JPS5951796B2 - Scan speed modulation circuit - Google Patents
Scan speed modulation circuitInfo
- Publication number
- JPS5951796B2 JPS5951796B2 JP8220577A JP8220577A JPS5951796B2 JP S5951796 B2 JPS5951796 B2 JP S5951796B2 JP 8220577 A JP8220577 A JP 8220577A JP 8220577 A JP8220577 A JP 8220577A JP S5951796 B2 JPS5951796 B2 JP S5951796B2
- Authority
- JP
- Japan
- Prior art keywords
- scanning speed
- speed modulation
- circuit
- video signal
- brightness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Details Of Television Scanning (AREA)
Description
【発明の詳細な説明】
本発明はテレビジョン受像機において走査速度変調によ
り輪郭補正を行う走査速度変調回路に関するもので輝度
調整の直流レベルの変化に応じて走査速度変調による輪
郭強調量を制御するにより適切なる輪郭補償を行なうこ
とを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scanning speed modulation circuit that performs contour correction by scanning speed modulation in a television receiver, and controls the amount of contour enhancement by scanning speed modulation in accordance with changes in the DC level for brightness adjustment. The purpose is to perform more appropriate contour compensation.
テレビジョン受像機において、たとえば第1図に示す様
な白黒白パターンを受信してCRT上に映出する場合、
映像信号が第2図Aの様に輝度変化部分で急峻な立上り
立下りをもつたものであれば映像の画質の良いものとな
るが、一般的には映像信号は受像機の周波数特性等によ
つて、同図Bに示す様な輝度変化部分で緩慢な立上り立
下りを有するものとなり、明瞭な輪郭を示さない不鮮鋭
なものとなつている。そこで鮮鋭度の低下を補償する方
法として輪郭補償量調整回路(以下画質調整回路と呼ぶ
)がある。この回路は同図Bのような映像信号を2次微
分を行い同図Cの様な信号をフ作成しこの信号Cをもと
の映像信号Bに重畳して同図Dに示す様な立上り立下り
が急峻になつた映像信号を得て、CRTに供給するもの
である。しかしながらこの方法による場合には信号のピ
ークの部分でビーム電流がより増加することによつてゝ
ビームスポットサイズが一層大きくなり、いわゆるブル
ーミング現象をおこし鮮鋭度はそれほど向上されない。
これに対してこの様に映像信号の波形を直接補正するこ
となく鮮鋭度の低下を補償する方法として走査速度変調
方式がある。フ 第3図に走査速度変調の原理を示す。For example, when a television receiver receives a black and white pattern as shown in Figure 1 and displays it on a CRT,
If the video signal has steep rises and falls in the brightness changing part as shown in Figure 2A, the image quality will be good, but in general, the video signal will depend on the frequency characteristics of the receiver, etc. Therefore, as shown in FIG. 5B, the brightness changes have slow rises and falls, and are not sharp and do not have clear outlines. Therefore, as a method of compensating for the decrease in sharpness, there is a contour compensation amount adjustment circuit (hereinafter referred to as an image quality adjustment circuit). This circuit performs second-order differentiation on the video signal shown in B in the same figure to create a signal shown in C in the same figure, and then superimposes this signal C on the original video signal B to produce a rise as shown in D in the same figure. A video signal with a steep fall is obtained and supplied to a CRT. However, in this method, the beam current increases further at the peak of the signal, resulting in a larger beam spot size, causing a so-called blooming phenomenon, and the sharpness is not improved much.
On the other hand, there is a scanning speed modulation method as a method of compensating for the decrease in sharpness without directly correcting the waveform of the video signal. Figure 3 shows the principle of scanning speed modulation.
第3図Aに示すもとの映像信号5、を一次微分すること
によつて同図Bの様な信号50を得、これを例えば水平
及び垂直偏向コイルとは別に設けた補助偏向ヨークに供
給して同図Cの曲線1で示す様・に水平偏向磁界を信号
5、の立上り立下りに対応する時点で補正し、これによ
り画面上でのビームの走査速度を同図Dの曲線2で示す
様に変調する方法が提案されている。By firstly differentiating the original video signal 5 shown in FIG. 3A, a signal 50 as shown in FIG. Then, as shown by curve 1 in Figure C, the horizontal deflection magnetic field is corrected at the times corresponding to the rising and falling edges of signal 5, thereby changing the scanning speed of the beam on the screen as shown by curve 2 in Figure D. A modulation method has been proposed as shown.
