JPS5943479A - Visual recognizing device - Google Patents

Visual recognizing device

Info

Publication number
JPS5943479A
JPS5943479A JP57153006A JP15300682A JPS5943479A JP S5943479 A JPS5943479 A JP S5943479A JP 57153006 A JP57153006 A JP 57153006A JP 15300682 A JP15300682 A JP 15300682A JP S5943479 A JPS5943479 A JP S5943479A
Authority
JP
Japan
Prior art keywords
light
passes
detector
lens
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57153006A
Other languages
Japanese (ja)
Inventor
Hisato Noda
野田 久登
Takashi Ichiyanagi
一柳 高「し」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57153006A priority Critical patent/JPS5943479A/en
Publication of JPS5943479A publication Critical patent/JPS5943479A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To discriminate the position of an object in addition to the shape of the object, by allowing a coherent parallel light to pass through an freely attachable and detachable mesh shaped two-dimensional grating whose pitch is changed linearly in vertical and horizontal directions in accordance with positions. CONSTITUTION:The light from an object 30 to be recognized is reflected by a means 7 and is focused onto a filter 9 by a lens 8 and passes through an optical valve 29 to form a luminous flux 34, and this luminous flux 34 passes through an analyzer 24 and a light valve 25 and is focused onto a detector 28 through a two-dimensional grating plate 27 and a Fourier conversion lens 26. The two-dimensional grating 27 has the pitch changed linearly in vertical and horizontal directions in accordance with positions and is freely attached and detached; and in the detector 28, photoelectric converting elements are arranged into the shape of L. The laser light from a light source 10 is polarized linearly by a means 12 and is reflected by a mirror 13 to become a parallel light, and this parallel light passes through the light valve 29 and the analyzer 24 and has the amplitude modulated by the image of the object 30 on the optical valve 29 and passes through the filter 25 and the grating plate 27 and is subjected to Fourier conversion by the lens 26 and is focused onto the detector 28. Thus, the position of the object 30 is discriminated, and the grating plate 27 is removed to discriminate the attitude of the object 30.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、組立用ロボット等が扱う対象物であるA、1
1\脣)(4品等の、f装置、形状、姿勢を検出するだ
めの視覚認識装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an object A, 1, which is an object handled by an assembly robot or the like.
1\脣) (4 items) This relates to a visual recognition device for detecting the f device, shape, and posture.

従来例の構成とその問題点 従来のロボット用視覚認識装置は、テレビカメラで撮影
した認識対象物の二次元画像情報に、コンピュータによ
る画像処理を施すことにより、認識対象物の位置、形状
、染勢等を検出してい/こ。、このような方法では、1
フレーム当りの画像情報全体にわたってザンブリングラ
インを走査L /=c リ、標準パターンとのパターン
マツチング等を行う必要があり、演算に長時間を要する
だめに、ロボットの視覚として不可欠な実時間処理の実
現を困難にするという欠点を有していた。寸だ、認識対
象め形状や姿勢を判別する手段として、従来から、光学
的二次元フーリエ変換を応用した装置が使われていた。
Configuration of conventional example and its problems Conventional visual recognition devices for robots perform image processing using a computer on two-dimensional image information of the recognition target photographed by a television camera to determine the position, shape, and color of the recognition target. Detecting force, etc. , in such a method, 1
It is necessary to scan the zumbling line over the entire image information per frame, perform pattern matching with a standard pattern, etc., and the real-time processing that is essential for robot vision is necessary. This has the disadvantage of making it difficult to realize. As a means of determining the shape and orientation of a recognition target, devices that apply optical two-dimensional Fourier transform have traditionally been used.

