc.
It is possible to provide a granulation method and device that do not involve any troublesome operations and do not require the provision of a complicated control device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の装置の−・実施例を示す縦断面図、
第2図は第1図の■−■線に沿う横断面図、第3図は第
2回転部材の正面図、第4図は他の実施例の縦断面図、
第5図は第4図■−■線に沿う横断面図、第6図は第4
図のVl −Vl線に沿う断面図、第7図は他の実施例
の第6図相当部分を示す断面図、第8図はさらに他の実
施例の縦断面図である。 1・・・造粒室、−3・・・材料投入口、4・・・蓋、
5・・・蓋、6・・・排出口、7・・・円板(第1回転
部月)、9,16゜18・・・プーリ、10・・・凹凸
、11・・・ロータ(第2回転部材)、12・・・解砕
羽根、14・・・フレーム、19・・・スクレーバー、
20・・・スプレー、21,211L・・旋回翼(第1
回転部材)、22・・・ガス導入管出願人  不二バウ
ダル林式会社 代理人  五 歩 −敬 治、 ・1 第2図 第3図 第4図 225− 第5図 第6図 1 A+  1
FIG. 1 is a longitudinal sectional view showing an embodiment of the apparatus of the present invention;
2 is a cross-sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a front view of the second rotating member, and FIG. 4 is a longitudinal sectional view of another embodiment.
Figure 5 is a cross-sectional view along the line ■-■ in Figure 4, and Figure 6 is a cross-sectional view along line ■-■ in Figure 4.
FIG. 7 is a sectional view showing a portion corresponding to FIG. 6 of another embodiment, and FIG. 8 is a longitudinal sectional view of still another embodiment. 1... Granulation chamber, -3... Material inlet, 4... Lid,
5... Lid, 6... Discharge port, 7... Disc (first rotating part), 9,16°18... Pulley, 10... Unevenness, 11... Rotor (first rotation part) 2 rotating member), 12... crushing blade, 14... frame, 19... scraper,
20...Spray, 21,211L...Swirling wing (first
(rotating member), 22... Gas introduction pipe applicant Fuji Baudal Hayashi Shiki Co., Ltd. agent Goho - Keiji, ・1 Figure 2 Figure 3 Figure 4 225- Figure 5 Figure 6 1 A+ 1

Claims (1)

【特許請求の範囲】 (1)直立円筒形の造粒室に粉体を投入し、その内底部
にリング状をなして縄ない状に旋回流動する旋回層流を
形成せしめ、上方より液体を供給してその液滴に粉体を
付着凝集させ、旋回層流中で付着凝集粒子を自転公転さ
せながら成長させると共に、リング状旋回層流の中央で
高速回転する解砕羽根に該層流中の過大成長粒子を衝突
させるべくし、解砕羽根の回転速度を調整して旋回層流
中の粒体の最大粒径を規制することを特徴とする造粒方
法 (2)造粒室の内底部においてその軸線のまわりを高速
回転する置版により前記旋回層流を形成させることを特
徴とする特許請求の範囲第1項記載の造粒方法 (3)造粒室の内底面においてその軸線のまわりを高速
回転する攪拌羽根により前記旋回層流を形成させること
を特徴とする特許請求の範囲第1項記載の造粒方法 (4)粒体成形後、前記旋回層流の速度を低下させて造
粉室内に乾燥用のガスを供給し、粒体を乾燥させること
を特徴とする特許請求の範囲第1項から第3積重でのい
ずれか1つに記載の造粒方法(5)粉体投入口と排出口
とを備えだ直立円筒状の造粒室と、造粒室の内底部に近
接して配置し該室の軸線のまわりで回転する第1回転部
材と、外周に水平方向に突出する多数の解砕羽根を備え
て造粒室の中央部で酸室の軸線のまわりで回転する第2
回転部材と、第1回転部材と第2回転部材とのそれぞれ
を回転速度の調節を可能に駆動する駆動手段と、造粒室
内に粉体を付着凝集させる液を供給する供給手段とを備
えてなる造粒装置(6)解砕羽根が第2回転部材の回転
によりその下面に斜めに粒体が衝突するように粒体解砕
部を水平向に対し傾けられている特許請求の範囲第5項
記載の造粒装置 (力 第1回転部材が、造粒室内底面に近接して配置し
た回転円板である特許請求の範囲第5項又は第6項記載
の造粒装置 (8)第1回転部材が、造粒室内底面に近接して配置し
た直径方向に延びる旋回翼である特許請求の範囲第5項
又は第6項記載の造粒装置(9)造粒室の円筒状内壁面
に沿ってその軸線のまわりを回転するスクレーパと、該
スクレーパの駆動手段とを含む特許請求の範囲第5項か
ら第8項までのいずれか1つに記載の造粒装置00)前
記造粒室が、乾燥用ガスの導入可能に形成されている特
許請求の範囲第5項から第9項までのいずれか1つに記
載の造粒装置
[Scope of Claims] (1) Powder is charged into an upright cylindrical granulation chamber, and a swirling laminar flow is formed in the inner bottom of the chamber in a ring shape, and the liquid flows from above. The particles are fed and agglomerated onto the droplets, and the adhering and agglomerated particles are grown while rotating and revolving in the swirling laminar flow, and the particles are passed through the laminar flow to a crushing blade rotating at high speed in the center of the ring-shaped swirling laminar flow. A granulation method characterized in that the maximum particle size of the granules in the swirling laminar flow is controlled by adjusting the rotational speed of the crushing blade so as to collide the overgrown particles in the granulation chamber. Granulation method according to claim 1, characterized in that the swirling laminar flow is formed by a plate that rotates at high speed around its axis at the bottom (3) A granulation method according to claim 1, characterized in that the swirling laminar flow is formed by a stirring blade that rotates at high speed around the granulation method (4) After forming the granules, the speed of the swirling laminar flow is reduced. Granulation method (5) according to any one of claims 1 to 3, characterized in that the granules are dried by supplying a drying gas into the granulation chamber. an upright cylindrical granulation chamber equipped with a body inlet and an outlet; a first rotating member disposed close to the inner bottom of the granulation chamber and rotating around the axis of the chamber; A second plate is provided with a large number of crushing blades protruding from the granulation chamber and rotates around the axis of the acid chamber in the center of the granulation chamber.
A rotating member, a driving means for driving each of the first rotating member and the second rotating member so as to adjust the rotational speed, and a supplying means for supplying a liquid for adhering and aggregating the powder into a granulation chamber. A granulating device (6) in which the granule crushing part is tilted with respect to the horizontal direction so that the granules collide obliquely with the lower surface of the crushing blade by the rotation of the second rotating member. The granulation device (8) according to claim 5 or 6, wherein the first rotating member is a rotating disk disposed close to the bottom surface of the granulation chamber (8) first The granulating device (9) according to claim 5 or 6, wherein the rotating member is a diametrically extending swirler blade disposed close to the bottom surface of the granulating chamber. The granulation device 00 according to any one of claims 5 to 8, comprising a scraper rotating around its axis along the axis of the granulation chamber, and drive means for the scraper. , the granulation device according to any one of claims 5 to 9, which is formed so that a drying gas can be introduced.
JP16899382A 1982-09-27 1982-09-27 Granulation method and equipment Expired JPS6055176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16899382A JPS6055176B2 (en) 1982-09-27 1982-09-27 Granulation method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16899382A JPS6055176B2 (en) 1982-09-27 1982-09-27 Granulation method and equipment