上記の走査速度変調の方法によれば、画面上でのビーム
の走査速度は信号5、フが立下り始めた直後の位置では
遅くなるので画面上の対応する点での発光量は急激に増
加し、その後ビームの走査速度が早くなるので画面上の
対応する点での発光量は少なく抑えられる。一方信号S
、の立上り側ではこれと対称な形になるので結局5画面
上の水平方向においての発光量は同図Eに示す様に変化
し、水平方向の鮮鋭度を向上させることができる。しか
るに走査速度変調を行うための磁界を生ずるには比較的
大きな電力を必要とする。上記2つの鮮鋭度改善法を共
用して効果的に輪郭補償を行なう方法が考えられる。According to the above scanning speed modulation method, the scanning speed of the beam on the screen becomes slow at the position immediately after the signal 5 starts falling, so the amount of light emitted at the corresponding point on the screen increases rapidly. However, since the scanning speed of the beam becomes faster thereafter, the amount of light emitted at the corresponding point on the screen can be suppressed to a small level. On the other hand, signal S
Since the rising side of , has a symmetrical shape, the amount of light emitted in the horizontal direction on the five screens changes as shown in FIG. 5E, and the sharpness in the horizontal direction can be improved. However, a relatively large amount of power is required to generate the magnetic field for scanning speed modulation. A possible method is to use both of the above two sharpness improvement methods to effectively perform contour compensation.
その一例のプロツク図を第4図に示す。An example of the block diagram is shown in FIG.
図において1は高周波増巾回路、2は周波数変換回路、
3は映像中間周波数増巾回路、4は映像検波回路、5は
映像増巾回路、6は走査速度変調回路、7は補助偏向ヨ
ーク、8はCRTである。ただし通常の偏向回路は特に
関係がないので図示を省略している。ここで映像検波回
路4から映像信号を走査速度変調回路6に加え、走査速
度変調回路6で加えられた映像信号を一次微分を行い増
巾して補助偏向ヨークに走査速度変調電流を流して走査
速度変調による輪郭補償を行なう。一般にこの様な走査
速度変調は輝度が明るい程よく利く特性を示す。In the figure, 1 is a high frequency amplification circuit, 2 is a frequency conversion circuit,
3 is a video intermediate frequency amplification circuit, 4 is a video detection circuit, 5 is a video amplification circuit, 6 is a scanning speed modulation circuit, 7 is an auxiliary deflection yoke, and 8 is a CRT. However, since the normal deflection circuit is not particularly relevant, illustration thereof is omitted. Here, the video signal from the video detection circuit 4 is applied to the scanning speed modulation circuit 6, the video signal added by the scanning speed modulation circuit 6 is first differentiated and amplified, and a scanning speed modulation current is passed through the auxiliary deflection yoke to perform scanning. Performs contour compensation using velocity modulation. In general, such scanning speed modulation exhibits a characteristic that the brighter the luminance, the more effective it is.
以下その理由を数式を用いて説明する。遅延線の終端を
短絡しその反射を利用して一次微分する場合、入力され
た映像信号は終端で反射され、再び入力端に逆極性で2
τ遅れて返つてくる。The reason for this will be explained below using a mathematical formula. When the terminal end of the delay line is short-circuited and the reflection is used for first-order differentiation, the input video signal is reflected at the terminal end and is sent back to the input terminal with the opposite polarity.
It will come back τ late.
したがつていま入力信号EinがEin=AcOsωt
(A:振巾,ω=2πF,f:入力信号周波数)であ
つた時、遅延線入力端での電圧ETはET=AcOsω
t −AcOsω (t−2τ)=2Asinωτ・
Sinω (τ− t) ・・・・・・・・・・・・・
・・・・・・・・・・・(1)となる。Therefore, now the input signal Ein is Ein=AcOsωt
(A: amplitude, ω = 2πF, f: input signal frequency), the voltage ET at the input end of the delay line is ET = AcOsω
t −AcOsω (t−2τ)=2A sinωτ・
Sinω (τ− t) ・・・・・・・・・・・・・・・
・・・・・・・・・・・・(1)
信号波形は走査速度変調電流とのタイミング関係からτ
だけ遅れた信号にする必要がある。The signal waveform is τ due to the timing relationship with the scanning speed modulation current.
It is necessary to make the signal delayed by the same amount of time.