第1図ca)、 (b)、第2図(a) 、 (b)に
、光学的二次元フーリエ変換を応用I7た、従来の視覚
認識装置の具体的構成例を示す。第1図(a)において
、1はレーザー発生器、2はコリメータ、]4;iフー
リエ変換レンズ、4は認識対象物、5は検出器である5
、検出器6には、例えば第1図(b)に示すような、く
て〜ひ状およびリング状に光電素子を配列した光強度外
イI」検出部が組込寸ねでおり、フーリエ変換し7・ス
3(4−より結像されに二認識対象物4の形状に応1:
、 i’(−平行ノー−−+f  −1f、パターンの
二次元ノーリエスペ2り]・九分布を検出するものであ
る。第2図<a)において、6 ((1,jicl、識
対象物、7は反射ミラー、8は結像し・ンズ、9はHe
Ne レーザー元よりも短波長の)iに t、z)みを
通過する光学フィルタ、1oはHeNe1/−リーーー
発生器、12は偏光板、13はハーフミラ−114は光
弁、15は偏光板12に対し、て直交ニコル状態に置か
れた検光板、16は光学フィルタ、17はフーリエ変換
レンズ、18は光強度′J) 4検出部、19は光学系
の光軸である。光弁14(,12、例え、(1」]第2
図すに示すように、光導電性部材層20と、−次電気光
学効果を有する結晶部拐層21を、透明型イ1シ板22
,23によって挾んだ構成のものであり、偏光板12て
直線偏光に偏光さ#1.. Am ’T宥1し=−サー
光は、透明電極板22.23の間Q□C’iii、圧を
印加した光弁14および検光板15を、lJ!1過する
と、結像レンズ8によって光弁14の光導電面に結像さ
れた認識対象物6の像の光強度分布に応じて、その振幅
分布が線形に変調される。
Figures 1 (ca) and (b) and Figures 2 (a) and (b) show specific configuration examples of conventional visual recognition devices that apply optical two-dimensional Fourier transform. In FIG. 1(a), 1 is a laser generator, 2 is a collimator, ] 4 is a Fourier transform lens, 4 is a recognition target, and 5 is a detector.
, the detector 6 has a light intensity detection section in which photoelectric elements are arranged in a strip and a ring shape, as shown in FIG. 1(b), for example. Convert 7.S3 (4-) to form an image according to the shape of the object 4 to be recognized 1:
, i'(-parallel no--+f-1f, two-dimensional no-respe2 of the pattern) Nine distributions are detected. In Figure 2<a), 6 ((1, jicl, object 7 is a reflecting mirror, 8 is an image forming lens, 9 is a He
Ne is an optical filter that passes only i (t, z) with a shorter wavelength than the laser source, 1o is a HeNe1/- Lee generator, 12 is a polarizing plate, 13 is a half mirror, 114 is a light valve, 15 is a polarizing plate 12 16 is an optical filter, 17 is a Fourier transform lens, 18 is a light intensity 'J) 4 detector, and 19 is an optical axis of the optical system. Light valve 14 (, 12, example, (1'') second
As shown in the figure, a photoconductive member layer 20 and a crystal part layer 21 having a -order electro-optic effect are placed on a transparent plate 22.
, 23, and the polarizing plate 12 polarizes the light into linearly polarized light. .. Am'T = -Sir light passes between the transparent electrode plates 22 and 23 Q□C'iii, the light valve 14 and the analyzer plate 15 to which pressure is applied, lJ! After one lapse of time, the amplitude distribution of the image of the recognition object 6 formed on the photoconductive surface of the light valve 14 by the imaging lens 8 is linearly modulated in accordance with the light intensity distribution.

光学フィルタ16によって、平行レーザー光以外の光を
遮断し、フーリエ変換レンズ1”γの焦点面には、平行
レーザー光の振幅分布に対応シソ、・ンーリエスペクト
ルが結像する1゜ 第1図(d〕、第2図Ca)に示し−2だような従来の
構成では、視覚内に置かれた認識対象物4,6の位置に
かかわらず、はぼ同じン−l)エスペクトリを結像する
ため、対象物の位置を検11トすることか不可能であっ
た。よって、この方式は、部利の形状等を判別する目視
検査の自動化の=一手段として用いられているに過ぎず
、ロボット用の視覚装置としては適用されていなかった
The optical filter 16 blocks light other than the parallel laser beam, and a Fourier spectrum corresponding to the amplitude distribution of the parallel laser beam is imaged on the focal plane of the Fourier transform lens 1''. In the conventional configuration shown in Figure 2 (d) and Figure 2 (Ca), regardless of the positions of the recognition objects 4 and 6 placed within the visual field, the image is formed with the same aspect. Therefore, it was impossible to detect the position of the object.Therefore, this method is only used as a means of automating visual inspection to determine the shape etc. of the part. However, it has not been applied as a visual device for robots.

発明の目的 本発明は、従来例の上記欠点に鑑み、シ・−サー等のコ
ヒーレント光の干渉性を利用して二次元画像情報をアナ
ログ的に並列処理する力法に、認識対象物の位置をも検
知する機能を加えることにJ、シ、組立ロボット等が扱
う対象物である組立部品等の位置、形状、姿勢を高速に
判別することのできる視覚認識装置を提供するものであ
る。
Purpose of the Invention In view of the above-mentioned shortcomings of the conventional example, the present invention is based on a power method that processes two-dimensional image information in parallel in an analog manner by utilizing the coherence of coherent light such as a shear. The present invention provides a visual recognition device that can quickly determine the position, shape, and orientation of assembly parts, which are objects handled by assembly robots, etc., in addition to the function of detecting .