Publications (2)

Publication Number Publication Date
JPS5959239A true JPS5959239A (en) 1984-04-05
JPS6055176B2 JPS6055176B2 (en) 1985-12-04

Family

ID=15878358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16899382A Expired JPS6055176B2 (en) 1982-09-27 1982-09-27 Granulation method and equipment

Country Status (1)

Country Link
JP (1) JPS6055176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655701A (en) * 1986-02-19 1987-04-07 Fuji Paudal Kabushiki Kaisha Granulating apparatus
US4897029A (en) * 1986-06-07 1990-01-30 Porzellanfabrik Schirnding Ag Device for preparing a very homogeneous and finely divided fine-ceramics mass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655701A (en) * 1986-02-19 1987-04-07 Fuji Paudal Kabushiki Kaisha Granulating apparatus
US4897029A (en) * 1986-06-07 1990-01-30 Porzellanfabrik Schirnding Ag Device for preparing a very homogeneous and finely divided fine-ceramics mass

Also Published As

Publication number Publication date
JPS6055176B2 (en) 1985-12-04

Similar Documents

Publication Publication Date Title
US4623098A (en) Granulating and coating machine
US4724794A (en) Fluid-assisted granulating and coating apparatus
US4740390A (en) Granule producing and/or processing apparatus and method
JP2016517791A (en) Particle conditioner
JP2002526246A (en) Apparatus for producing a pourable product and a method for using this apparatus
HU196717B (en) Apparatus and method for fluidization contacting materials
CN106813480A (en) Medicinal flash dryer
US4967688A (en) Powder processing apparatus
JPH0727476A (en) Treatment apparatus of moistened granular material
JPS5959239A (en) Granulation method and apparatus
JP3576518B2 (en) Fluidized bed dryer
JP2004122057A (en) Fluidized bed apparatus
CN206979904U (en) A kind of powder extinguishing agent process units
JPS6055175B2 (en) Mixer/granulator
JP2001327850A (en) Centrifugal rolling granulator and powder and granular material treating method using the same
JP4028121B2 (en) Granulator
JPS632212B2 (en)
JPS5921649B2 (en) Granulation method and equipment
JP3805453B2 (en) Powder processing apparatus and powder processing method using the same
CN206531373U (en) Anti-sticking wall, anti-caking, it is anti-sink to the bottom, anticlogging medicinal flash dryer
JPH0411252B2 (en)
JPS6025182B2 (en) Granulation method and equipment
JP2003126680A (en) Fluidizing apparatus for powder and granular material
CN216987547U (en) Abrasive material spray granulation device
JPS5955337A (en) Granulating and coating device