したがつて信号波形はAcOsω (t−τ)である。
主偏向ヨークおよび補助偏向ヨークによつて生じる偏向
波形Wdは式(1)を用いてWd=αt +2Asin
τ・ Sinω (τ−t)で示される但しαは水平偏
向速度である。Therefore, the signal waveform is AcOsω (t-τ).
The deflection waveform Wd generated by the main deflection yoke and the auxiliary deflection yoke is calculated using equation (1) as follows: Wd=αt +2A sin
It is expressed as τ·Sinω (τ−t), where α is the horizontal deflection velocity.
画面上の輝度は映像信号に比例し、偏向速度に反比例す
るから、輝度LはL=〔K+AcOsω (t−τ)〕
/d/DtWd=〔K+AcOsω (t−τ)〕/〔
α−2AωSlnωτ ・COsω (t−τ)〕・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・(2)但しKは信号の直流バイアス
となる。The brightness on the screen is proportional to the video signal and inversely proportional to the deflection speed, so the brightness L is L=[K+AcOsω (t-τ)]
/d/DtWd=[K+AcOsω (t-τ)]/[
α−2AωSlnωτ ・COsω (t−τ)]・・
・・・・・・・・・・・・・・・・・・・・・・・・
(2) However, K is the DC bias of the signal.
一般にα>Ac=)Sinωτが成立するので、式(2
)のテーラ一展開の一次項をとつてL=−〔K+AcO
sω (t−τ)〕・ 〔α+2AωSlnωτ .C
Osω (t−τ)〕
となる、−l≦COsω (t−τ)≦lであるからL
maX=(K+A) (α+2AωSinωτ)Lmi
n=(K−A) (α−2AωSinωτ)LmaX−
Lmin=4KAωSinωτ・・・・・・・・・(3
)となり、画面上での輝度変化〔LmaX− Lmin
〕はKに比例して大きくなる。In general, α>Ac=)Sinωτ holds, so equation (2
) by taking the linear term of the Taylor expansion of L=-[K+AcO
sω (t−τ)]・[α+2AωSlnωτ . C
Osω (t-τ)], and since -l≦COsω (t-τ)≦l, L
maX=(K+A) (α+2AωSinωτ)Lmi
n=(K-A) (α-2AωSinωτ)LmaX-
Lmin=4KAωSinωτ・・・・・・・・・(3
), and the brightness change on the screen [LmaX-Lmin
] increases in proportion to K.
すなわち走査速度変調は高輝度ほどよく利くわけである
。しかしながら実際には高輝度になると一般にプルーミ
ングが増しビームスポツトサイズが大きくなるので前記
の効果がそこなわれる。In other words, scanning speed modulation is more effective at higher luminance. However, in reality, as the brightness increases, pluming generally increases and the beam spot size increases, which impairs the above-mentioned effect.
本発明はこれを解消する手段として高輝度ほど走査速度
変調による輪郭補償量をふやし、ブルーミングによる劣
化を防ごうとするものである。As a means to solve this problem, the present invention attempts to prevent deterioration due to blooming by increasing the amount of contour compensation by scanning speed modulation as the brightness increases.
すなわち、第4図の回路構成では非常に高輝度の信号の
時、走査速度変調独持の高輝度になるほど輪郭補償効果
があるという利点がブルーミングのためにそこなわれて
しまうので、本発明ではこの点を解消するため、高輝度
時には走査速度変調による輪郭補償量をふやし、さらに
効果を高めるために強調周波数も高くしようとするもの
である。以下本発明の一実施例を第5図を用いて説明す
る。図において9は映像検波された映像信号が加わる入
力端子、10は映像増巾回路、11は画質調整回路、1
2はクランプ回路、13は映像出力回路、15は利得制
御回路、6は走査速度変調回路で、6−1は一次微分増
巾回路、6−2は出力回路、7は補助偏向ヨーク、8は
CRT、16はコントラスト調整用可変抵抗器(以下コ
ントラスト調整VRと呼ぶ)、14は輝度調整可変抵抗
器(輝度調整VR)である。ここで、映像検波段から映
像信号を入力端子9に加え、映像増巾回路10で増巾し
たのち、コントラスト調整VRl6でコントラスト調整
(映像信号の振巾調整)を行つJている。そして画質調
整回路11で画質調整(映 −像信号の輪郭強調量調整
)を行い、クランプ回路12へ導き輝度調整VRl4(
以下クランプ電位調整VRと呼ぶ)でクランプ電位を調
整して映像信号の直流レベルの調整を行い映像出力回路
13に導きさらにCRT8のカソード電極に加えられる
。またクランプ調整VRl4からのクランプ電圧を利得
制御回路15に加え、入力端子9からの映像信号の利得
を制御し、走査速度変調回路6に加えている。走査速度
変調回路6は一次微分増巾回路6−1では一次微分を行
つて増巾し出力回路6−2で補助偏向ヨーク7を駆動さ
せ、補助偏向ヨータ7に走査速度変調電流を流して走査
速度変調による輪郭補償を行つている。上記の様に本発
明の走査速度変調回路では、クランプ調整VRl4のク
ランプ電位の変化、すなわち映像信号の直流レベルの変
化に応じて走査速度変調回路に入力する映像信号の量を
制御させる利得制御回路15を有することにより、走査
速度変調を用いた輪郭補償量を輝度に応じて制御するこ