発明の構成 本発明IJ、l1.1忍識対象物の光学像を結像する光
学系と、コ1−−−レンI・な平行光線を得るだめのレ
ーザー発生装置と、認識対象物の光学像の明暗分イ↑J
をXiヒーレントな平行光線の振幅分布に変換するコン
バータと、そのコンバータと並置され、縦方向・横方向
ともに、ピッチが位置に応じて線形に変化する、着脱容
易な網目状二次元格子と、この二次元格子を通過したコ
ヒーレントな平行光線のノ −リエスペクトルを結像す
るフーリエ変換レンズと、このフーリエスペクトルの光
強度分布を検知する検出部とから構成されており、光学
的二次元ノー IJ工全変換よって、認識対象物の画像
情報の!特徴化・抽出し、認識対象物の形状や咬勢だけ
てなく、位置をも判別するという、特有の効果をイ」す
る5、 実施例の説明 以下本発明の実施例について、図面を参照しながら説明
する。第3図は本発明の実施例における視覚認識装置の
構成を示すものである。第3図に示す実施例では、第2
図(a)に示す従来例の構成に加えて、検光)l)i2
4と光学フィルタ250間又は光学フィルタ25とフー
リエ変換レンズ26の間に、第4図(a) 、 (、b
)に概略を示す二次元格子板27を並設し、検出器28
には、第5図に7丁<すよつなL字状に光電変換光子を
配列した光強度分布検知部を有するものである。
Composition of the Invention The present invention IJ, l1.1 An optical system for forming an optical image of an object to be recognized, a laser generator for obtaining a parallel beam of light, and an optical system for an object to be recognized. Brightness and darkness of the image ↑J
A converter that converts the amplitude distribution of Xi coherent parallel rays, a reticular two-dimensional grating that is juxtaposed with the converter, and whose pitch changes linearly depending on the position in both the vertical and horizontal directions, and which is easy to attach and detach. It consists of a Fourier transform lens that images the Norier spectrum of coherent parallel light that has passed through a two-dimensional grating, and a detection section that detects the light intensity distribution of this Fourier spectrum. Image information of the recognition target is transformed by complete conversion! 5. Description of Embodiments Below, embodiments of the present invention will be described with reference to the drawings. I will explain. FIG. 3 shows the configuration of a visual recognition device in an embodiment of the present invention. In the embodiment shown in FIG.
In addition to the configuration of the conventional example shown in Figure (a), analysis) l) i2
4 and the optical filter 250 or between the optical filter 25 and the Fourier transform lens 26, as shown in FIGS.
) are arranged in parallel, and the detector 28
The device has a light intensity distribution detection section in which photoelectric conversion photons are arranged in a straight L-shape with seven columns as shown in FIG.

以上のように構成された視覚認識装置について、以下□
その動作を説明する。第2図(a、) 、 (b’)に
示す従来例と同様に、直線偏光された平行HeNeレー
ザー光は、光弁29.L検光板24を通過することによ
って、光弁29の位置に結像された認識対象物3oの光
強度分布に比例して振幅変調され、さらに光学フィルタ
25及び二次元格子板27を通過し、フーリエ変換レン
ズ26によって、検出器28の光強度検知部にフーリエ
スペクトルを結像する。
Regarding the visual recognition device configured as above, the following □
Let's explain its operation. Similar to the conventional example shown in FIGS. 2(a,) and 2(b'), the linearly polarized parallel HeNe laser beam is transmitted through the light valve 29. By passing through the L analyzer plate 24, the light is amplitude-modulated in proportion to the light intensity distribution of the recognition object 3o imaged at the position of the light valve 29, and further passes through an optical filter 25 and a two-dimensional grating plate 27, The Fourier transform lens 26 forms an image of the Fourier spectrum on the light intensity sensing portion of the detector 28 .