とができる走査速度変調回路を提供するものである。In other words, in the circuit configuration shown in FIG. 4, when the signal has a very high brightness, the advantage of having a contour compensation effect as the brightness increases due to scanning speed modulation alone is lost due to blooming. In order to solve this problem, the amount of contour compensation by scanning speed modulation is increased when the brightness is high, and the emphasis frequency is also increased to further enhance the effect. An embodiment of the present invention will be described below with reference to FIG. In the figure, 9 is an input terminal to which a detected video signal is added, 10 is a video amplification circuit, 11 is an image quality adjustment circuit, and 1
2 is a clamp circuit, 13 is a video output circuit, 15 is a gain control circuit, 6 is a scanning speed modulation circuit, 6-1 is a first-order differential amplifier circuit, 6-2 is an output circuit, 7 is an auxiliary deflection yoke, and 8 is a CRT, 16 is a contrast adjustment variable resistor (hereinafter referred to as contrast adjustment VR), and 14 is a brightness adjustment variable resistor (brightness adjustment VR). Here, a video signal is applied to the input terminal 9 from the video detection stage, amplified by the video amplification circuit 10, and then contrast adjustment (adjustment of the amplitude of the video signal) is performed by the contrast adjustment VR16. Then, the image quality adjustment circuit 11 performs image quality adjustment (adjustment of the amount of edge enhancement of the video signal), and the signal is sent to the clamp circuit 12 for brightness adjustment VR14 (
The DC level of the video signal is adjusted by adjusting the clamp potential (hereinafter referred to as clamp potential adjustment VR), and the signal is led to the video output circuit 13 and further applied to the cathode electrode of the CRT 8. Further, the clamp voltage from the clamp adjustment VRl4 is applied to the gain control circuit 15 to control the gain of the video signal from the input terminal 9, and is applied to the scanning speed modulation circuit 6. In the scanning speed modulation circuit 6, a first-order differential amplification circuit 6-1 performs first-order differentiation and amplification, an output circuit 6-2 drives the auxiliary deflection yoke 7, and a scanning speed modulation current is passed through the auxiliary deflection yoke 7 to perform scanning. Contour compensation is performed using velocity modulation. As described above, in the scanning speed modulation circuit of the present invention, the gain control circuit controls the amount of the video signal input to the scanning speed modulation circuit in accordance with the change in the clamp potential of the clamp adjustment VRl4, that is, the change in the DC level of the video signal. 15, it provides a scanning speed modulation circuit that can control the amount of contour compensation using scanning speed modulation according to brightness.
第6図に本発明の要部の具体的回路の一例を示す。FIG. 6 shows an example of a specific circuit of the main part of the present invention.
図において、9は入力端子、14はクランプ調整VR、
15は利得制御回路、6は走査速度変調回路である。こ
こでクランプ調整VRl4でクランプ電位を制御してい
る。In the figure, 9 is an input terminal, 14 is a clamp adjustment VR,
15 is a gain control circuit, and 6 is a scanning speed modulation circuit. Here, the clamp potential is controlled by clamp adjustment VRl4.
すなわちクランプ電圧は第5図のクランプ回路12に加
えられてクランプレベルを制御する一方利得制御回路1
5のトランジスタTrlのベースに加えられ抵抗R1と
R2の分圧によつて得られた電圧(以下基準電圧EOと
呼ぶ)と比較しトランジスタTrlの導通状態を制御し
、走査速度変調回路6に加わる入力端子9からの映像検
波された映像信号の利得を制御している。つまりクラン
プ電位が低く、低輝度の時、すなわちトランジスタTr
lのベースに加わるクランプ電位が基準電位EOに比べ
低い場合には、トランジスタTrlのC−E間が低イン
ピーダンスとなるため映像信号のかなりの部分がトラン
ジスタTrlを通つてバイパスされる。したがつて走査
速度変調回路6へ導びかれる映像信号は小信号となるた
め、走査速度変調による輪郭補償量も比較的少なくなる
。一方、クランプ電位が高く、高輝度の時、すなわちト
ランジスタTrlのベースに加わるクランプ電位が基準
電圧EOに比べ高い場合、トランジスタTrlのC−E
間が高インピーダンスとなるため映像信号があまり減衰
を受けず走査速度変調回路6に導びかれる。したがつて
走査速度変調による輪郭補償量も多くなる。以上述べた
様にクランプ電位が高くなるほどすなわち高輝度ほど、
走査速度変調による輪郭補償量も漸次的に増すことによ
つて高輝度時でのブルーミングの影響を有効に補正する
ことができる。That is, the clamp voltage is applied to the clamp circuit 12 in FIG. 5 to control the clamp level, while the gain control circuit 1
5 is applied to the base of the transistor Trl, and is compared with the voltage obtained by dividing the voltage between the resistors R1 and R2 (hereinafter referred to as reference voltage EO) to control the conduction state of the transistor Trl, and is applied to the scanning speed modulation circuit 6. The gain of the detected video signal from the input terminal 9 is controlled. In other words, when the clamp potential is low and the brightness is low, that is, the transistor Tr
When the clamp potential applied to the base of the transistor Trl is lower than the reference potential EO, the impedance between C and E of the transistor Trl becomes low, so that a considerable portion of the video signal is bypassed through the transistor Trl. Therefore, since the video signal guided to the scanning speed modulation circuit 6 is a small signal, the amount of contour compensation due to scanning speed modulation is also relatively small. On the other hand, when the clamp potential is high and the brightness is high, that is, when the clamp potential applied to the base of the transistor Trl is higher than the reference voltage EO, the C-E of the transistor Trl
Since there is a high impedance between them, the video signal is guided to the scanning speed modulation circuit 6 without much attenuation. Therefore, the amount of contour compensation due to scanning speed modulation also increases. As mentioned above, the higher the clamp potential, that is, the higher the brightness, the
By gradually increasing the contour compensation amount by scanning speed modulation, it is possible to effectively correct the effects of blooming at high brightness times.
次に本発明の第2の実施例を第7図を用いて説明する。
動作も回路構成も第1の実施例と同様なため詳細な説明
は省略する。クランプ調整VRl4で制御されたクラン
プ電位を利得制御回路14に加え、またコントラスト調
整VRl6、画質調整回路11を通つた映像信号(すな
わち映像信号の振巾および輪郭強調量の調整された信号
)を利得制御回路15に加え、前記クランプ電位の変化
に応じて利得制御回路15の利得を制御し走査速度変調
回路6に加えている。Next, a second embodiment of the present invention will be described using FIG. 7.
Since the operation and circuit configuration are similar to those of the first embodiment, detailed explanations will be omitted. The clamp potential controlled by the clamp adjustment VRl4 is applied to the gain control circuit 14, and the video signal (that is, the signal with the amplitude and edge enhancement amount of the video signal adjusted) that has passed through the contrast adjustment VRl6 and the image quality adjustment circuit 11 is applied to the gain control circuit 14. In addition to the control circuit 15, the gain of a gain control circuit 15 is controlled in accordance with changes in the clamp potential and is applied to the scanning speed modulation circuit 6.
したがつて高輝度時に走査速度変調による輪郭補償量を
増して、ブルーミングによる輪郭補償効果の劣化を補正
することができる。またこの実施例ではコントラスト調
整,画質調整を通つた映像信号を利得制御回路15に加
え利得制御しているため、コントラスト,画質条件に応
じて走査速度変調による輪郭補償量も制御できるという
特徴がある。Therefore, by increasing the amount of contour compensation by scanning speed modulation during high brightness, it is possible to correct the deterioration of the contour compensation effect due to blooming. Furthermore, in this embodiment, since the video signal that has undergone contrast adjustment and image quality adjustment is added to the gain control circuit 15 for gain control, the amount of contour compensation by scanning speed modulation can also be controlled according to the contrast and image quality conditions. .