二次元格子板27は、第4図Ca)に示すように、透明
ガラス基板310片面に、クロム蒸着や写真技術によっ
て、網目状格子32を形成したものである3、網目状格
子32のピッチは、第4図(b)に示す、l!うに、(
4方向・横方向ともに、その位置に応じて線形に変化−
するものである。即ち、第4図(blに4、・いで、位
置(X、y)における格子のピッチ(ax、 by)は
、 ax−:a0+Δa@x、 b−、=b、+−Δb−y
で表わせるものとする。ここで(ao、b。)は原点に
おげろ格子のピッチ、(Δa、Δb)は比例定数である
4、なお、この路間ピッチは、フーリエ変換レンズ2了
の焦点距離や検出器28の光強度検知部の大きさ等にも
よるが、概略数十ミクロンから数l″f1ミクロン囲に
入るものである。
As shown in FIG. 4 Ca), the two-dimensional grid plate 27 has a mesh grid 32 formed on one side of a transparent glass substrate 310 by chromium vapor deposition or photographic technology3.The pitch of the mesh grid 32 is , l! shown in FIG. 4(b). Sea urchin, (
Changes linearly depending on the position in both the 4 directions and the lateral direction.
It is something to do. That is, in Fig. 4 (4 in bl), the pitch (ax, by) of the grating at position (X, y) is ax-: a0+Δa@x, b-, =b, +-Δb-y
Let it be expressed as Here, (ao, b.) is the pitch of the grating at the origin, and (Δa, Δb) is the proportionality constant. Although it depends on the size of the light intensity detection section, it is approximately in the range of several tens of microns to several l''f1 microns.

第3図において、適切な照明のもとで、認識対象物30
か光学系33の視野内に入ると、光弁29の信置に認識
対象物30の光学像を結像し、その光学イ象の位置から
は、振幅の比較的大きな平行レーザー光束34が射出1
−1この平行レーザー光34i;−二、1i13識対象
物30の光軸に重直な平面内の位置に1対1に対応しま
た位置にある。第4図(a)に示す網目状格子32の一
部分Aを通過する。網L1状格子32の一部分Aの位置
が、第4図C1〕)に示す座標(x、y)と−すると、
第5図に示すクーリエスペクトルの開戦(x/ 、 y
/ )は、(x、y)と1対1に対応することになり、
例えば第6図に示すようにL字状に配列しだ光電変換素
イによって検出することにより、認識対象物30の位置
が判別される。
In FIG. 3, the recognition target 30 is
When the target object 30 enters the field of view of the optical system 33, an optical image of the object 30 to be recognized is formed at the position of the light valve 29, and a parallel laser beam 34 with a relatively large amplitude is emitted from the position of the optical image. 1
-1 This parallel laser beam 34i; It passes through a portion A of the mesh lattice 32 shown in FIG. 4(a). If the position of the part A of the mesh L1-like lattice 32 is the coordinates (x, y) shown in FIG.
The onset of the courier spectrum shown in Figure 5 (x/ , y
/ ) has a one-to-one correspondence with (x, y),
For example, as shown in FIG. 6, the position of the recognition target object 30 is determined by detecting it with photoelectric conversion elements arranged in an L-shape.

−まだ、二次元格子板26を除去し、認識対象物30を
、光学系33の視野内に入る範囲で拡大することに」:
す、光学系33の光軸に垂直な平面内での認識対象物3
oの姿勢を判別することができる。
- Still removing the two-dimensional grating plate 26 and enlarging the recognition object 30 within the field of view of the optical system 33.
Recognition target 3 in a plane perpendicular to the optical axis of the optical system 33
o's posture can be determined.

第7図cal 、 Cb’l、第8図(a) 、 Cb
)に、姿勢判別ノ実施例を示す。認識対象物が、第7図
(a)にノエくすような、頭部に十文字状溝を有するビ
スの場合、そのフーリエスペクトルも第了図th)に示
−すような十文字状になり、第1図(b)の従来例に承
り、くさび状光強度検知素子により、ビスの回転角θQ
を検出することができる。
Figure 7 cal, Cb'l, Figure 8 (a), Cb
) shows an example of posture determination. If the object to be recognized is a screw with a cross-shaped groove on its head, as shown in Fig. 7(a), its Fourier spectrum will also be cross-shaped as shown in Fig. th). Based on the conventional example shown in Figure 1 (b), the rotation angle θQ of the screw is determined by a wedge-shaped light intensity detection element.
can be detected.