高輝度程走査速度変調による輪郭補償量を増やす手段と
して第8図の実施例の様にクランプ回路12でクランプ
のかかつた映像信号をガンマγ〉1の非線形増巾回路6
−3を有する走査速度変調回路6に加え、動作させるこ
とによつても、高輝度程,走査速度変調による輪郭補償
量を増して、ブルーミング補正を行うことができる。以
上のように本発明の走査速度変調回路はクランプ調整可
変抵抗でクランプ電位を変えて輝度調整をし、前記クラ
ンプ電位に応じて走査速度変調回路に入力する映像信号
の量を、高輝度では大きく、低輝度では小さくなるよう
に制御する利得制御回路とを有するものであり、走査速
度変調による輪郭補償量を輝度により制御することがで
き高輝度程,走査速度変調による輪郭補償量を増して、
高輝度部分でビーム電流が増加するためにビームスポツ
トサイズが大きくなつてしまい鮮鋭度が低下するブルー
ミングを補正して高輝度での鮮鋭度を改善することがで
きる。As a means of increasing the amount of contour compensation by scanning speed modulation as the brightness increases, as in the embodiment shown in FIG.
By operating the scanning speed modulation circuit 6 in addition to the scanning speed modulation circuit 6 having a speed of -3, blooming correction can be performed by increasing the amount of contour compensation due to scanning speed modulation as the brightness increases. As described above, the scanning speed modulation circuit of the present invention adjusts the brightness by changing the clamp potential using the clamp adjustment variable resistor, and increases the amount of video signal input to the scanning speed modulation circuit according to the clamp potential. , a gain control circuit that controls the gain to decrease at low brightness, and the amount of contour compensation by scanning speed modulation can be controlled by brightness, and as the brightness increases, the amount of contour compensation by scanning speed modulation increases,
It is possible to improve the sharpness at high brightness by correcting blooming in which the beam spot size increases and the sharpness decreases due to an increase in the beam current in a high brightness area.
また利得制御回路に加える映像信号としてコントラスト
調整,画質調整を通つた出力信号を加え前記検出信号に
応じて、走査速度変調回路に入力する映像信号の量を制
御させて、走査速度変調による輪郭補償量を制御するこ
とによりコントラスト調整,画質調整による映像信号の
振巾および輪郭強調量の変化に応じて走査速度変調によ
る輪郭補償も制御できる。In addition, an output signal that has undergone contrast adjustment and image quality adjustment is added as a video signal to the gain control circuit, and according to the detection signal, the amount of video signal input to the scanning speed modulation circuit is controlled, and contour compensation is performed by scanning speed modulation. By controlling the amount, contour compensation by scanning speed modulation can also be controlled in accordance with changes in the amplitude of the video signal and the amount of contour enhancement due to contrast adjustment and image quality adjustment.
このようにして本発明は受像機の画質条件(コントラス
ト,輪郭強調量,輝度)に応じて、走査速度変調による
輪郭補償量を制御しているため、画質的にすぐれた鮮鋭
画像をCRT上に表示することができる。In this way, the present invention controls the amount of contour compensation by scanning speed modulation according to the image quality conditions (contrast, amount of edge enhancement, brightness) of the receiver, so that a sharp image with excellent image quality can be produced on a CRT. can be displayed.
第1図はCRTに表示された画像の一例を示す図、第2
図A,B,C,Dは輪郭補償量調整回路の動作を示す波
形図、第3図A,B,C,D,Eは走査速度変調の動作
を示す波形図、第4図は従来の走査速度変調回路の回路
構成を示すプロツク図、第5図は本発明の一実施例にお
ける走査速度変調回路の回路構成を示すプロツク図、第
6図は同一部の電気結線図、第7図および第8図は本発
明の他の実施例を示すプロツク図である。
10・・・・・・映像増巾回路、11・・・・・・画質
調整回路、12・・・・・・クランプ回路、15・・・
・・・利得制御回路、6・・・・・・走査速度変調回路
。Figure 1 shows an example of an image displayed on a CRT, Figure 2 shows an example of an image displayed on a CRT.
Figures A, B, C, and D are waveform diagrams showing the operation of the contour compensation amount adjustment circuit, Figure 3 A, B, C, D, and E are waveform diagrams showing the operation of scanning speed modulation, and Figure 4 is the waveform diagram of the conventional FIG. 5 is a block diagram showing the circuit configuration of the scanning speed modulation circuit in an embodiment of the present invention, FIG. 6 is an electrical wiring diagram of the same part, and FIGS. FIG. 8 is a block diagram showing another embodiment of the present invention. 10... Image amplification circuit, 11... Image quality adjustment circuit, 12... Clamp circuit, 15...
...Gain control circuit, 6...Scanning speed modulation circuit.
Claims (1)
プレベルを制御して輝度調整する手段と、前記映像信号
のクランプレベルに応動して、走査速度変調用信号の利
得を高輝度では大きく、低輝度では小さくなるように制
御する手段と、前記利得制御された信号を走査速度変調
を行なうための補助偏向ヨークにみちびく手段を備えた
走査速度変調回路。1 means for clamping a video signal; means for controlling the clamp level of the video signal to adjust the brightness; and in response to the clamp level of the video signal, the gain of the scanning speed modulation signal is increased for high brightness and high for low brightness. A scanning speed modulation circuit comprising: means for controlling the gain to be small; and means for guiding the gain-controlled signal to an auxiliary deflection yoke for performing scanning speed modulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8220577A JPS5951796B2 (en) | 1977-07-08 | 1977-07-08 | Scan speed modulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8220577A JPS5951796B2 (en) | 1977-07-08 | 1977-07-08 | Scan speed modulation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5417623A JPS5417623A (en) | 1979-02-09 |
JPS5951796B2 true JPS5951796B2 (en) | 1984-12-15 |
Family
ID=13767910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8220577A Expired JPS5951796B2 (en) | 1977-07-08 | 1977-07-08 | Scan speed modulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5951796B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2712248B2 (en) * | 1988-03-17 | 1998-02-10 | ソニー株式会社 | Speed modulation circuit |
EP0723365A1 (en) * | 1995-01-18 | 1996-07-24 | Philips Electronique Grand Public | Video apparatus with contour control |
JP6487875B2 (en) | 2016-04-19 | 2019-03-20 | 信越化学工業株式会社 | Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing the same, negative photosensitive resin composition, positive photosensitive resin composition, pattern forming method, and cured film forming method |
JP6663320B2 (en) | 2016-07-25 | 2020-03-11 | 信越化学工業株式会社 | Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing the same, negative photosensitive resin composition, pattern forming method, and cured film forming method |
JP6637871B2 (en) | 2016-10-27 | 2020-01-29 | 信越化学工業株式会社 | Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing the same, negative photosensitive resin composition, pattern forming method, and cured film forming method |
JP6663380B2 (en) | 2017-03-22 | 2020-03-11 | 信越化学工業株式会社 | Polyimide precursor polymer, positive photosensitive resin composition, negative photosensitive resin composition, pattern forming method, cured film forming method, interlayer insulating film, surface protective film, and electronic component |
-
1977
- 1977-07-08 JP JP8220577A patent/JPS5951796B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5417623A (en) | 1979-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000101873A (en) | Image display device | |
US4183064A (en) | Video signal reproducing apparatus with electron beam scanning velocity modulation | |
JPS5951796B2 (en) | Scan speed modulation circuit | |
JPH07118780B2 (en) | Image quality compensation device | |
JPS581593B2 (en) | TV program | |
JPS63164764A (en) | Picture quality compensating device | |
JP3080012B2 (en) | Video display device | |
KR100588106B1 (en) | Scanning speed modulating circuit for picture display | |
JP3407677B2 (en) | Speed modulation circuit | |
JPS61210769A (en) | Video reproducing device | |
JPS62279783A (en) | Contour correcting device | |
JP2712248B2 (en) | Speed modulation circuit | |
JP3549289B2 (en) | CRT focus voltage adjustment circuit | |
JPS5920311B2 (en) | Image quality compensation device | |
JPH11122512A (en) | Image quality compensation device | |
JPH05145782A (en) | Scanning speed modulating circuit for television set | |
JP2993586B2 (en) | Scan speed modulation circuit | |
JPH07135577A (en) | Television receiver provided with scanning speed modulation circuit and contour emphasis circuit including the modulation circuit | |
JPH06284309A (en) | Monitor device | |
JPS587980A (en) | Aperture compensating circuit | |
JPS60160268A (en) | Color video picture quality adjusting device | |
JPH0230274A (en) | Dynamic video focus device | |
JPH06225182A (en) | Display device | |
JPS62184492A (en) | Display unit | |
JPS5824989B2 (en) | tv jiyeonji yuzouki |