寸、(・−8認識対象物が第8図(a)に示すような六
角穴付ボ・1・1・の場合、そのフーリエスペクトルは
、第8図(b)に示すようになり、ボルトの回転角α0
も容易に検出するととができる3゜ なお、上記実施例では、認識対象物3oの位置検出と姿
勢判別の切替えを、二次元格子板26の着脱と光学像の
拡大の操作を経で行うものとしたか、・・−フミラー等
で光路を分割し、シャッター等によ−)で切替えてもよ
い。
When the object to be recognized is a hexagon socket head bolt 1.1 as shown in Figure 8(a), its Fourier spectrum will be as shown in Figure 8(b), rotation angle α0
Note that in the above embodiment, the position detection and orientation determination of the recognition target object 3o are switched by attaching and detaching the two-dimensional grating plate 26 and enlarging the optical image. Alternatively, the optical path may be divided by a mirror or the like and switched by a shutter or the like.

介、明の効果 以[−の」、うに本発明は、認識対象物の光学像の毘強
度分イIJを・I7−行レーザー光の振幅分布に変換し
、7− IJ 2−変換レンズによってその振幅分布に
対応したフーリエスペクトルを結像する装置に、ピノ−
Jを横方向、縦方向の位置に応じて線形に変化させ/3
−網[1状二次元格トを着脱容易に設けることにより、
認識対象物の形状、姿勢だけでなく、ニー次元的な位置
情報をも高速に検出することができるため、高速応答性
のロボット用視覚認識装置としての適用をij]能にす
るものである。−1
Due to the effects of 2 and 3, the present invention converts the intensity of the optical image of the object to be recognized into the amplitude distribution of the 7-IJ laser beam, and converts it by the 7-IJ 2-conversion lens. A device that images a Fourier spectrum corresponding to the amplitude distribution is equipped with a pinot
Change J linearly according to the horizontal and vertical positions/3
- By providing a mesh [one-dimensional two-dimensional grid] that can be easily attached and detached,
Since it is possible to detect not only the shape and posture of a recognition target but also knee-dimensional position information at high speed, it can be applied as a high-speed responsive visual recognition device for robots. -1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Ca)は従来の光学的二次元ノーリエ変換解析装
置の概略構成図、第1図(b)は第1図calにh−け
る検出部壺の光強度分布検知部の説明図、第2図(a)
は従来の光学像の光強度分布をコヒーレント胃:の振幅
分布に変換する機能を備えた視覚認識装置の概略構成図
、第2図(b)は第2図(a)における光プ「謳4の拡
大説明図、第3図は本発明の一実施例を示す概略構成図
、第4図(a) 、 (b)は第3図における二次元格
子板の拡大説明図、第5図は網目状格子の一部分を通過
した平行レーザ光束のフーリエスペクトルの一例を示す
図、第6図は本発明のノリエスベクI・ル強度分布検知
部の一実施例を示す図、第7図(a) 、 (b)、第
8図(a) 、 (b)は本発明の認識対象物の姿勢判
別の実施例を示す図である。 24−・検光子、25・・・・・・光学フィルタ、26
・・・・・・フーリエ変換レンズ、2了・・・・・・二
次元格子板、28・・・・・・検出器、29・・・・・
光弁、30・・・・・・認識対象物、31・・・・・・
ガラス基板、32・・・・・・網目状格子、。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 B) 第3図 第4図 (α)            (膣 第5図 第6図 第8rA −469−
Figure 1(c) is a schematic configuration diagram of a conventional optical two-dimensional Nolier transform analysis device, Figure 1(b) is an explanatory diagram of the light intensity distribution detection unit of the detection unit pot in Figure 1(h), Figure 2 (a)
2 is a schematic configuration diagram of a visual recognition device equipped with a function of converting the light intensity distribution of a conventional optical image into an amplitude distribution of a coherent stomach. FIG. FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention, FIGS. 4(a) and (b) are enlarged explanatory diagrams of the two-dimensional lattice plate in FIG. 3, and FIG. 5 is a mesh diagram. FIG. 6 is a diagram showing an example of the Fourier spectrum of a parallel laser beam that has passed through a part of the shaped grating. FIG. b), FIGS. 8(a) and 8(b) are diagrams showing an embodiment of the attitude determination of a recognition target object according to the present invention. 24-・Analyzer, 25... Optical filter, 26
...Fourier transform lens, 2..... Two-dimensional grating plate, 28... Detector, 29...
Light valve, 30... Recognition target, 31...
Glass substrate, 32...Mesh lattice. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure B) Figure 3 Figure 4 (α) (Vagina Figure 5 Figure 6 Figure 8rA -469-

Claims (1)

【特許請求の範囲】[Claims] 10、ご識対象物の光学像を結像する光学系と、コヒー
レントな平行光線を得るだめの装置と、前記光学像の明
暗分布を前記コヒーレン1〜な平行光線の振幅分イli
 K変換するコンバータと、前記コンバータと、1(・
置され、互いに直角な二方向においてピッチか線形に変
化する着脱可能な網目状二次元格子と、前記網「1状ニ
1次元格子を通過した前記コヒーレントな゛1′行’l
tmのノー1ノエスペクトルをその焦点面に結像するフ
ーリエ変換レンズと、前記ツー リエスベクトルの光強
度分布を検知する検出部とからなる視覚認識装置。
10. An optical system for forming an optical image of the object, a device for obtaining coherent parallel rays, and an apparatus for adjusting the brightness distribution of the optical image by the amplitude of the coherent parallel rays.
A converter that performs K conversion, the converter, 1(・
a removable mesh-like two-dimensional lattice whose pitch changes linearly in two directions perpendicular to each other;
A visual recognition device comprising a Fourier transform lens that images the No. 1 Noe spectrum of tm on its focal plane, and a detection section that detects the light intensity distribution of the tooling vector.
JP57153006A 1982-09-02 1982-09-02 Visual recognizing device Pending JPS5943479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153006A JPS5943479A (en) 1982-09-02 1982-09-02 Visual recognizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153006A JPS5943479A (en) 1982-09-02 1982-09-02 Visual recognizing device

Publications (1)

Publication Number Publication Date
JPS5943479A true JPS5943479A (en) 1984-03-10

Family

ID=15552886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153006A Pending JPS5943479A (en) 1982-09-02 1982-09-02 Visual recognizing device

Country Status (1)

Country Link
JP (1) JPS5943479A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191373A (en) * 1984-03-12 1985-09-28 Hitachi Ltd Recognizer for three-dimensional object
JPS62158212A (en) * 1985-12-28 1987-07-14 Asai Gerumaniumu Kenkyusho:Kk Antitumor agent
JPS62158211A (en) * 1985-12-28 1987-07-14 Asai Gerumaniumu Kenkyusho:Kk Antitumor agent
CN106482634A (en) * 2015-08-31 2017-03-08 株式会社三丰 Focused on using many level images of the tunable lens in machine vision inspection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191373A (en) * 1984-03-12 1985-09-28 Hitachi Ltd Recognizer for three-dimensional object
JPS62158212A (en) * 1985-12-28 1987-07-14 Asai Gerumaniumu Kenkyusho:Kk Antitumor agent
JPS62158211A (en) * 1985-12-28 1987-07-14 Asai Gerumaniumu Kenkyusho:Kk Antitumor agent
CN106482634A (en) * 2015-08-31 2017-03-08 株式会社三丰 Focused on using many level images of the tunable lens in machine vision inspection system

Similar Documents

Publication Publication Date Title
CA1272406A (en) Three dimensional imaging device
EP0028774B1 (en) Apparatus for detecting defects in a periodic pattern
US5659390A (en) Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns
US4428676A (en) Optical system for oblique viewing
JPS5943479A (en) Visual recognizing device
US4139291A (en) System and method for obtaining wide screen Schlieren photographs
Jones et al. Recognition of shiny dielectric objects by analysing the polarization of reflected light
CN110392186B (en) Imaging device and imaging method for reducing haze influence
PL164250B1 (en) Method of and apparatus for detecting and classifying surface corrugation
CN106643743B (en) A kind of measurement method of birefringent sun sensor and its carrier three-axis attitude
EP4246204A1 (en) Calibration target, fourier ptychographic imaging system and method for calibrating a fourier ptychographic imaging system
Kechiche et al. Polarimetric imaging method for surface quality evaluation of a liquid metal pool obtained during welding
JP2653853B2 (en) Inspection method of periodic pattern
DE4238891A1 (en) Video camera system with integral object-distance-measuring device - combines digitised video image with signal from position-sensitive detector of spot produced by subsidiary beam
US3726997A (en) Optical processing system
US5872631A (en) Optical two- and three-dimensional measuring of protrusions and convex surfaces
JP3260830B2 (en) 3D recognition device
JP3046504B2 (en) Particle measuring method and particle measuring device
JP2962489B2 (en) Method and apparatus for measuring eccentricity of lens system
JPH10153555A (en) Light scattering tomograph, and observation method
JPH01237440A (en) Method for detecting part mounted on board
Nagae et al. An Improved Method for Strain Measurement by Means of Optical Spatial Filtering
JPH06348843A (en) Picture processor
JPH02208503A (en) Image recognition
JPH04168309A (en) Form measuring apparatus by optical cutting method